Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 833
Filter
1.
PLoS One ; 19(5): e0302850, 2024.
Article in English | MEDLINE | ID: mdl-38748711

ABSTRACT

BACKGROUND AND AIM: Vascular dementia (VD) is a common type of dementia. This study aimed to evaluate the effects of low and high doses of lutein administration in bilateral-carotid vessel occlusion (2VO) rats. EXPERIMENTAL PROCEDURE: The rats were divided into the following groups: the control, sham-, vehicle (2VO+V) groups, and two groups after 2VO were treated with lutein 0.5 (2VO+LUT-o.5) and 5mg/kg (2VO+LUT-5). The passive-avoidance and Morris water maze were performed to examine fear and spatial memory. The field-potential recording was used to investigate the properties of basal synaptic transmission (BST), paired-pulse ratio (PPR), as an index for measurement of neurotransmitter release, and long-term potentiation (LTP). The hippocampus was removed to evaluate hippocampal cells, volume, and MDA level. RESULT: Treatment with low and high doses improves spatial memory and LTP impairment in VD rats, but only the high dose restores the fear memory, hippocampal cell loss, and volume and MDA level. Interestingly, low-dose, but not high-dose, increased PPR. However, BST recovered only in the high-dose treated group. CONCLUSIONS: Treatment with a low dose might affect neurotransmitter release probability, but a high dose affects postsynaptic processes. It seems likely that low and high doses improve memory and LTP through different mechanisms.


Subject(s)
Dementia, Vascular , Disease Models, Animal , Hippocampus , Long-Term Potentiation , Lutein , Neuronal Plasticity , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/physiopathology , Rats , Male , Neuronal Plasticity/drug effects , Long-Term Potentiation/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Lutein/pharmacology , Lutein/administration & dosage , Lutein/therapeutic use , Memory/drug effects , Rats, Wistar , Spatial Memory/drug effects , Dose-Response Relationship, Drug , Maze Learning/drug effects , Synaptic Transmission/drug effects
2.
J Ethnopharmacol ; 331: 118306, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38723920

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Invigorating blood circulation to remove blood stasis is a primary strategy in TCM for treating vascular dementia (VaD). Danggui-Shaoyao San (DSS), as a traditional prescription for neuroprotective activity, has been proved to be effective in VaD treatment. However, its precise molecular mechanisms remain incompletely understood. AIM OF THE STUDY: The specific mechanism underlying the therapeutic effects of DSS on VaD was explored by employing network pharmacology as well as in vivo and in viro experiment validation. MATERIALS AND METHODS: We downloaded components of DSS from the BATMAN-TCM database for target prediction. The intersection between the components of DSS and targets, PPI network, as well as GO and KEGG enrichment analysis were then performed. Subsequently, the potential mechanism of DSS predicted by network pharmacology was assessed and validated through VaD rat model induced by 2VO operation and CoCl2-treated PC12 cells. Briefly, the DSS extract were first quantified by HPLC. Secondly, the effect of DSS on VaD was studied using MWM test, HE staining and TUNEL assay. Finally, the molecular mechanism of DSS against VaD was validated by Western blot and RT-QPCR experiments. RESULTS: Through network analysis, 137 active ingredients were obtained from DSS, and 67 potential targets associated with DSS and VaD were identified. GO and KEGG analysis indicated that the action of DSS on VaD primarily involves hypoxic terms and HIF-1 pathway. In vivo validation, cognitive impairment and neuron mortality were markedly ameliorated by DSS. Additionally, DSS significantly reduced the expression of proteins related to synaptic plasticity and neuron apoptosis including PSD-95, SYP, Caspase-3 and BCL-2. Mechanistically, we confirmed DSS positively modulated the expression of HIF-1α and its downstream proteins including EPO, p-EPOR, STAT5, EPOR, and AKT1 in the hippocampus of VaD rats as well as CoCl2-induced PC12 cells. HIF-1 inhibitor YC-1 significantly diminished the protection of DSS on CoCl2-induced PC12 cell damage, with decreased HIF-1α, EPO, EPOR expression. CONCLUSION: Our results initially demonstrated DSS could exert neuroprotective effects in VaD. The pharmacological mechanism of DSS may be related to its positive regulation on HIF-1α/EPO pathway.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Drugs, Chinese Herbal , Erythropoietin , Hypoxia-Inducible Factor 1, alpha Subunit , Neuroprotective Agents , Rats, Sprague-Dawley , Animals , Drugs, Chinese Herbal/pharmacology , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Rats , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , PC12 Cells , Male , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Neuroprotective Agents/pharmacology , Erythropoietin/pharmacology , Apoptosis/drug effects , Network Pharmacology , Signal Transduction/drug effects , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Cobalt
3.
Int J Mol Sci ; 25(8)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38673986

