Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.558
Filter
1.
Pharmacogenomics J ; 24(3): 18, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824169

ABSTRACT

The aim was to determine if opioid neuroimmunopharmacology pathway gene polymorphisms alter serum morphine, morphine-3-glucuronide and morphine-6-glucuronide concentration-response relationships in 506 cancer patients receiving controlled-release oral morphine. Morphine-3-glucuronide concentrations (standardised to 11 h post-dose) were higher in patients without pain control (median (interquartile range) 1.2 (0.7-2.3) versus 1.0 (0.5-1.9) µM, P = 0.006), whereas morphine concentrations were higher in patients with cognitive dysfunction (40 (20-81) versus 29 (14-60) nM, P = 0.02). TLR2 rs3804100 variant carriers had reduced odds (adjusted odds ratio (95% confidence interval) 0.42 (0.22-0.82), P = 0.01) of opioid adverse events. IL2 rs2069762 G/G (0.20 (0.06-0.52)), BDNF rs6265 A/A (0.15 (0.02-0.63)) and IL6R rs8192284 carrier (0.55 (0.34-0.90)) genotypes had decreased, and IL6 rs10499563 C/C increased (3.3 (1.2-9.3)), odds of sickness response (P ≤ 0.02). The study has limitations in heterogeneity in doses, sampling times and diagnoses but still suggests that pharmacokinetics and immune genetics co-contribute to morphine pain control and adverse effects in cancer patients.


Subject(s)
Analgesics, Opioid , Cancer Pain , Delayed-Action Preparations , Morphine , Pharmacogenetics , Humans , Morphine/adverse effects , Morphine/pharmacokinetics , Morphine/administration & dosage , Male , Female , Cancer Pain/drug therapy , Cancer Pain/genetics , Middle Aged , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/adverse effects , Analgesics, Opioid/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Aged , Pharmacogenetics/methods , Polymorphism, Single Nucleotide/genetics , Morphine Derivatives/pharmacokinetics , Morphine Derivatives/adverse effects , Adult , Pharmacogenomic Variants , Toll-Like Receptor 2/genetics
2.
Int J Nanomedicine ; 19: 5059-5070, 2024.
Article in English | MEDLINE | ID: mdl-38836007

ABSTRACT

Purpose: The purpose of this study is to address the need for efficient drug delivery with high drug encapsulation efficiency and sustained drug release. We aim to create nanoparticle-loaded microgels for potential applications in treatment development. Methods: We adopted the process of ionic gelation to generate microgels from sodium alginate and carboxymethyl cellulose. These microgels were loaded with doxorubicin-conjugated amine-functionalized zinc ferrite nanoparticles (AZnFe-NPs). The systems were characterized using various techniques. Toxicity was evaluated in MCF-7 cells. In vitro release studies were conducted at different pH levels at 37 oC, with the drug release kinetics being analyzed using various models. Results: The drug encapsulation efficiency of the created carriers was as high as 70%. The nanoparticle-loaded microgels exhibited pH-responsive behavior and sustained drug release. Drug release from them was mediated via a non-Fickian type of diffusion. Conclusion: Given their high drug encapsulation efficiency, sustained drug release and pH-responsiveness, our nanoparticle-loaded microgels show promise as smart carriers for future treatment applications. Further development and research can significantly benefit the field of drug delivery and treatment development.


Subject(s)
Delayed-Action Preparations , Doxorubicin , Drug Carriers , Drug Liberation , Ferric Compounds , Microgels , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Humans , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , MCF-7 Cells , Ferric Compounds/chemistry , Hydrogen-Ion Concentration , Microgels/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Alginates/chemistry , Amines/chemistry , Carboxymethylcellulose Sodium/chemistry , Nanoparticles/chemistry , Zinc/chemistry , Zinc Compounds/chemistry , Cell Survival/drug effects
3.
Eur J Pharm Biopharm ; 199: 114313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718842

ABSTRACT

The aim of the present study was to investigate the gastroretentive capacity of different formulation principles. This was indirectly determined by the absorption behavior of caffeine from the dosage forms. A slow and continuous appearance of caffeine in the saliva of healthy volunteers was used as a parameter for a prolonged gastric retention time. For this purpose, a four-way study was conducted with twelve healthy volunteers using the following test procedures: (1) Effervescent granules with 240 mL of still water administered in fed state, (2) effervescent granules with 20 mL of still water in fed state, (3) extended release (ER) tablet with 240 mL of still water in fed state, and (4) effervescent granules with 240 mL of still water in fasted state. The initial rise of the caffeine concentrations was more pronounced after the intake of the effervescent granules in the fed state compared to that of the ER tablets. However, tmax tended to be shorter in the fed study arms following administration of the ER tablet compared to the granules. Overall, the application of active pharmaceutical ingredients formulated as effervescent granules seems to be a promising approach to increase their gastric residence time after intake in fed state.


