Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 16465, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712724

ABSTRACT

Pseudomonas aeruginosa is one of the most common opportunistic pathogens that use quorum sensing (QS) system to regulate virulence factors expression and biofilm development. Delftia sp. 11304 was selected among 663 Gram-negative clinical isolates based on its QS inhibitory activity against P. aeruginosa MMA83 clinical isolate. Whole genome sequencing identified this isolate as D. tsuruhatensis and revealed genetic armamentarium of virulence factors and antibiotic resistance determinants. Ethyl acetate extract of D. tsuruhatensis 11304 culture supernatant (QSI extract) prevented biofilm formation of P. aeruginosa MMA83, but was unable to cause biofilm decomposition. QSI extract showed a synergistic effect in combination with meropenem and gentamycin, against P. aeruginosa MMA83. A dose-dependent reduction of the virulence factors: elastase, rhamnolipid and pyocyanin production by P. aeruginosa MMA83 and significant downregulation of lasI, lasR, rhlI, rhlR, pqs and mvfR expression were observed. Matrix-assisted Laser Desorption Ionization (MALDI) mass spectrometry of D. tsuruhatensis 11304 QSI extract revealed the presence of N-acyl homoserine lactones (AHL) with chain lengths of C12 to C18. The main ion peak was identified as N-octadecanoylhomoserine lactone (C18-HSL). Commercial C18-HSL (20 µM) reduced pyocyanin production as well as mRNA level of the lasI gene. A novel AHL species, dihydroxy-N-octadecanoylhomoserine lactone, was also described.


Subject(s)
Acyl-Butyrolactones/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Delftia/isolation & purification , Pseudomonas aeruginosa/growth & development , Quorum Sensing , Virulence Factors/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/drug effects , Humans , Pseudomonas aeruginosa/drug effects , Virulence Factors/genetics , Whole Genome Sequencing
2.
BMC Microbiol ; 18(1): 108, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30189831

ABSTRACT

BACKGROUND: Dimethylphenols (DMP) are toxic compounds with high environmental mobility in water and one of the main constituents of effluents from petro- and carbochemical industry. Over the last few decades, the use of constructed wetlands (CW) has been extended from domestic to industrial wastewater treatments, including petro-carbochemical effluents. In these systems, the main role during the transformation and mineralization of organic pollutants is played by microorganisms. Therefore, understanding the bacterial degradation processes of isolated strains from CWs is an important approach to further improvements of biodegradation processes in these treatment systems. RESULTS: In this study, bacterial isolation from a pilot scale constructed wetland fed with phenols led to the identification of Delftia sp. LCW as a DMP degrading strain. The strain was able to use the o-xylenols 3,4-DMP and 2,3-DMP as sole carbon and energy sources. In addition, 3,4-DMP provided as a co-substrate had an effect on the transformation of other four DMP isomers. Based on the detection of the genes, proteins, and the inferred phylogenetic relationships of the detected genes with other reported functional proteins, we found that the phenol hydroxylase of Delftia sp. LCW is induced by 3,4-DMP and it is responsible for the first oxidation of the aromatic ring of 3,4-, 2,3-, 2,4-, 2,5- and 3,5-DMP. The enzyme may also catalyze both monooxygenation reactions during the degradation of benzene. Proteome data led to the identification of catechol meta cleavage pathway enzymes during the growth on ortho DMP, and validated that cleavage of the aromatic rings of 2,5- and 3,5-DMPs does not result in mineralization. In addition, the tolerance of the strain to high concentrations of DMP, especially to 3,4-DMP was higher than that of other reported microorganisms from activated sludge treating phenols. CONCLUSIONS: LCW strain was able to degraded complex aromatics compounds. DMPs and benzene are reported for the first time to be degraded by a member of Delftia genus. In addition, LCW degraded DMPs with a first oxidation of the aromatic rings by a phenol hydroxylase, followed by a further meta cleavage pathway. The higher resistance to DMP toxicity, the ability to degrade and transform DMP isomers and the origin as a rhizosphere bacterium from wastewater systems, make LCW a suitable candidate to be used in bioremediation of complex DMP mixtures in CWs systems.