ABSTRACT

The circadian rhythms generated by the master biological clock located in the brain's hypothalamus influence central physiological processes. At the molecular level, a core set of clock genes interact to form transcription-translation feedback loops that provide the molecular basis of the circadian rhythm. In animal models of disease, a desynchronization of clock genes in peripheral tissues with the central master clock has been detected. Interestingly, patients with vascular dementia have sleep disorders and irregular sleep patterns. These alterations in circadian rhythms impact hormonal levels, cardiovascular health (including blood pressure regulation and blood vessel function), and the pattern of expression and activity of antioxidant enzymes. Additionally, oxidative stress in vascular dementia can arise from ischemia-reperfusion injury, amyloid-beta production, the abnormal phosphorylation of tau protein, and alterations in neurotransmitters, among others. Several signaling pathways are involved in the pathogenesis of vascular dementia. While the precise mechanisms linking circadian rhythms and vascular dementia are still being studied, there is evidence to suggest that maintaining healthy sleep patterns and supporting proper circadian rhythm function may be important for reducing the risk of vascular dementia. Here, we reviewed the main mechanisms of action of molecular targets related to the circadian cycle and oxidative stress in vascular dementia.


Subject(s)
Circadian Rhythm , Dementia, Vascular , Oxidative Stress , Animals , Humans , Circadian Clocks/genetics , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Dementia, Vascular/physiopathology , Signal Transduction/drug effects , Molecular Targeted Therapy
4.
Brain Res ; 1833: 148917, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38582415

ABSTRACT

Exploring the intricate pathogenesis of Vascular Dementia (VD), there is a noted absence of potent treatments available in the current medical landscape. A new brain-protective medication developed in China, Edaravone dexboeol (EDB), has shown promise due to its antioxidant and anti-inflammatory properties, albeit with a need for additional research to elucidate its role and mechanisms in VD contexts. In a research setup, a VD model was established utilizing Sprague-Dawley (SD) rats, subjected to permanent bilateral typical carotid artery occlusion (2VO). Behavioral assessment of the rats was conducted using the Bederson test and pole climbing test, while cognitive abilities, particularly learning and memory, were evaluated via the novel object recognition test and the Morris water maze test. Ensuing, the levels of malondialdehyde (MDA), superoxide dismutase (SOD), IL-1ß, IL-6, IL-4, and tumor necrosis factor-α (TNF-α) were determined through Enzyme-Linked Immunosorbent Assay (ELISA). Synaptic plasticity-related proteins, synaptophysin (SYP), post-synaptic density protein 95 (PSD-95), and N-methyl-D-aspartate (NMDA) receptor proteins (NR1, NR2A, NR2B) were investigated via Western blotting technique. The findings imply that EDB has the potential to ameliorate cognitive deficiencies, attributed to VD, by mitigating oxidative stress, dampening inflammatory responses, and modulating the NMDA receptor signaling pathway, furnishing new perspectives into EDB's mechanism and proposing potential avenues for therapeutic strategies in managing VD.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Disease Models, Animal , Edaravone , Hippocampus , Oxidative Stress , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate , Signal Transduction , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Oxidative Stress/drug effects , Edaravone/pharmacology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Rats , Hippocampus/metabolism , Hippocampus/drug effects , Receptors, N-Methyl-D-Aspartate/metabolism , Male , Signal Transduction/drug effects , Neuroprotective Agents/pharmacology , Inflammation/metabolism , Inflammation/drug therapy
5.
J Toxicol Environ Health A ; 87(10): 421-427, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38551405

ABSTRACT

Vascular dementia (VD) a heterogenous group of brain disorders in which cognitive impairment is attributable to vascular risk factors and cerebrovascular disease. A common phenomenon in VD is a dysfunctional cerebral regulatory mechanism associated with insufficient cerebral blood flow, ischemia and hypoxia. Under hypoxic conditions oxygen supply to the brain results in neuronal death leading to neurodegenerative diseases including Alzheimer's (AD) and VD. In conditions of hypoxia and low oxygen perfusion, expression of hypoxia-inducible factor 1 alpha (HIF-1α) increases under conditions of low oxygen and low perfusion associated with upregulation of expression of hypoxia-upregulated mitochondrial movement regulator (HUMMR), which promotes anterograde mitochondrial transport by binding with trafficking protein kinesin 2 (TRAK2). Schisandrin B (Sch B) an active component derived from Chinese herb Wuweizi prevented ß-amyloid protein induced morphological alterations and cell death using a SH-SY5Y neuronal cells considered an AD model. It was thus of interest to determine whether Sch B might also alleviate VD using a rat bilateral common carotid artery occlusion (BCAO) dementia model. The aim of this study was to examine the effects of Sch B in BCAO on cognitive functions such as Morris water maze test and underlying mechanisms involving expression of HIF-1α, TRAK2, and HUMMR levels. The results showed that Sch B improved learning and memory function of rats with VD and exerted a protective effect on the hippocampus by inhibition of protein expression of HIF-1α, TRAK2, and HUMMR factors. Evidence indicates that Sch B may be considered as an alternative in VD treatment.