Subject(s)
Caffeine , Delayed-Action Preparations , Tablets , Humans , Caffeine/administration & dosage , Caffeine/pharmacokinetics , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Male , Adult , Young Adult , Female , Fasting , Administration, Oral , Saliva/metabolism , Saliva/chemistry , Healthy Volunteers , Gastric Mucosa/metabolism , Cross-Over Studies , Stomach/drug effects
4.
J Biomed Mater Res B Appl Biomater ; 112(6): e35418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38786546

ABSTRACT

The method of synthesis of unmodified and organo-modified silica hydrogels and their composites with orotic acid as a model drug was developed. The hydrogels had a pH of 6.5-7.8. The particulate nature and highly porous structures of the hydrogel materials were revealed using scanning electron and optical microscopy methods. The content of aqueous phase in the hydrogels was 99% or more. In order to evaluate the possibility of their application as a basis for development of novel soft drug formulations and cosmetic compositions, rheological properties of the hydrogels and in vitro release kinetics of the drug were studied. The effects of synthesis conditions (increasing concentration of catalyst of silica sol formation, drug loading) and the silica matrix modification with various organic groups on the indicated properties were investigated. It was found that all synthesized hydrogels exhibited pseudoplasticity, thixotropy and controlled release of the drug, which are important for their potential application. However, in general, the indicated effects led to worsening the properties of the hydrogel materials in comparison with the unmodified silica hydrogels.


Subject(s)
Hydrogels , Rheology , Silicon Dioxide , Hydrogels/chemistry , Silicon Dioxide/chemistry , Kinetics , Drug Liberation , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics
5.
AAPS PharmSciTech ; 25(5): 119, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816667

ABSTRACT

Loteprednol etabonate (LE) is a topical corticosteroid for the symptomatic management of ocular conditions, encompassing both allergic and infectious etiologies. Owing to the dynamic and static barriers of the eye, LE exhibits significantly low bioavailability, necessitating an increase in the frequency of drug administration. The objective of this study is to overcome the limitations by developing niosomal systems loaded with LE. Design of Experiments (DoE) approach was used for the development of optimal niosome formulation. The optimal formulation was characterized using DLS, FT-IR, and DSC analysis. In vitro and ex vivo release studies were performed to demonstrate drug release patterns. After that HET-CAM evaluation was conducted to determine safety profile. Then, in vivo studies were carried out to determine therapeutic activity of niosomes. Zeta potential (ZP), particle size, polydispersity index (PI), and encapsulation efficacy (EE) were -33.8 mV, 89.22 nm, 0.192, and 89.6%, respectively. Medicated niosomes had a broad distribution within rabbit eye tissues and was absorbed by the aqueous humor of the bovine eye for up to 6 h after treatment. Cumulative permeated drug in the bovine eye and rabbit eye were recorded 52.45% and 54.8%, respectively. No irritation or hemorrhagic situation was observed according to the results of HET-CAM study. Thus, novel LE-loaded niosomal formulations could be considered as a promising treatment option for the dry-eye-disease (DED) due to enhanced bioavailability and decreased side effects.


Subject(s)
Delayed-Action Preparations , Dry Eye Syndromes , Liposomes , Loteprednol Etabonate , Animals , Rabbits , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Loteprednol Etabonate/administration & dosage , Loteprednol Etabonate/pharmacokinetics , Dry Eye Syndromes/drug therapy , Cattle , Drug Liberation , Particle Size , Disease Models, Animal , Administration, Ophthalmic , Biological Availability , Drug Delivery Systems/methods , Eye/metabolism , Eye/drug effects , Aqueous Humor/metabolism , Chemistry, Pharmaceutical/methods , Ophthalmic Solutions/administration & dosage , Ophthalmic Solutions/pharmacokinetics
6.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791175