Subject(s)
Delftia/metabolism , Phenols/chemistry , Phenols/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Isomerism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Phylogeny , Soil Microbiology , Wetlands
3.
Lett Appl Microbiol ; 67(3): 254-261, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29856468

ABSTRACT

Polyethylene terephthalate (PET), a synthetic polyester material made of diethyl terephthalate (DET) monomers, is widely used in plastic products of daily life and caused serious pollution to the global environment. Microbial metabolism is the major degradation pathway responsible for DET degradation in natural soil; however, the microbial DET degradation mechanism remains unclear. In this study, the newly isolated strain WL-3, identified as belonging to the genus Delftia, was found to be able to degrade 94% of 5 g l-1 of DET and utilize it as the sole carbon source for growth within 7 days. Furthermore, strain WL-3 was capable of stable DET degradation under a wide range of pH values (6·0-9·0) and temperatures (20-42°C) with the optimal pH and temperature of 7·0 and 30°C respectively. Furthermore, the biochemical pathway of DET degradation by strain WL-3 was proposed based on the identified degradation intermediates. DET is first transformed into terephthalic acid (TPA) by the hydrolysis of two ester bonds, which is subsequently converted to protocatechuic acid (PCA) and further mineralized. SEM observations revealed obvious cracks on the surface of PET film after inoculation of 2 months with strain WL-3, indicating the strain's potential for the bioremediation of PET-contaminated environments. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates that Delftia sp. WL-3 can mineralize completely diethyl terephthalate by biochemical processes. The study reveals the metabolic mechanism of diethyl terephthalate biodegradation. Furthermore, the cracks on the surface of Polyethylene terephthalate film that form upon inoculation with strain WL-3 were observed using SEM. These results highlight the potential of the strain WL-3 in the bioremediation of environments contaminated with Polyethylene terephthalate or diethyl terephthalate.


Subject(s)
Delftia/metabolism , Phthalic Acids/metabolism , Polyethylene Terephthalates/metabolism , Biodegradation, Environmental , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Metabolic Networks and Pathways , Soil Microbiology
4.
N Biotechnol ; 43: 23-29, 2018 Jul 25.
Article in English | MEDLINE | ID: mdl-28851570

ABSTRACT

This work focused on the biodegradation of three structurally related fluoroacetates (FAs), mono- (MFA), di- (DFA) and trifluoroacetate (TFA), using as microbial inocula samples collected from a site with a long history of industrial contamination and activated sludge obtained from a municipal wastewater treatment plant. Biodegradation experiments were carried out under different modes of substrate supplementation, which included (i) FAs fed as sole carbon sources; (ii) FAs (only for DFA and TFA) fed in co-metabolism with sodium acetate; and (iii) mixtures of MFA with DFA or TFA. Biodegradation of the target compounds was assessed through fluoride ion release. Defluorination was obtained in the cultures fed with MFA, while DFA and TFA were recalcitrant in all tested conditions. When present in mixture, DFA was shown to inhibit biodegradation of MFA, while TFA had no effect. A total of 13 bacterial isolates obtained from MFA degrading cultures were found to degrade 20mgL-1 of this compound, as single strains, when supplemented as a sole carbon source. Sequencing of the 16S rRNA gene indicated that among these degrading bacteria only Delftia acidovorans had been previously reported to be able to degrade MFA. This work shows that, despite their similar chemical structures, biodegradation of the three tested FAs is very distinct and draws attention to the unknown impacts that the accumulation of DFA and TFA may have in the environment as a result of their high recalcitrance.


Subject(s)
Delftia/metabolism , Fluoroacetates/metabolism , Biodegradation, Environmental , Delftia/isolation & purification , Fluoroacetates/isolation & purification
5.
Article in English | MEDLINE | ID: mdl-28798903