Subject(s)
Dementia, Vascular , Lignans , Neuroblastoma , Polycyclic Compounds , Rats , Humans , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Maze Learning/physiology , Hypoxia , Cognition , Hippocampus , Oxygen/pharmacology , Cyclooctanes
6.
J Ethnopharmacol ; 328: 118117, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548120

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY: In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS: A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS: QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION: QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Neuroprotective Agents , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Microglia , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Chemokine CXCL12/metabolism
7.
Aging (Albany NY) ; 16(5): 4363-4377, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38441564

ABSTRACT

BACKGROUND: Neuronal injury in chronic cerebral hypoperfusion (CCH) is the main pathogenic factor of vascular dementia (VD). Clinically, there isn't a drug specifically for VD; instead, the majority of medications used to treat Alzheimer's disease (AD) are also used to treat VD. Based on the proven anti-inflammatory and antioxidant effects of Probucol, we hypothesized that it may have therapeutic effects on VD, but more research is required to determine its exact mechanism of action. METHODS: In vivo experiment: We used SD rats and most commonly used bilateral carotid artery occlusion (2-VO) in VD for modeling. After successful modeling, SD rats were given Probucol 3.5 mg/kg/day for 8 weeks to evaluate the therapeutic effect. In vitro experiment: BV-2 microglia of rats were cultured and divided into Control group and Probucol group. Each group was treated with hypoxia-hypoglycemia, hypoxia-hypoglycemia hydrogen peroxide and hypoxia-hypoglycemia hydrogen peroxide Syk inhibitor respectively. RESULTS: The results of immunofluorescence and Western blot showed that Probucol could significantly improve the cognitive impairment induced by CCH, and the neuronal damage was also attenuated. On the one hand, the underlying mechanism of Probucol was to reduce oxidative stress and cell apoptosis of hippocampal neurons by inhibiting the expression of phosphorylated spleen tyrosine kinase (P-Syk); On the other hand, it exerted a protective effect by reducing NLRP3-dependent cell pyroptosis and inhibiting neuroinflammation induced by microglia activation. CONCLUSION: Probucol could reduce oxidative stress and cell apoptosis by inhibiting the Syk/ROS signaling pathway, thereby improving CCH-induced cognitive impairment in vitro and in vivo.


Subject(s)
Brain Ischemia , Dementia, Vascular , Hypoglycemia , Rats , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/etiology , Dementia, Vascular/metabolism , Probucol/pharmacology , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Pyroptosis , Hydrogen Peroxide/pharmacology , Brain Ischemia/metabolism , Hippocampus/metabolism , Hypoxia/metabolism
8.
J Int Med Res ; 52(3): 3000605231223081, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38546241

ABSTRACT

OBJECTIVE: To systematically evaluate the efficacy and safety of butylphthalide combined with donepezil versus butylphthalide monotherapy for the treatment of vascular dementia. METHODS: Randomized controlled trials were searched in electronic databases, including PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure, Chinese Science and Technology Periodical Database (VIP), Wan Fang, and China Biology Medicine from inception to 29 November 2022. Two reviewers independently screened the papers and extracted data from the included studies. The data were processed using RevMan5.4 statistical software. RESULTS: Nine randomized controlled trials (n = 1024) were included in this meta-analysis. Regarding the primary outcomes, compared with butylphthalide monotherapy, combined butylphthalide and donepezil treatment exhibited significantly greater total clinical efficacy (relative risk = 1.24, 95% confidence interval [1.17, 1.31]) and did not increase the adverse event rate (relative risk = 1.39, 95% confidence interval [0.91, 2.14]). Regarding the secondary outcomes, the meta-analysis results for the Mini-Mental State Examination, abilities of daily living, and Montreal Cognitive Assessment scores and the interleukin-6, tumor necrosis factor-α, and superoxide dismutase blood levels all supported combined butylphthalide and donepezil treatment. CONCLUSION: Butylphthalide combined with donepezil may be a better treatment strategy than donepezil alone for the treatment of vascular dementia in clinical practice.