ABSTRACT

The modified release of active substances such as chlorzoxazone from matrix tablets, based on Kollidon®SR and chitosan, depends both on the drug solubility in the dissolution medium and on the matrix composition. The aim of this study is to obtain some new oral matrix tablet formulations, based on Kollidon®SR and chitosan, in order to optimize the low-dose oral bioavailability of chlorzoxazone, a non-steroidal anti-inflammatory drug of class II Biopharmaceutical Classification System. Nine types of chlorzoxazone matrix tablets were obtained using the direct compression method by varying the components ratio as 1:1, 1:2, and 1:3 chlorzoxazone/excipients, 20-40 w/w % Kollidon®SR, 3-7 w/w % chitosan while the auxiliary substances: Aerosil® 1 w/w %, magnesium stearate 0.5 w/w % and Avicel® up to 100 w/w % were kept in constant concentrations. Pharmaco-technical characterization of the tablets included the analysis of flowability and compressibility properties (flow time, friction coefficient, angle of repose, Hausner ratio, and Carr index), and pharmaco-chemical characteristics (such as mass and dose uniformity, thickness, diameter, mechanical strength, friability, softening degree, and in vitro release profiles). Based on the obtained results, only three matrix tablet formulations (F1b, F2b, and F3b, containing 30 w/w % KOL and 5 w/w % CHT, were selected and further tested. These formulations were studied in detail by Fourier-transform infrared spectrometry, X-ray diffraction, thermogravimetry, and differential scanning calorimetry. The three formulations were comparatively studied regarding the release kinetics of active substances using in vitro release testing. The results were analyzed by fitting into four representative mathematical models for the modified-release oral formulations. In vitro kinetic study revealed a complex mechanism of release occurring in two steps of drug release, the first step (0-2 h) and the second (2-36 h). Two factors were calculated to assess the release profile of chlorzoxazone: f1-the similarity factor, and f2-the factor difference. The results have shown that both Kollidon®SR and chitosan may be used as matrix-forming agents when combined with chlorzoxazone. The three formulations showed optima pharmaco-technical properties and in vitro kinetic behavior; therefore, they have tremendous potential to be used in oral pharmaceutical products for the controlled delivery of chlorzoxazone. In vitro dissolution tests revealed a faster drug release for the F2b sample.


Subject(s)
Chitosan , Chlorzoxazone , Delayed-Action Preparations , Drug Liberation , Hydrophobic and Hydrophilic Interactions , Tablets , Tablets/chemistry , Chlorzoxazone/chemistry , Chlorzoxazone/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Chitosan/chemistry , Solubility , Excipients/chemistry , Chemistry, Pharmaceutical/methods
7.
Int J Pharm ; 658: 124207, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38718971

ABSTRACT

The application of three-dimensional printing (3DP) in the pharmaceutical industry brings a broad spectrum of benefits to patients by addressing individual needs and improve treatment success. This study investigates the sustained release properties of 3DP tablets containing Theophylline (TPH), which is commonly used to treat respiratory diseases and recently having a comeback due to its potential in the treatment of conditions like Covid-19. Since TPH is a narrow therapeutic window (NTW) drug with serious side effects in the event of overdose, the release properties must be observed particularly closely. We employed a state-of-the-art single screw extrusion 3D printer, which is fed with granules containing the drug. By employing a Taguchi orthogonal array design of experiments (DOE), tablet design parameters and factor related process stability were sought to be evaluated fundamentally. Following this, examinations regarding tailored TPH dosages were undertaken and a relationship between the real printed dose of selected tablet designs and their sustained drug release was established. The release profiles were analyzed using different mathematical model fits and compared in terms of mean dissolution times (MDT). Finally, in-vivo/in-vitro correlation (IVIVC) and physiologically based pharmacokinetic (PBPK) modeling showed that a paradigm patient group could be covered with the dosage forms produced.


Subject(s)
Delayed-Action Preparations , Drug Liberation , Printing, Three-Dimensional , Tablets , Theophylline , Theophylline/chemistry , Theophylline/administration & dosage , Theophylline/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Humans , Drug Compounding/methods , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/chemistry
8.
ACS Appl Mater Interfaces ; 16(20): 25869-25878, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728411

ABSTRACT

Liraglutide has been extensively applied in the treatment of type 2 diabetes mellitus (T2DM), but its 11-15 h half-life resulted in daily administration, which led to poor patient compliance. This study aimed to solve this problem by developing liraglutide-loaded microspheres with a 1 month sustained release prepared by the W1/O/W2 method combined with the premix membrane emulsification technique to improve therapeutic efficacy. Remarkably, we found that the amphiphilic properties of liraglutide successfully reduced the oil-water interfacial tension, resulting in a stable primary emulsion and decreasing the level of drug leakage into the external water phase. As a result, exceptional drug loading (>8%) and encapsulation efficiency (>85%) of microspheres were achieved. Furthermore, the uniformity in microsphere size facilitated an in-depth exploration of the structural characteristics of liraglutide-loaded microspheres. The results indicated that the dimensions of the internal cavities of the microspheres were significantly influenced by the size of the inner water droplets in the primary emulsion. A denser and more uniform cavity structure decreased the initial burst release, improving the release process of liraglutide from the microspheres. To evaluate the release behavior of liraglutide from microspheres, a set of in vitro release assays and in vivo pharmacodynamics were performed. The liraglutide-loaded microspheres effectively decreased fasting blood glucose (FBG) levels and hemoglobin A1c (HbA1c) levels while enhancing the pancreatic and hepatic functions in db/db mice. In conclusion, liraglutide sustained-release microspheres showed the potential for future clinical applications in the management of T2DM and provided an effective therapeutic approach to overcoming patient compliance issues.