ABSTRACT

Multidrug-resistance bacteria commonly use cell-to-cell communication that leads to biofilm formation as one of the mechanisms for developing resistance. Quorum sensing inhibition (QSI) is an effective approach for the prevention of biofilm formation. A Gram-negative bacterium, Delftia tsuruhatensis SJ01, was isolated from the rhizosphere of a species of sedge (Cyperus laevigatus) grown along the coastal-saline area. The isolate SJ01 culture and bacterial crude extract showed QSI activity in the biosensor plate containing the reference strain Chromobacterium violaceum CV026. A decrease in the violacein production of approximately 98% was detected with the reference strain C. violaceum CV026. The bacterial extract (strain SJ01) exhibited anti-quorum sensing activity and inhibited the biofilm formation of clinical isolates wild-type Pseudomonas aeruginosa PAO1 and P. aeruginosa PAH. A non-toxic effect of the bacterial extract (SJ01) was detected on the cell growth of the reference strains as P. aeruginosa viable cells were present within the biofilm. It is hypothesized that the extract (SJ01) may change the topography of the biofilm and thus prevent bacterial adherence on the biofilm surface. The extract also inhibits the motility, virulence factors (pyocyanin and rhamnolipid) and activity (elastase and protease) in P. aeruginosa treated with SJ01 extract. The potential active compound present was identified as 1,2-benzenedicarboxylic acid, diisooctyl ester. Microarray and transcript expression analysis unveiled differential expression of quorum sensing regulatory genes. The key regulatory genes, LasI, LasR, RhlI, and RhlR were down-regulated in the P. aeruginosa analyzed by quantitative RT-PCR. A hypothetical model was generated of the transcriptional regulatory mechanism inferred in P. aeruginosa for quorum sensing, which will provide useful insight to develop preventive strategies against the biofilm formation. The potential active compound identified, 1,2-benzenedicarboxylic acid, diisooctyl ester, has the potential to be used as an anti-pathogenic drug for the treatment of biofilm-forming pathogenic bacteria. For that, a detailed study is needed to investigate the possible applications.


Subject(s)
Anti-Bacterial Agents/metabolism , Biofilms/growth & development , Delftia/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/physiology , Quorum Sensing/drug effects , Virulence Factors/biosynthesis , Anti-Bacterial Agents/isolation & purification , Bacterial Adhesion/drug effects , Biofilms/drug effects , Chromobacterium/drug effects , Chromobacterium/physiology , Complex Mixtures/isolation & purification , Complex Mixtures/metabolism , Cyperus/microbiology , Delftia/isolation & purification , Gene Expression Profiling , Locomotion/drug effects , Microarray Analysis , Real-Time Polymerase Chain Reaction , Soil Microbiology
6.
Int J Syst Evol Microbiol ; 67(6): 1957-1960, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28629496

ABSTRACT

A bacterial strain, designated RA6T, was isolated from the rhizosphere of Cistus ladanifer. Phylogenetic analyses based on 16S rRNA gene sequence placed the isolate into the genus Delftia within a cluster encompassing the type strains of Delftia lacustris, Delftia tsuruhatensis, Delftia acidovorans and Delftia litopenaei, which presented greater than 97 % sequence similarity with respect to strain RA6T. DNA-DNA hybridization studies showed average relatedness ranging from of 11 to 18 % between these species of the genus Delftia and strain RA6T. Catalase and oxidase were positive. Casein was hydrolysed but gelatin and starch were not. Ubiquinone 8 was the major respiratory quinone detected in strain RA6T together with low amounts of ubiquinones 7 and 9. The major fatty acids were those from summed feature 3 (C16 : 1ω7c/C16 : 1 ω6c) and C16 : 0. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain RA6T should be considered as a representative of a novel species of genus Delftia, for which the name Delftia rhizosphaerae sp. nov. is proposed. The type strain is RA6T (=LMG 29737T= CECT 9171T).


Subject(s)
Cistus/microbiology , Delftia/classification , Phylogeny , Rhizosphere , Soil Microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Delftia/genetics , Delftia/isolation & purification , Fatty Acids/chemistry , Nucleic Acid Hybridization , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spain , Ubiquinone/chemistry
7.
Huan Jing Ke Xue ; 38(2): 802-808, 2017 Feb 08.
Article in Chinese | MEDLINE | ID: mdl-29964540

ABSTRACT

A bacterium strain LW26 which could utilize chlorobenzene (CB) as sole carbon and energy source was isolated from a biotrickling filter reactor treating CB-contaminated off-gas. Based on its morphological and physiological characteristics, as well as the analysis of 16S rRNA gene sequence and Biolog test, the strain LW26 was identified as Delftia tsuruhatensis. To our best knowledge, it is the first time that the strain Delftia tsuruhatensis was applied for CB purification. In this study, the effects of temperature, pH, initial CB concentration and Cl- concentration on the biodegradation were investigated. The results showed that the optimal temperature and pH for CB biodegradation were 25℃ and 7.0,respectively; the maximum CB tolerated concentration for LW26 was as high as 500 mg·L-1; when the concentration of Cl- was above 0.14 mol·L-1, the CB degradation was significantly restrained. The degrading process of the strain LW26 followed the Haldane kinetic model and the maximum specific growth rate and the maximum specific degradation rate were 0.42 h-1 and 2.53 h-1, respectively.GC-MS analysis of the metabolites revealed that CB was firstly converted to o-chlorophenol by strain LW26. Combined with the activity of catechol dioxygenase, it can be speculated that CB was finally mineralized to CO2, or converted to cell biomass after processes of ortho cleavage,dechlorination and oxidation.