Subject(s)
Benzofurans , Dementia, Vascular , Humans , Benzofurans/therapeutic use , Dementia, Vascular/drug therapy , Donepezil/therapeutic use , Treatment Outcome , Randomized Controlled Trials as Topic
9.
Article in Russian | MEDLINE | ID: mdl-38465812

ABSTRACT

OBJECTIVE: Evaluation of the efficacy and safety of the drug Acatinol Memantine, 20 mg (once daily) in comparison with the drug Acatinol Memantine, 10 mg (twice daily) in patients with moderate to moderate severe vascular dementia. MATERIAL AND METHODS: The study included 130 patients aged 50-85 years of both sexes with instrumentally and clinically confirmed vascular dementia. The patients were randomized into 2 groups. Group I consisted of 65 patients receiving Akatinol Memantine, 20 mg once daily, group II - 65 patients receiving Akatinol Memantine, 10 mg twice daily for 24 weeks. Clinical, parametric and statistical research methods were used. The Alzheimer's disease assessment scale, the cognitive subscale (ADAS-cog), the short mental Status Assessment Scale (MMSE) and the general clinical impression scale for patients condition and illness severity (CGI-C and CGI-S) and the Hamilton Depression Rating scale (HAM-D) were used. Adverse events were collected and analyzed. RESULTS: At week 24, both groups showed statistically significant positive change in ADAS-cog total score: in group I the total score was 27.2±8.76 points (absolute difference from baseline 3.5 points; p<0.01), and in group II - 26.1±7.86 points (absolute difference from baseline 2.5 points; p<0.01) with no statistically significant differences between groups. Evaluation of secondary efficacy criteria (change in ADAS-cog total score at week 12 and MMSE at weeks 4, 12, and 24) also revealed statistically significant benefit in both groups compared to baseline with no significant differences between groups. Statistically significant improvement was noticed on CGI-S and CGI-C scales in both groups. Akatinol Memantine was safe and well tolerated in both groups. CONCLUSION: The study showed no lesser efficacy and safety of Akatinol Memantine, 20 mg (once daily) compared to Akatinol Memantine, 10 mg (twice daily) in patients with moderate and moderately severe vascular dementia.


Subject(s)
Alzheimer Disease , Dementia, Vascular , Female , Humans , Male , Activities of Daily Living , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Cognition , Dementia, Vascular/drug therapy , Double-Blind Method , Memantine/adverse effects , Treatment Outcome , Middle Aged , Aged , Aged, 80 and over
10.
Phytomedicine ; 128: 155369, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547618

ABSTRACT

BACKGROUND: Mitochondrial dysfunction is key to the pathogenesis of vascular dementia (VaD). Sirtuin-3 (SIRT3), an essential member of the sirtuins family, has been proven to be a critical sirtuin in regulating mitochondrial function. The phenolic glucoside gastrodin (GAS), a bioactive ingredient from Gastrodiae Rhizome (known in Chinese as Tian ma) demonstrates significant neuroprotective properties against central nervous system disorders; however, the precise mechanisms through which GAS modulates VaD remain elusive. PURPOSE: This study aims to investigate whether GAS confers a protective role against VaD, and to figure out the underlying molecular mechanisms. METHODS: A bilateral common carotid artery occlusion (BCCAO)-mediated chronic cerebral hypoperfusion (CCH) VaD rat model and a hypoxia model using HT22 cells were employed to investigate pharmacological properties of GAS in mitigating mitochondrial dysfunction. A SIRT3 agonist resveratrol (RES), a SIRT3 inhibitor 3-TYP and SIRT3-knockdown in vitro were used to explore the mechanism of GAS in association with SIRT3. The ability of SIRT3 to bind and deacetylate mitochondrial transcription factor A (TFAM) was detected by immunoprecipitation assay, and TFAM acetylation sites were further validated using mass spectrometry. RESULTS: GAS increased SIRT3 expression and ameliorated mitochondrial structure, mitochondrial respiration, mitochondrial dynamics along with upregulated TFAM, mitigating oxidative stress and senescence. Comparable results were noted with the SIRT3 agonist RES, indicating an impactful neuroprotection played by SIRT3. Specifically, the attenuation of SIRT3 expression through knockdown techniques or exposure to the SIRT3 inhibitor 3-TYP in HT22 cells markedly abrogated GAS-mediated mitochondrial rescuing function. Furthermore, our findings elucidate a novel facet: SIRT3 interacted with and deacetylated TFAM at the K5, K7, and K8 sites. Decreased SIRT3 is accompanied by hyper-acetylated TFAM. CONCLUSION: The present results were the first to demonstrate that the SIRT3/TFAM pathway is a protective target for reversing mitochondrial dysfunction in VaD. The findings suggest that GAS-mediated modulation of the SIRT3/TFAM pathway, a novel mechanism, could ameliorate CCH-induced VaD, offering a potentially beneficial therapeutic strategy for VaD.