Subject(s)
Delayed-Action Preparations , Diabetes Mellitus, Type 2 , Liraglutide , Microspheres , Liraglutide/chemistry , Liraglutide/pharmacology , Diabetes Mellitus, Type 2/drug therapy , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Mice , Blood Glucose/drug effects , Blood Glucose/analysis , Diabetes Mellitus, Experimental/drug therapy , Male , Drug Liberation , Emulsions/chemistry , Particle Size
9.
Biomater Adv ; 161: 213896, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38795473

ABSTRACT

Surgical site infection (SSI) is a common issue post-surgery which often prolongs hospitalization and can lead to serious complications such as sternal wound infection following cardiac surgery via median sternotomy. Controlled release of suitable antibiotics could allow maximizing drug efficacy and safety, and therefore achieving a desired therapeutic response. In this study, we have developed a vancomycin laden PEGylated fibrinogen-polyethylene glycol diacrylate (PF-PEGDA) hydrogel system that can release vancomycin at a controlled and predictable rate to be applied in SSI prevention. Two configurations were developed to study effect of the hydrogel on drug release, namely, vancomycin laden hydrogel and vancomycin solution on top of blank hydrogel. The relationship between the rigidity of the hydrogel and drug diffusion was found to comply with a universal power law, i.e., softer hydrogels result in a greater diffusion coefficient hence faster release rate. Besides, vancomycin laden hydrogels exhibited burst release, whereas the vancomycin solution on top of blank hydrogels exhibited lag release. A mathematical model was developed to simulate vancomycin permeation through the hydrogels. The permeation of vancomycin can be predicted accurately by using the mathematical model, which provided a useful tool to customize drug loading, hydrogel thickness and stiffness for personalized medication to manage SSI. To evaluate the potential of hydrogels for bone healing applications in cardiovascular medicine, we performed a proof-of-concept median sternotomy in rabbits and applied the hydrogels. The hydrogel formulations accelerated the onset of osteo-genetic processes in rabbits, demonstrating its potential to be used in human.


Subject(s)
Anti-Bacterial Agents , Delayed-Action Preparations , Fibrinogen , Hydrogels , Polyethylene Glycols , Vancomycin , Vancomycin/administration & dosage , Vancomycin/chemistry , Vancomycin/pharmacokinetics , Polyethylene Glycols/chemistry , Fibrinogen/chemistry , Animals , Hydrogels/chemistry , Delayed-Action Preparations/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Drug Liberation , Rabbits , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Humans
10.
Mol Pharm ; 21(6): 2828-2837, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38723178

ABSTRACT

Nefecon, a targeted-release capsule formulation of budesonide approved for the reduction of proteinuria in adults with primary immunoglobulin A nephropathy, targets overproduction of galactose-deficient immunoglobulin A type 1 in the Peyer's patches at the gut mucosal level. To investigate whether the commercial formulation of Nefecon capsules reliably releases budesonide to the distal ileum, a human study was conducted with test capsules reproducing the delayed-release function of Nefecon capsules. Caffeine was included in the test capsules as a marker for capsule opening in the gut since it appears rapidly in saliva after release from orally administered dosage forms. Magnetic resonance imaging with black iron oxide was used to determine the capsule's position in the gut at the time caffeine was first measured in saliva and additionally to directly visualize dispersion of the capsule contents in the gut. In vitro dissolution results confirmed that the test capsules had the same delayed-release characteristics as Nefecon capsules. In 10 of 12 human volunteers, the capsule was demonstrated to open in the distal ileum; in the other two subjects, it opened just past the ileocecal junction. These results compared favorably with the high degree of variability seen in other published imaging studies of delayed-release formulations targeting the gut. The test capsules were shown to reliably deliver their contents to the distal ileum, the region with the highest concentration of Peyer's patches.


Subject(s)
Budesonide , Capsules , Drug Delivery Systems , Ileum , Humans , Ileum/metabolism , Ileum/drug effects , Adult , Drug Delivery Systems/methods , Male , Budesonide/administration & dosage , Budesonide/pharmacokinetics , Budesonide/chemistry , Female , Capsules/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Magnetic Resonance Imaging/methods , Administration, Oral , Middle Aged , Caffeine/chemistry , Caffeine/administration & dosage , Peyer's Patches/metabolism , Peyer's Patches/drug effects , Young Adult
11.
Acta Biomater ; 180: 423-435, 2024 May.
Article in English | MEDLINE | ID: mdl-38641183

ABSTRACT

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Subject(s)
Delayed-Action Preparations , Hydrogels , Lymph Nodes , Memory T Cells , Programmed Cell Death 1 Receptor , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Memory T Cells/drug effects , Memory T Cells/immunology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Tumor Microenvironment/drug effects , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , Humans
12.
Mol Pharm ; 21(5): 2394-2405, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38647653