Subject(s)
Biodegradation, Environmental , Chlorobenzenes/metabolism , Delftia/classification , Delftia/isolation & purification , Delftia/metabolism , RNA, Ribosomal, 16S
8.
Mikrobiologiia ; 86(1): 88-98, 2017.
Article in Chinese | MEDLINE | ID: mdl-30207147

ABSTRACT

A facultative methylotrophic bacterium, strain Lp-1, which was isolated from root nodules of lupine (Lupinus polyphyllus L.) on the medium with methanol as a carbon and energy source, exhibited high similarity of the 16S rRNA gene sequences to Delftia strains (94‒99.9%). The cells of Delftia sp. Lp-1 were motile gram-negative rods dividing by binary fission. Predominant fatty acids were C16:0 (34.2%), C16:1ω9 (14.5%), and C18:1ω7c (17.3%). Phosphatidylethanolamine, phosphatidylcholine, and phosphatidylglycerol were the dominant phospholipids. Q8 was the major ubiquinone. Optimal growth occurred at 24‒26°C and pH 7.1‒7.3; growth was inhibited by 1% NaCl. The organism oxidized methanol with the classical methanol dehydrogenase and used the ribulose bisphosphate pathway of C1 metabolism. Analysis of translated amino acid sequence of the large subunit of the MxaF methanol dehydrogenase revealed 85.5‒94% similarity to the sequences of such autotrophic methylotrophs of the class Alphaproteobacteria as Angulomicrobium, Starkeya, and Ancylobacter, indicating the possible acquisition of the mxaF gene via horizontal gene transfer. Delftia sp. Lp-1 (VKM B-3039, DSM 24446), the first methylotrophic member of the genus Delftia, was shown to be a plant symbiont, stimulating plant growth and morphogenesis, increasing the level of photosynthetic pigments and specific leaf weight. It possesses the nifH gene of nitrogen fixation, is capable of phosphate solubilization, synthesis of auxins and siderophores, and is antagonistic to plant pathogenic fungi and bacilli.


Subject(s)
Autotrophic Processes/physiology , Delftia , Lupinus/microbiology , Root Nodules, Plant/microbiology , Symbiosis/physiology , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Delftia/metabolism
9.
J Hazard Mater ; 324(Pt B): 634-644, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27889181

ABSTRACT

Discarded PE-based products pose a social and environmental threat because of their recalcitrance to degradation, a consequence of the unique set of PE's physicochemical properties. In this study we isolated nine novel PE-degrading bacteria from plastic debris found in soil of the savanna-like Brazilian Cerrado. These bacterial strains from the genera Comamonas, Delftia, and Stenotrophomonas showed metabolic activity and cellular viability after a 90-day incubation with PE as the sole carbon source. ATR/FTIR indicated that biodegraded PE undergone oxidation, vinylene formation, chain scission, among other chemical changes. Considerable nanoroughness shifts and vast damages to the micrometric surface were confirmed by AFM and SEM. Further, phase imaging revealed a 46.7% decrease in the viscous area of biodegraded PE whereas Raman spectroscopy confirmed a loss in its crystalline content, suggesting the assimilation of smaller fragments. Intriguingly, biodegraded PE chemical fingerprint suggests that these strains use novel biochemical strategies in the biodegradation process. Our results indicate that these microbes are capable of degrading unpretreated PE of very high molecular weight (191,000gmol-1) and survive for long periods under this condition, suggesting not only practical applications in waste management and environmental decontamination, but also future directions to understand the unraveled metabolism of synthetic polymers.