Subject(s)
Benzyl Alcohols , Dementia, Vascular , Glucosides , Mitochondria , Neuroprotective Agents , Rats, Sprague-Dawley , Sirtuin 3 , Sirtuins , Animals , Glucosides/pharmacology , Dementia, Vascular/drug therapy , Sirtuin 3/metabolism , Benzyl Alcohols/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Male , Acetylation , Neuroprotective Agents/pharmacology , Mice , Transcription Factors/metabolism , Mitochondrial Proteins/metabolism , DNA-Binding Proteins/metabolism , Rats , Disease Models, Animal , Cell Line , Resveratrol/pharmacology , Gastrodia/chemistry
11.
Exp Neurol ; 376: 114748, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38458310

ABSTRACT

BACKGROUND: The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE: To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS: The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS: The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION: Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.


Subject(s)
AMP-Activated Protein Kinases , Cognitive Dysfunction , Dementia, Vascular , MicroRNAs , Animals , Male , Mice , Rats , AMP-Activated Protein Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Dementia, Vascular/genetics , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/metabolism , MicroRNAs/genetics , Neurons/metabolism , Neurons/drug effects , Rats, Sprague-Dawley , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
12.
Neurochem Res ; 49(7): 1720-1734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520637

ABSTRACT

Vascular dementia (VaD) has a serious impact on the patients' quality of life. Icariin (Ica) possesses neuroprotective potential for treating VaD, yet its oral bioavailability and blood-brain barrier (BBB) permeability remain challenges. This research introduced a PEG-PLGA-loaded chitosan hydrogel-based binary formulation tailored for intranasal delivery, enhancing the intracerebral delivery efficacy of neuroprotective agents. The formulation underwent optimization to facilitate BBB crossing, with examinations conducted on its particle size, morphology, drug-loading capacity, in vitro release, and biodistribution. Using the bilateral common carotid artery occlusion (BCCAO) rat model, the therapeutic efficacy of this binary formulation was assessed against chitosan hydrogel and PEG-PLGA nanoparticles loaded with Ica. Post-intranasal administration, enhanced cognitive function was evident in chronic cerebral hypoperfusion (CCH) rats. Further mechanistic evaluations, utilizing immunohistochemistry (IHC), RT-PCR, and ELISA, revealed augmented transcription of synaptic plasticity-associated proteins like SYP and PSD-95, and a marked reduction in hippocampal inflammatory markers such as IL-1ß and TNF-α, highlighting the formulation's promise in alleviating cognitive impairment. The brain-derived neurotrophic factor (BDNF)/tropomyosin related kinase B (TrkB) pathway was activated significantly in the binary formulation compared with the other two. Our study demonstrates that the intranasal application of chitosan hydrogel loaded with Ica-encapsulated PEG-PLGA could effectively deliver Ica into the brain and enhance its neuroprotective effect.


Subject(s)
Brain-Derived Neurotrophic Factor , Dementia, Vascular , Flavonoids , Rats, Sprague-Dawley , Receptor, trkB , Signal Transduction , Animals , Flavonoids/pharmacology , Flavonoids/administration & dosage , Flavonoids/therapeutic use , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Male , Brain-Derived Neurotrophic Factor/metabolism , Receptor, trkB/metabolism , Signal Transduction/drug effects , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cognition/drug effects , Nanoparticles/chemistry , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Rats , Polyethylene Glycols/chemistry , Chitosan/chemistry , Administration, Intranasal , Nanoparticle Drug Delivery System , Polyesters
13.
Medicine (Baltimore) ; 103(9): e37495, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38428842

ABSTRACT

To explore the efficacy and safety of butylphthalide combined with idebenone in the treatment of vascular dementia. The clinical data of 126 patients with vascular dementia who were admitted to our hospital between March 2021 and February 2023 were retrospectively reviewed. Among them, 62 patients received butylphthalide alone (single group) and 64 patients received butylphthalide combined with idebenone (combined group). Cognitive function scores, serum inflammatory factor levels, oxidative stress index levels, and incidence of adverse reactions were compared between the 2 groups before and after treatment. After treatment, the Hasegawa Dementia Scale, Mini Mental State Examination Scale, and activities of daily living scores in both groups were higher than before treatment, and the scores in the combined group were higher than before treatment (P < .05). After treatment, the levels of serum C-reactive protein, tumor necrosis factor-α, and interleukin 6 in both groups were lower than those before treatment, and those in the combined group were lower than those in the simple group (P < .05). After treatment, the levels of serum glutathione peroxidase and superoxide dismutase in the 2 groups were higher than those before treatment, and the level of malondialdehyde was lower than that before treatment. The levels of serum glutathione peroxidase and superoxide dismutase in the combined group were higher than those in the simple group, and the level of malondialdehyde was lower than that in the simple group (P < .05). There was no significant difference in the incidence of adverse reactions between the combined group (6.25%) and the simple group (3.23%) (P > .05). Compared with butylphthalide alone, intervention of butylphthalide combined with idebenone on vascular dementia can effectively reduce the degree of inflammatory and oxidative stress reactions, improve cognitive function, and promote the ability to perform activities of daily living in a safe manner.