ABSTRACT

Doxorubicin (DOX) is one of the most commonly used anticancer drugs; however, its clinical application is greatly limited due to its toxicity and chemotherapy resistance. The delivery of DOX by liposomes (Lipos) can improve the blood circulation time in vivo and reduce toxic side effects, but the drug's accumulation in the tumor is often insufficient for effective treatment. In this study, we present a calcium cross-linked liposome gel for the encapsulation of DOX, demonstrating its superior long-term release capabilities compared to conventional Lipos. By leveraging this enhanced long-term release, we can enhance drug accumulation within tumors, ultimately leading to improved antitumor efficacy. Lipos were prepared using the thin-film dispersion method in this study. We utilized the ion-responsiveness of glutathione-gelatin (GSH-GG) to form the gel outside the Lipos and named the nanoparticles coated with GSH-GG on the outside of Lipos as Lipos@GSH-GG. The average size of Lipos@GSH-GG was around 342.9 nm, with a negative charge of -25.6 mV. The in vitro experiments revealed that Lipos@GSH-GG exhibited excellent biocompatibility and slower drug release compared to conventional Lipos. Further analysis of cellular uptake and cytotoxicity demonstrated that Lipos@GSH-GG loading DOX (DOX&Lipos@GSH-GG) exhibited superior long-term release effects and lower toxic side effects compared to Lipos loading DOX (DOX&Lipos). Additionally, the findings regarding the long-term release effect in vivo and the tumor accumulation within tumor-bearing mice of Lipos@GSH-GG suggested that, compared to Lipos, it demonstrated superior long-term release capabilities and achieved greater drug accumulation within tumors. In vivo antitumor efficacy experiments showed that DOX&Lipos@GSH-GG demonstrated superior antitumor efficacy to DOX&Lipos. Our study highlights Lipos@GSH-GG as a promising nanocarrier with the potential to enhance efficacy and safety by means of long-term release effects and may offer an alternative approach for effective antitumor therapy in the future.


Subject(s)
Calcium , Doxorubicin , Drug Liberation , Glutathione , Liposomes , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Animals , Mice , Liposomes/chemistry , Humans , Calcium/chemistry , Calcium/metabolism , Glutathione/chemistry , Female , Gels/chemistry , Gelatin/chemistry , Mice, Nude , Nanoparticles/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Xenograft Model Antitumor Assays , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/pharmacology , Antibiotics, Antineoplastic/chemistry , Antibiotics, Antineoplastic/pharmacokinetics , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Cross-Linking Reagents/chemistry , Drug Delivery Systems/methods
13.
Clin Pharmacol Ther ; 115(6): 1450-1459, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38519844

ABSTRACT

Long-acting cabotegravir has been studied mainly in the stringent framework of clinical trials, which does not necessarily reflect the situation of people with HIV (PWH) in routine clinical settings. The present population pharmacokinetic analysis aims to build real-world reference percentile curves of cabotegravir concentrations, accounting for patient-related factors that may affect cabotegravir exposure. The second objective is to simulate whether dosing interval adjustments of cabotegravir could be considered in specific subpopulations. Overall, 238 PWH contributed to 1,038 cabotegravir levels (186 during the initial oral administration phase and 852 after intramuscular injection). Cabotegravir pharmacokinetics was best described using a one-compartment model with distinct first order-absorption for oral and intramuscular administrations, and identical volume and clearance. Our model showed almost 40% faster absorption and 30% higher clearance than previously reported, resulting in a time to steady-state of 8 months and an elimination half-life of 4.6 weeks for long-acting cabotegravir. Sex and body mass index significantly influenced absorption, and bodyweight affected clearance. Model-based simulations showed that cabotegravir trough concentrations in females were 25% lower 4 weeks after the intramuscular loading dose, but 42% higher during the late maintenance phase. Finally, simulations indicated that in females, despite significantly higher cabotegravir concentrations, longer intervals between injections may not consistently ensure levels above the 4-fold protein-adjusted 90% inhibitory target concentration.


Subject(s)
HIV Infections , Models, Biological , Pyridones , Humans , Injections, Intramuscular , Female , Male , HIV Infections/drug therapy , Pyridones/pharmacokinetics , Pyridones/administration & dosage , Adult , Administration, Oral , Middle Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/administration & dosage , Half-Life , Delayed-Action Preparations/pharmacokinetics , Young Adult , Aged , Diketopiperazines
14.
Epilepsy Res ; 202: 107350, 2024 May.
Article in English | MEDLINE | ID: mdl-38513537