Subject(s)
Comamonas/metabolism , Delftia/metabolism , Polyethylene/analysis , Soil Pollutants/analysis , Stenotrophomonas/metabolism , Bacterial Adhesion , Brazil , Comamonas/isolation & purification , Delftia/isolation & purification , Microbial Viability , Mineral Oil/analysis , Mineral Oil/metabolism , Models, Theoretical , Polyethylene/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Stenotrophomonas/isolation & purification
10.
Syst Appl Microbiol ; 39(1): 49-57, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26607323

ABSTRACT

Bacteria are important for the biodegradation of keratin. Thus, a workflow to isolate keratin-degrading bacteria utilizing an optimized azo-keratin assay was established. Deteriorated feather samples, collected in marine shoreline environments from the intertidal zone, yielded 50 unique bacterial isolates exhibiting keratin degradation when feather meal was supplied as keratin substrate. The majority of isolates, identified by 16S sequencing, belonged to genera previously reported to produce keratinases: Bacillus spp. (42%) and Stenotrophomonas spp. (40%). The remaining 18% represented the genera Alcaligenes, Chryseobacterium, Salinivibrio, Delftia, Stappia, and Microbacterium, genera not previously been associated with keratinase production. The workflow, also applied to 21 Bacilli from our in-house culture collection, additionally revealed four Bacilli with remarkable feather degradation potential. The industrial applicability of their associated keratinases was evaluated and the most active keratinase expressed in E. coli to confirm keratinase expression. Enriched keratinase fractions demonstrated activity up to 75°C and retained viability when stored lyophilized at 20°C for up to 200d.


Subject(s)
Alcaligenes/metabolism , Bacillus/metabolism , Chryseobacterium/metabolism , Delftia/metabolism , Feathers/microbiology , Peptide Hydrolases/metabolism , Stenotrophomonas/metabolism , Alcaligenes/isolation & purification , Animals , Aquatic Organisms/isolation & purification , Aquatic Organisms/metabolism , Bacillus/isolation & purification , Biodegradation, Environmental , Chryseobacterium/isolation & purification , Delftia/isolation & purification , Feathers/metabolism , Keratins/metabolism , Stenotrophomonas/isolation & purification
11.
Biotechnol Lett ; 37(12): 2395-401, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26264243

ABSTRACT

OBJECTIVES: To confirm the reductive dehalogenation ability of the aerobic strain of Delftia sp. EOB-17, finding more evidences to support the hypothesis that reductive dehalogenation may occur extensively in aerobic bacteria. RESULTS: Delftia sp. EOB-17, isolated from terrestrial soil contaminated with halogenated aromatic compounds, completely degraded 0.2 mM DBHB in 28 h and released two equivalents of bromides under aerobic conditions in the presence of sodium succinate. LC-MS analysis revealed that DBHB was transformed to 4-hydroxybenzoate via 3-bromo-4-hydroxybenzoate by successive reductive dehalogenation. Highly conserved DBHB-degrading genes, including reductive dehalogenase gene (bhbA3) and the extra-cytoplasmic binding receptor gene (bhbB3), were also found in strain EOB-17 by genome sequencing. The optimal temperature and pH for DBHB reductive dehalogenation activity are 30 °C and 8, respectively, and 0.1 mM Cd(2+), Cu(2+), Hg(2+) and Zn(2+) strongly inhibited dehalogenation activity. CONCLUSIONS: The aerobic strain of Delftia sp. EOB-17 was confirmed to reductively dehalogenate DBHB under aerobic conditions, providing another evidence to support the hypothesis that reductive dehalogenation occurs extensively in aerobic bacteria.


Subject(s)
Bromobenzoates/metabolism , Delftia/metabolism , Aerobiosis , Biotransformation , Chromatography, Liquid , Delftia/isolation & purification , Enzyme Inhibitors/metabolism , Hydrogen-Ion Concentration , Mass Spectrometry , Metals, Heavy/metabolism , Parabens/metabolism , Soil Microbiology , Temperature
12.
Mikrobiologiia ; 84(3): 369-78, 2015.
Article in Russian | MEDLINE | ID: mdl-26263697