Subject(s)
Benzofurans , Dementia, Vascular , Ubiquinone/analogs & derivatives , Humans , Dementia, Vascular/drug therapy , Retrospective Studies , Activities of Daily Living , Glutathione Peroxidase , Malondialdehyde , Superoxide Dismutase
14.
Brain Res ; 1830: 148821, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38401770

ABSTRACT

Neurocognitive disorders, such as Alzheimer's disease, vascular dementia, and postoperative cognitive dysfunction, are non-psychiatric brain syndromes in which a significant decline in cognitive function causes great trauma to the mental status of the patient. The lack of effective treatments for neurocognitive disorders imposes a considerable burden on society, including a substantial economic impact. Over the past few decades, the identification of resveratrol, a natural plant compound, has provided researchers with an opportunity to formulate novel strategies for the treatment of neurocognitive disorders. This is because resveratrol effectively protects the brain of those with neurocognitive disorders by targeting some mechanisms such as inflammation and oxidative stress. This article reviews the status of recent research investigating the use of resveratrol for the treatment of different neurocognitive disorders. By examining the possible mechanisms of action of resveratrol and the shared mechanisms of different neurocognitive disorders, treatments for neurocognitive disorders may be further clarified.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia, Vascular , Humans , Resveratrol/therapeutic use , Cognitive Dysfunction/drug therapy , Alzheimer Disease/drug therapy , Dementia, Vascular/drug therapy , Brain
15.
Neurochem Res ; 49(5): 1137-1149, 2024 May.
Article in English | MEDLINE | ID: mdl-38300457

ABSTRACT

Vascular dementia (VD) is a degenerative cerebrovascular disorder associated with progressive cognitive decline. Previous reports have shown that 7,8-dihydroxyflavone (7,8-DHF), a well-known TrkB agonist, effectively ameliorates cognitive deficits in several disease models. Therefore, this study investigated the protective effects of 7,8-DHF against 2-VO-induced VD. VD was established in rats using the permanent bilateral carotid arteries occlusion (two-vessel occlusion, 2-VO) model. 7,8-DHF (5, 10, and 20 mg/kg) and Donepezil (10 mg/kg) were administered for 4 weeks. Memory function was assessed by the novel objective recognition task (NOR) and Morris water maze (MWM) tests. Inflammatory (TNF-α, IL-1ß, and NF-kß), oxidative stress, and apoptotic (BAX, BCL-2, caspase-3) markers, along with the activity of choline acetylcholinesterase (AChE) was assessed. p-AKT, p-CREB, BDNF, and neurotransmitter (NT) (GLU, GABA, and ACh) levels were also analyzed in the hippocampus of 2-VO rats. Our results show that 7,8-DHF effectively improved memory performance and cholinergic dysfunction in 2-VO model rats. Furthermore, 7,8-DHF treatment also increased p-AKT, p-CREB, and BDNF levels, suppressed oxidative, inflammatory, and apoptotic markers, and restored altered NT levels in the hippocampus. These findings imply that 7, 8-DHF may act via multiple mechanisms and as such serve as a promising neuroprotective agent in the context of VD.


Subject(s)
Dementia, Vascular , Rats , Animals , Dementia, Vascular/drug therapy , Acetylcholinesterase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Brain-Derived Neurotrophic Factor , Maze Learning , Oxidative Stress , Apoptosis , Inflammation/drug therapy , Hippocampus/metabolism , Cholinergic Agents/pharmacology
16.
Int J Nanomedicine ; 19: 1431-1450, 2024.
Article in English | MEDLINE | ID: mdl-38371455