ABSTRACT

OBJECTIVES: Assess the bioequivalence of lacosamide extended-release (XR) capsules and immediate-release (IR) tablets and answer real-world clinical questions regarding the use of lacosamide XR. METHODS: An open-label, randomized, two-treatment, two-sequence, oral comparative bioavailability study was conducted to assess the bioequivalence of two lacosamide formulations. Participants were randomized 1:1 to receive lacosamide XR capsules (400 mg once-daily) or IR tablets (200 mg twice-daily) in 1 of 2 sequences over 7-day periods. Primary outcome was the area under the lacosamide concentration-time curve over 24 h at steady-state (AUC0-τ,ss). Secondary outcomes were maximum (Cmax,ss) and minimum concentrations at steady-state (Cmin,ss). Bioequivalence was established when 90% confidence intervals (CIs) for geometric least square means ratios (GLSMs) were between 80% and 125%. Adverse events (AEs) and other safety outcomes were also assessed. Pharmacokinetic simulations, including adherent and partially adherent dosing scenarios with XR and IR formulations, modeled the clinical use of lacosamide XR. RESULTS: Thirty-five healthy adult males were enrolled in the bioequivalence study. After 7 days of study drug, mean AUC0-τ,ss, Cmax,ss, and Cmin,ss values were similar between XR and IR formulations; all 90% CIs for GLSMs were between 80% and 125%. AEs were mild and no serious AEs or other clinically significant safety findings were observed. Pharmacokinetic simulations suggested that partial adherence affected formulations similarly; and the best strategy for switching formulations was to take the morning lacosamide IR dose followed by the evening lacosamide XR dose, as this resulted in the most consistent lacosamide plasma concentrations. CONCLUSIONS: Once-daily lacosamide XR capsules were bioequivalent to twice-daily lacosamide IR tablets. Pharmacokinetic simulations indicated lacosamide XR and IR formulations were similarly affected by partial adherence, though once-daily dosing with lacosamide XR may offer clinical advantages, and formulations can be easily switched. These results support the use of lacosamide XR capsules as a once-daily alternative to lacosamide IR tablets.


Subject(s)
Anticonvulsants , Capsules , Delayed-Action Preparations , Lacosamide , Tablets , Therapeutic Equivalency , Humans , Lacosamide/pharmacokinetics , Lacosamide/administration & dosage , Male , Adult , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Young Adult , Female , Middle Aged , Biological Availability , Area Under Curve , Adolescent , Computer Simulation , Administration, Oral
15.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 781-794, 2024 05.
Article in English | MEDLINE | ID: mdl-38429889

ABSTRACT

There is growing interest in the use of long-acting (LA) injectable drugs to improve treatment adherence. However, their long elimination half-life complicates the conduct of clinical trials. Physiologically-based pharmacokinetic (PBPK) modeling is a mathematical tool that allows to simulate unknown clinical scenarios for LA formulations. Thus, this work aimed to develop and verify a mechanistic intramuscular PBPK model. The framework describing the release of a LA drug from the depot was developed by including both the physiology of the injection site and the physicochemical properties of the drug. The framework was coded in Matlab® 2020a and implemented in our existing PBPK model for the verification step using clinical data for LA cabotegravir, rilpivirine, and paliperidone. The model was considered verified when the simulations were within twofold of observed data. Furthermore, a local sensitivity analysis was conducted to assess the impact of various factors relevant for the drug release from the depot on pharmacokinetics. The PBPK model was successfully verified since all predictions were within twofold of observed clinical data. Peak concentration, area under the concentration-time curve, and trough concentration were sensitive to media viscosity, drug solubility, drug density, and diffusion layer thickness. Additionally, inflammation was shown to impact the drug release from the depot. The developed framework correctly described the release and the drug disposition of LA formulations upon intramuscular administration. It can be implemented in PBPK models to address pharmacological questions related to the use of LA formulations.


Subject(s)
Computer Simulation , Models, Biological , Rilpivirine , Humans , Injections, Intramuscular , Rilpivirine/pharmacokinetics , Rilpivirine/administration & dosage , Paliperidone Palmitate/pharmacokinetics , Paliperidone Palmitate/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Male , Adult , Anti-Retroviral Agents/pharmacokinetics , Anti-Retroviral Agents/administration & dosage , Drug Liberation , Middle Aged , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/administration & dosage , Female , Pyridones , Diketopiperazines
16.
Adv Healthc Mater ; 13(12): e2303134, 2024 May.
Article in English | MEDLINE | ID: mdl-38348511

ABSTRACT

The effective repair of large bone defects remains a major challenge due to its limited self-healing capacity. Inspired by the structure and function of the natural periosteum, an electrospun biomimetic periosteum is constructed to programmatically promote bone regeneration using natural bone healing mechanisms. The biomimetic periosteum is composed of a bilayer with an asymmetric structure in which an aligned electrospun poly(ε-caprolactone)/gelatin/deferoxamine (PCL/GEL/DFO) layer mimics the outer fibrous layer of the periosteum, while a random coaxial electrospun PCL/GEL/aspirin (ASP) shell and PCL/silicon nanoparticles (SiNPs) core layer mimics the inner cambial layer. The bilayer controls the release of ASP, DFO, and SiNPs to precisely regulate the inflammatory, angiogenic, and osteogenic phases of bone repair. The random coaxial inner layer can effectively antioxidize, promoting cell recruitment, proliferation, differentiation, and mineralization, while the aligned outer layer can promote angiogenesis and prevent fibroblast infiltration. In particular, different stages of bone repair are modulated in a rat skull defect model to achieve faster and better bone regeneration. The proposed biomimetic periosteum is expected to be a promising candidate for bone defect healing.