ABSTRACT

Species diversity of bacteria from the activated sludge of Perm biological waste treatment facilities capable of transformation of cyanopyridines and amides of pyridinecarboxylic acids was investigated. Enrichment cultures in mineral media with 3-cyanopyridine as the sole carbon and nitrogen source were used to obtain 32 clones of gram-negative heterotrophic bacteria exhibiting moderate growth on solid and liquid media with 3- and 4-cyanopyridine. Sequencing of the 16S rRNA gene fragments revealed that the clones with homology of at least 99% belonged to the genera Acinetobacte, Alcaligenes, Delftia, Ochrobactrum, Pseudomonas, Stenotrophomonas, and Xanthobacter. PCR analysis showed that 13 out of 32 isolates contained the sequences (-1070 bp) homologous to the nitrilase genes reported previously in Alcaligenes faecalis JM3 (GenBank, D13419.1). Nine clones were capable of nitrile and amide transformation in minimal salt medium. Acinetobacter sp. 11 h and Alcaligenes sp. osv transformed 3-cyanopyridine to nicotinamide, while most of the clones possessed amidase activity (0.5 to 46.3 mmol/(g h) for acetamide and 0.1 to 5.6 mmol/(g h) for nicotinamide). Nicotinamide utilization by strain A. faecalis 2 was shown to result in excretion of a secondary metabolite, which was identified as dodecyl acrylate at 91% probability.


Subject(s)
Amides/metabolism , Nitriles/metabolism , Pyridines/metabolism , Sewage/microbiology , Water Pollutants/metabolism , Acinetobacter/isolation & purification , Acinetobacter/metabolism , Alcaligenes/isolation & purification , Alcaligenes/metabolism , Aminohydrolases/metabolism , Biodegradation, Environmental , Delftia/isolation & purification , Delftia/metabolism , Humans , Microbial Consortia/physiology , Niacinamide/metabolism , Ochrobactrum/isolation & purification , Ochrobactrum/metabolism , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Stenotrophomonas/isolation & purification , Stenotrophomonas/metabolism , Xanthobacter/isolation & purification , Xanthobacter/metabolism
15.
Curr Microbiol ; 71(1): 54-61, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25935202

ABSTRACT

Antibiotic-resistant opportunistic pathogens have become a serious concern in recent decades, as they are increasingly responsible for hospital-acquired infections. Here, we describe quinolone-resistant Delftia sp. strain 670, isolated from the sputum of a patient who died from severe pulmonary infection. The draft genome sequence of this strain was obtained by whole-genome shotgun sequencing, and was subjected to comparative genome analysis. Genome analysis revealed that one critical mutation (Ser83Ile in gyrA) might play a decisive role in quinolone resistance. The genome of Delftia sp. strain 670 contains both type II and type VI secretion systems, which were predicted to contribute to the virulence of the strain. Phylogenetic analysis, assimilation tests, and comparative genome analysis indicated that strain 670 differed from the four known Delftia species, suggesting this strain could represent a novel species. Although the study could not determine the strain 670 as the pathogen led to mortality, our findings also presented the pathogenic potential of Delftia species, and the increasing severity of antibiotic resistance among emerging opportunistic pathogens. The whole genome sequencing and comparative analysis improved our understanding of genome evolution in the genus Delftia, and provides the foundation for further study on drug resistance and virulence of Delftia strains.


Subject(s)
Anti-Bacterial Agents/pharmacology , Delftia/drug effects , Delftia/genetics , Drug Resistance, Bacterial , Genome, Bacterial , Pneumonia, Bacterial/microbiology , Quinolones/pharmacology , China , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Delftia/classification , Delftia/isolation & purification , Fatal Outcome , Gram-Negative Bacterial Infections/microbiology , Humans , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology , Sputum/microbiology
16.
Antonie Van Leeuwenhoek ; 107(6): 1445-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25842037

ABSTRACT

A Gram-staining negative, short rod, motile, light brownish-pigmented bacterial strain, designated YIM Y792(T), was isolated from a soil sample taken from Turpan desert in Xinjiang Uyghur Autonomous Region, north-western China. Phylogenetic analysis indicated that strain YIM Y792(T) belongs to the genus Delftia. Strain YIM Y792(T) shared highest 16S rRNA gene sequence similarities with Delftia lacustris DSM 21246(T) (93.96 %), Delftia tsuruhatensis NBRC 16741(T) (93.74 %), and Delftia acidovorans NBRC 14950(T) (93.62 %). Growth of the strain YIM Y792(T) was found to occur at 20-45 °C (optimum at 30 °C), pH 6.0-9.0 (optimum at pH 7.0), and salinities of 0-3.0 % NaCl (optimum at 1.0 %). The new bacterium exhibits typical chemotaxonomic features of the genus Delftia with ubiqinone-8 (Q-8) as the predominant quinone and C16:0, Summed feature 3, Summed Feature 8 as major fatty acids (>10 %). The polar lipids were found to consist of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, glycolipid, two unidentified phospholipids and one unidentified lipid. The G+C content of the genomic DNA of strain YIM Y792(T) was found to be 70.3 mol%. The DNA-DNA relatedness values between strain YIM Y792(T) and D. lacustris DSM 21246(T), D. tsuruhatensis NBRC16741(T), D. acidovorans NBRC14950(T) were 35.5 ± 2.0, 17.1 ± 1.8, 26.2 ± 2.0 %. Based on the phylogenetic, chemotaxonomic and phenotypic data presented here, we propose a novel species with the name Delftia desertisoli sp. nov. The type strain is YIM Y792(T) (=KCTC 42377(T) = JCM 30639(T)).