ABSTRACT

Introduction: Basic fibroblast growth factor (bFGF) shows great potential for preventing vascular dementia (VD). However, the blood‒brain barrier (BBB) and low bioavailability of bFGF in vivo limit its application. The present study investigated how nasal administration of bFGF-loaded nanoliposomes (bFGF-lips) affects the impaired learning and cognitive function of VD mice and the underlying mechanism involved. Methods: A mouse model of VD was established through repeated cerebral ischemia‒reperfusion. A Morris water maze (MWM) and novel object recognition (NOR) tests were performed to assess the learning and cognitive function of the mice. Hematoxylin and eosin (HE) staining, Nissl staining and TUNEL staining were used to evaluate histopathological changes in mice in each group. ELISA and Western blot analysis were used to investigate the molecular mechanism by which bFGF-lips improve VD incidence. Results: Behavioral and histopathological analyses showed that cognitive function was significantly improved in the bFGF-lips group compared to the VD and bFGF groups; in addition, abnormalities and the apoptosis indices of hippocampal neurons were significantly decreased. ELISA and Western blot analysis revealed that bFGF-lips nasal administration significantly increased the concentrations of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), bFGF, B-cell lymphoma 2 (Bcl-2), phosphorylated protein kinase B (PAKT), nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H quinone oxidoreductase 1 (NQO1) and haem oxygenase-1 (HO-1) in the hippocampus of bFGF-lips mice compared with the VD and bFGF groups. Furthermore, the concentrations of malondialdehyde (MDA), caspase-3 and B-cell lymphoma 2-associated X (Bax) were clearly lower in the bFGF-lips group than in the VD and bFGF groups. Conclusion: This study confirmed that the nasal administration of bFGF-lips significantly increased bFGF concentrations in the hippocampi of VD mice. bFGF-lips treatment reduced repeated I/R-induced neuronal apoptosis by regulating apoptosis-related protein concentrations and activating the phosphatidylinositol-3-kinase (PI3K)/(AKT)/Nrf2 signaling pathway to inhibit oxidative stress.


Subject(s)
Brain Ischemia , Dementia, Vascular , Mice , Animals , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Dementia, Vascular/pathology , Fibroblast Growth Factor 2/metabolism , NF-E2-Related Factor 2/metabolism , Administration, Intranasal , Oxidative Stress , Cerebral Infarction , Brain Ischemia/drug therapy , Cognition , Reperfusion , Neurons/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis
17.
Biomed Pharmacother ; 172: 116219, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38310654

ABSTRACT

Vascular dementia (VaD) represents a severe cognitive dysfunction syndrome closed linked to cardiovascular function. In the present study, we assessed the potential of Xinshubao tablet (XSB), a traditional Chinese prescription widely used for cardiovascular diseases, to mitigate neuropathological damage in a mouse model of VaD and elucidated the underlying mechanisms. Our findings revealed that oral administration of XSB rescued the cardiac dysfunction resulting from bilateral common carotid artery stenosis (BCAS), improved the cerebral blood flow (CBF) and cognitive function, reduced white matter injury, inhibited excessive microglial and astrocytic activation, stimulated hippocampal neurogenesis, and reduced neural apoptosis in the brains of BCAS mice. Mechanistically, RNA-seq analysis indicated that XSB treatment was significantly associated with neuroinflammation, vasculature development, and synaptic transmission, which were further confirmed by q-PCR assays. Western blot results revealed that XSB treatment hindered the nuclear translocation of nuclear factor-κB (NF-κB), thereby suppressing the NF-κB signaling pathway. These results collectively demonstrated that XSB could ameliorate cognitive dysfunction caused by BCAS through regulating CBF, reducing white matter lesions, suppressing glial activation, promoting neurogenesis, and mitigating neuroinflammation. Notably, the NF-κB signaling pathway emerged as a pivotal player in this mechanism.


Subject(s)
Carotid Stenosis , Cognitive Dysfunction , Dementia, Vascular , Animals , Mice , Dementia, Vascular/drug therapy , Neuroinflammatory Diseases , NF-kappa B , Cognitive Dysfunction/drug therapy , Neurogenesis , Disease Models, Animal
18.
Sci Rep ; 14(1): 3313, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38331973

ABSTRACT

We aimed to examine the association between opioid use and the development of dementia in patients with chronic non-cancer pain in South Korea. Data were extracted from the National Health Insurance Service database in South Korea. Adult patients diagnosed with musculoskeletal diseases with chronic non-cancer pain between 2010 and 2015 were included in the analysis. Patients who were prescribed opioids regularly and continuously for ≥ 90 days were classified as opioid users. In total, 1,261,682 patients with chronic non-cancer pain were included in the final analysis, of whom 21,800 (1.7%) were opioid users. From January 1, 2016 to December 31, 2020, 35,239 (2.8%) patients with chronic non-cancer pain were newly diagnosed with dementia. In the multivariable model, opioid users showed a 15% higher risk of developing dementia than the control group. Additionally, opioid users showed a 15% and 16% higher risk of developing Alzheimer's disease and unspecified dementia, respectively, than the control group, but did not show any significant differences for vascular dementia. Among adult patients with chronic non-cancer pain, opioid users were at a higher risk of developing dementia than the control group; the risk was significantly higher for Alzheimer's disease but not for vascular dementia in this study. Our results suggest that in patients with CNCP, public health strategies should target opioid users for early dementia detection and intervention.