Subject(s)
Biomimetic Materials , Bone Regeneration , Periosteum , Polyesters , Bone Regeneration/drug effects , Animals , Periosteum/drug effects , Rats , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Polyesters/chemistry , Rats, Sprague-Dawley , Deferoxamine/pharmacology , Deferoxamine/chemistry , Gelatin/chemistry , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Osteogenesis/drug effects , Skull/drug effects , Skull/injuries , Male , Nanoparticles/chemistry , Tissue Engineering/methods , Cell Differentiation/drug effects , Tissue Scaffolds/chemistry
17.
J Pharm Sci ; 113(6): 1653-1663, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38382809

ABSTRACT

Drug-Combination Nanoparticles (DcNP) are a novel drug delivery system designed for synchronized delivery of multiple drugs in a single, long-acting, and targeted dose. Unlike depot formulations, slowly releasing drug at the injection site into the blood, DcNP allows multiple-drug-in-combination to collectively distribute from the injection site into the lymphatic system. Two distinct classes of long-acting injectables products are proposed based on pharmacokinetic mechanisms. Class I involves sustained release at the injection site. Class II involves a drug-carrier complex composed of lopinavir, ritonavir, and tenofovir uptake and retention in the lymphatic system before systemic access as a part of the PBPK model validation. For clinical development, Class II long-acting drug-combination products, we leverage data from 3 nonhuman primate studies consisting of nine PK datasets: Study 1, varying fixed-dose ratios; Study 2, short multiple dosing with kinetic tails; Study 3, long multiple dosing (chronic). PBPK validation criteria were established to validate each scenario for all drugs. The models passed validation in 8 of 9 cases, specifically to predict Study 1 and 2, including PK tails, with ritonavir and tenofovir, fully passing Study 3 as well. PBPK model for lopinavir in Study 3 did not pass the validation due to an observable time-varying and delayed drug accumulation, which likely was due to ritonavir's CYP3A inhibitory effect building up during multiple dosing that triggered a mechanism-based drug-drug interaction (DDI). Subsequently, the final model enables us to account for this DDI scenario.


Subject(s)
Anti-HIV Agents , Drug Combinations , Lopinavir , Models, Biological , Nanoparticles , Ritonavir , Tenofovir , Ritonavir/pharmacokinetics , Ritonavir/administration & dosage , Lopinavir/pharmacokinetics , Lopinavir/administration & dosage , Tenofovir/pharmacokinetics , Tenofovir/administration & dosage , Animals , Anti-HIV Agents/pharmacokinetics , Anti-HIV Agents/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Male , Drug Delivery Systems/methods , Humans
18.
Neuropsychopharmacology ; 49(6): 1050-1057, 2024 May.
Article in English | MEDLINE | ID: mdl-38200140

ABSTRACT

Buprenorphine is used to treat opioid use disorder (OUD). Weekly and monthly subcutaneous long-acting buprenorphine injections (CAM2038) provide more stable buprenorphine plasma levels and reduce the treatment burden, misuse, and diversion associated with sublingual transmucosal buprenorphine formulations. To characterize the pharmacokinetic/pharmacodynamic (PK/PD) relationship, a maximum inhibition (Imax) model was developed relating CAM2038 buprenorphine plasma concentration to drug liking maximum effect (Emax) visual analog scale (VAS; bipolar) score after intramuscular hydromorphone administration. Data included time-matched observations of buprenorphine plasma concentration and drug liking Emax VAS score after hydromorphone 18 mg administration in 47 non-treatment-seeking adults with moderate to severe OUD in a phase 2 study. Analysis used non-|linear mixed-effects modeling (NONMEM®). The final Imax model adequately described the PK/PD relationship between buprenorphine plasma concentration and drug liking Emax VAS score. Simulations showed drug liking was effectively blocked at low buprenorphine plasma concentrations (0.4 ng/mL) where the upper 95% confidence interval of the drug liking Emax VAS score was below the pre-defined 11-point complete blockade threshold. The buprenorphine plasma concentration required to achieve 90% of the maximal effect (IC90) of drug liking was 0.675 ng/mL. Interindividual variability in responses to buprenorphine was observed; some participants experienced fluctuating responses, and a few did not achieve drug liking blockade even with higher buprenorphine plasma concentrations. This affirms the need to individualize treatment and titrate doses for optimal treatment outcomes. PK/PD models were also developed for desire to use VAS and Clinical Opiate Withdrawal Scale (COWS) scores, with results aligned to those for drug liking.