Subject(s)
Delftia/classification , Delftia/isolation & purification , Soil Microbiology , Bacterial Typing Techniques , Base Composition , China , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Delftia/genetics , Delftia/physiology , Desert Climate , Fatty Acids/analysis , Glycolipids/analysis , Hydrogen-Ion Concentration , Locomotion , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , Pigments, Biological/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Temperature
17.
Infect Dis (Lond) ; 47(5): 349-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25712727

ABSTRACT

We report the first case of true Delftia lacustris bacteremia in a patient with pheochromocytoma. The organism was identified using 16S rRNA gene sequencing and biochemical tests. A peripheral intravenous catheter was the suspected source of infection, and the patient was successfully treated with piperacillin/tazobactam. We also present a review of the literature describing bacteremia caused by Delftia species.


Subject(s)
Adrenal Gland Neoplasms/complications , Anti-Bacterial Agents/therapeutic use , Delftia/isolation & purification , Gram-Negative Bacterial Infections/diagnosis , Pheochromocytoma/complications , Sepsis/diagnosis , Aged , Bacteremia/complications , Bacteremia/diagnosis , Bacteremia/microbiology , Catheter-Related Infections , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Delftia/genetics , Gram-Negative Bacterial Infections/complications , Gram-Negative Bacterial Infections/microbiology , Humans , Male , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/therapeutic use , Piperacillin/therapeutic use , RNA, Ribosomal, 16S/genetics , Sepsis/complications , Sepsis/microbiology , Sequence Analysis, DNA , Tazobactam
18.
New Microbiol ; 36(2): 199-201, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23686127

ABSTRACT

Delftia tsuruhatensis is a non-glucose fermenting, oxidase positive, motile, gram-negative bacillus first isolated from activated sludge collected from a domestic wastewater treatment plant in Japan. To the best of our knowledge only one case of infection with Delftia tsuruhatensis exists in the medical literature. This is the second case report of human infection having Delftia tsuruhatensis as a causative agent.


Subject(s)
Bacteremia/microbiology , Breast Neoplasms/complications , Catheter-Related Infections/microbiology , Delftia/isolation & purification , Equipment Contamination , Gram-Negative Bacterial Infections/microbiology , Vascular Access Devices/microbiology , Bacteremia/diagnosis , Bacteremia/etiology , Breast Neoplasms/drug therapy , Catheter-Related Infections/etiology , Delftia/genetics , Female , Gram-Negative Bacterial Infections/etiology , Humans , Middle Aged , Turkey
19.
Infection ; 40(6): 709-12, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23055149

ABSTRACT

We report four cases of possible human infections with Delftia lacustris. D. lacustris isolates, which were isolated from blood cultures and bile fluid of patients with underlying diseases such as empyema, renal injury, hepatocellular carcinoma, and renal infarction, were identified using 16S rRNA gene sequencing and biochemical tests. Four D. lacustris isolates did not show the same antimicrobial susceptibility profiles and enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) patterns, indicating their non-clonality.


Subject(s)
Bacteremia/microbiology , Delftia/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Adult , Aged , Bacteremia/diagnosis , Bacteremia/drug therapy , DNA, Bacterial/analysis , Delftia/genetics , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Humans , Male , Polymerase Chain Reaction , RNA, Fungal/genetics , RNA, Ribosomal, 16S/genetics , Republic of Korea
20.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653947

ABSTRACT

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Subject(s)
Comamonas/metabolism , Delftia/metabolism , Gentian Violet/metabolism , Plasmids/genetics , Trityl Compounds/metabolism , Wastewater/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas/classification , Comamonas/genetics , Comamonas/isolation & purification , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plasmids/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...