Subject(s)
Alzheimer Disease , Chronic Pain , Dementia, Vascular , Opioid-Related Disorders , Adult , Humans , Analgesics, Opioid/adverse effects , Alzheimer Disease/drug therapy , Dementia, Vascular/drug therapy , Chronic Pain/drug therapy , Chronic Pain/chemically induced , Opioid-Related Disorders/epidemiology , Opioid-Related Disorders/drug therapy
19.
Curr Hypertens Rev ; 20(1): 23-35, 2024.
Article in English | MEDLINE | ID: mdl-38192137

ABSTRACT

BACKGROUND: Declined kidney function associated with hypertension is a danger for cognitive deficits, dementia, and brain injury. Cognitive decline and vascular dementia (VaD) are serious public health concerns, which highlights the urgent need for study on the risk factors for cognitive decline. Cysteinyl leukotriene (CysLT1) receptors are concerned with regulating cognition, motivation, inflammatory processes, and neurogenesis. OBJECTIVE: This research aims to examine the consequence of montelukast (specific CysLT1 antagonist) in renovascular hypertension 2-kidney-1-clip-2K1C model-triggered VaD in experimental animals. METHODS: 2K1C tactics were made to prompt renovascular hypertension in mature male rats. Morris water maze was employed to measure cognition. Mean arterial pressure (MAP), serum nitrite levels, aortic superoxide content, vascular endothelial activity, brain's oxidative stress (diminished glutathione, raised lipid peroxides), inflammatory markers (IL-10, IL-6, TNF-α), cholinergic activity (raised acetylcholinesterase), and cerebral injury (staining of 2, 3, 5- triphenylterazolium chloride) were also examined. RESULTS: Montelukast in doses of 5.0 and 10.0 mg kg-1 was used intraperitoneally as the treatment drug. Along with cognitive deficits, 2K1C-operated rats showed elevated MAP, endothelial dysfunction, brain oxidative stress, inflammation, and cerebral damage with diminished serum nitrite/nitrate. Montelukast therapy significantly and dose-dependently mitigated the 2K1Chypertension- provoked impaired behaviors, biochemistry, endothelial functions, and cerebral infarction. CONCLUSION: The 2K1C tactic caused renovascular hypertension and associated VaD, which was mitigated via targeted regulation of CysLT1 receptors by montelukast administration. Therefore, montelukast may be taken into consideration for the evaluation of its complete potential in renovascular-hypertension-induced VaD.


Subject(s)
Acetates , Cyclopropanes , Dementia, Vascular , Disease Models, Animal , Endothelium, Vascular , Hypertension, Renovascular , Leukotriene Antagonists , Oxidative Stress , Quinolines , Receptors, Leukotriene , Sulfides , Animals , Acetates/pharmacology , Quinolines/pharmacology , Male , Dementia, Vascular/physiopathology , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Dementia, Vascular/psychology , Leukotriene Antagonists/pharmacology , Oxidative Stress/drug effects , Hypertension, Renovascular/physiopathology , Hypertension, Renovascular/drug therapy , Hypertension, Renovascular/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/physiopathology , Endothelium, Vascular/metabolism , Receptors, Leukotriene/metabolism , Inflammation Mediators/metabolism , Cognition/drug effects , Rats, Wistar , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Rats , Maze Learning/drug effects
20.
Biomed Chromatogr ; 38(4): e5822, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38237172

ABSTRACT

Danggui Buxue decoction (DBD) is a traditional Chinese medicine herbal decoction that has a good therapeutic effect on vascular dementia (VaD). However, its pharmacodynamic substances and underlying mechanisms are ambiguous. The work aimed to decipher the pharmacodynamic substances and molecular mechanisms of DBD against VaD rats based on gas chromatography-mass spectrometry metabonomics, network pharmacology, molecular docking, and experimental verification. The results indicated that DBD significantly improved the learning abilities and cognitive impairment in the VaD rat model. Integration analysis of the metabolomics and network pharmacology approach revealed that DBD might primarily affect arachidonic acid (AA) and inositol phosphate metabolic pathways by regulating the platelet activation signaling pathways. Six core targets (TNF [tumor necrosis factor], IL-6 [interleukin 6], PTGS2 [prostaglandin-endoperoxide synthase 2], MAPK1, MAPK3, and TP53) in the platelet activation signaling pathways also had a good affinity to seven main active components (saponins, organic acids, flavonoids, and phthalides) of DBD through the verification of molecular docking. Enzyme-linked immunosorbent assay results (ELISA) showed that the levels of TNF, IL-6, PTGS2, thromboxane B2, and caspase-3 in the platelet activation signaling pathway can be regulated by DBD. Our results indicated that DBD treated VaD mainly by modulating the platelet activation signaling pathway, and AA and inositol phosphate metabolism.


Subject(s)
Dementia, Vascular , Drugs, Chinese Herbal , Animals , Rats , Cyclooxygenase 2 , Dementia, Vascular/drug therapy , Interleukin-6 , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Arachidonic Acid , Inositol Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...