Subject(s)
Buprenorphine , Opioid-Related Disorders , Adult , Female , Humans , Male , Middle Aged , Young Adult , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/pharmacology , Buprenorphine/pharmacokinetics , Buprenorphine/administration & dosage , Buprenorphine/pharmacology , Delayed-Action Preparations/pharmacokinetics , Hydromorphone/pharmacokinetics , Hydromorphone/administration & dosage , Hydromorphone/pharmacology , Injections, Subcutaneous , Narcotic Antagonists/pharmacokinetics , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/pharmacology , Opiate Substitution Treatment/methods , Opioid-Related Disorders/drug therapy
19.
Ther Drug Monit ; 46(3): 309-320, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38176856

ABSTRACT

PURPOSE: Torasemide is a potassium-sparing loop diuretic used to treat fluid retention associated with congestive heart failure and kidney and hepatic diseases. This systematic review was conducted to combine all accessible data on the pharmacokinetics (PK) of torasemide in healthy and diseased populations, which may help clinicians avert adverse drug reactions and determine the correct dosage regimen. METHODS: Four databases were systematically searched to screen for studies associated with the PK of torasemide, and 21 studies met the eligibility criteria. The review protocol was registered in the PROSPERO database (CRD42023390178). RESULTS: A decrease in maximum plasma concentration (C max ) was observed for torasemide after administration of the prolonged-release formulation in comparison to that after administration of the immediate-release formulation, that is, 1.12 ± 0.17 versus 1.6 ± 0.2 mcg/mL. After administering an oral dose of torasemide, a 2-fold increase in the area under the concentration-time curve (AUC) was reported in patients with congestive heart failure compared with the healthy population. Moreover, the patients with renal failure (clearance < 30 mL/min) showed an increase in value of AUC 0-∞ that is, 42.9 versus 8.091 mcg.h -1 .mL -1 compared with healthy subjects. In addition, some studies have reported interactions with different drugs, in which irbesartan showed a slight increase in the AUC 0-∞ of torasemide, whereas losartan and empagliflozin did not. CONCLUSIONS: The current review summarizes all available PK parameters of torasemide that may be beneficial for avoiding drug-drug interactions in subjects with renal and hepatic dysfunction and for predicting doses in patients with different diseases.


Subject(s)
Torsemide , Humans , Torsemide/pharmacokinetics , Heart Failure/drug therapy , Diuretics/pharmacokinetics , Area Under Curve , Delayed-Action Preparations/pharmacokinetics
20.
Drug Deliv Transl Res ; 14(7): 1954-1968, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38191781

ABSTRACT

To improve treatment compliance and reach sustained and controlled drug release in the colon, we developed a hollow mesoporous silica nano-suppository that responded to both pH and redox stimuli. Firstly, we prepared hollow mesoporous silica nanoparticles containing disulfide bonds (HMSN-SS) and loaded them with 5-ASA. Secondly, we modified the surface of HMSN-SS with polydopamine (PDA) and chitosan (CS) and molded the suppository, which we named 5-ASA@HMSN-SS-PDA-CS (5-ASA@HSPC). By administering 5-ASA@HSPC rectally, it acted directly on the affected area. CS helped the nanoparticles adhere to the colon's surface, while PDA dissociates from HMSN-SS due to protonation in the acidic environment of the ulcerative colon. The disulfide bonds were destroyed by the reducing environment of the colon, leading to a stable and slow release of encapsulated 5-ASA from the pores of HMSN. Finally, in vitro release experiments and in vivo pharmacokinetic and pharmacodynamic experiments had demonstrated that 5-ASA@HSPC exhibited a slow and steady action at the colonic site, with an excellent safety profile. This novel approach showed great potential in the treatment of ulcerative colitis.


Subject(s)
Chitosan , Colitis, Ulcerative , Drug Liberation , Indoles , Mesalamine , Nanoparticles , Oxidation-Reduction , Polymers , Silicon Dioxide , Colitis, Ulcerative/drug therapy , Hydrogen-Ion Concentration , Chitosan/chemistry , Chitosan/administration & dosage , Animals , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mesalamine/chemistry , Mesalamine/administration & dosage , Mesalamine/pharmacokinetics , Silicon Dioxide/chemistry , Silicon Dioxide/administration & dosage , Polymers/chemistry , Polymers/administration & dosage , Indoles/administration & dosage , Indoles/chemistry , Indoles/pharmacokinetics , Suppositories/chemistry , Male , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Colon/drug effects , Colon/metabolism , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...