Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51.220
Filter
1.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
3.
J Exp Med ; 221(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38829369

ABSTRACT

Cryptosporidium is an enteric pathogen and a prominent cause of diarrheal disease worldwide. Control of Cryptosporidium requires CD4+ T cells, but how protective CD4+ T cell responses are generated is poorly understood. Here, Cryptosporidium parasites that express MHCII-restricted model antigens were generated to understand the basis for CD4+ T cell priming and effector function. These studies revealed that parasite-specific CD4+ T cells are primed in the draining mesenteric lymph node but differentiate into Th1 cells in the gut to provide local parasite control. Although type 1 conventional dendritic cells (cDC1s) were dispensable for CD4+ T cell priming, they were required for CD4+ T cell gut homing and were a source of IL-12 at the site of infection that promoted local production of IFN-γ. Thus, cDC1s have distinct roles in shaping CD4+ T cell responses to an enteric infection: first, to promote gut homing from the mesLN, and second, to drive effector responses in the intestine.


Subject(s)
CD4-Positive T-Lymphocytes , Cryptosporidiosis , Cryptosporidium , Dendritic Cells , Mice, Inbred C57BL , Animals , Dendritic Cells/immunology , Dendritic Cells/parasitology , Cryptosporidiosis/immunology , Cryptosporidiosis/parasitology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/parasitology , Mice , Cryptosporidium/immunology , Cryptosporidium/physiology , Intestines/immunology , Intestines/parasitology , Interleukin-12/metabolism , Interleukin-12/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Th1 Cells/immunology , Lymph Nodes/immunology , Lymph Nodes/parasitology
4.
Front Immunol ; 15: 1386243, 2024.
Article in English | MEDLINE | ID: mdl-38835757

ABSTRACT

Introduction: Current vaccines against COVID-19 administered via parenteral route have limited ability to induce mucosal immunity. There is a need for an effective mucosal vaccine to combat SARS-CoV-2 virus replication in the respiratory mucosa. Moreover, sex differences are known to affect systemic antibody responses against vaccines. However, their role in mucosal cellular responses against a vaccine remains unclear and is underappreciated. Methods: We evaluated the mucosal immunogenicity of a booster vaccine regimen that is recombinant protein-based and administered intranasally in mice to explore sex differences in mucosal humoral and cellular responses. Results: Our results showed that vaccinated mice elicited strong systemic antibody (Ab), nasal, and bronchiole alveolar lavage (BAL) IgA responses, and local T cell immune responses in the lung in a sex-biased manner irrespective of mouse genetic background. Monocytes, alveolar macrophages, and CD103+ resident dendritic cells (DCs) in the lungs are correlated with robust mucosal Ab and T cell responses induced by the mucosal vaccine. Discussion: Our findings provide novel insights into optimizing next-generation booster vaccines against SARS-CoV-2 by inducing spike-specific lung T cell responses, as well as optimizing mucosal immunity for other respiratory infections, and a rationale for considering sex differences in future vaccine research and vaccination practice.


Subject(s)
Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Mucosal , Immunogenicity, Vaccine , SARS-CoV-2 , Vaccines, Subunit , Animals , Female , Mice , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19/virology , Vaccines, Subunit/immunology , Vaccines, Subunit/administration & dosage , Male , Antibodies, Viral/immunology , Antibodies, Viral/blood , Lung/immunology , Lung/virology , T-Lymphocytes/immunology , Spike Glycoprotein, Coronavirus/immunology , Mice, Inbred C57BL , Administration, Intranasal , Sex Factors , Immunoglobulin A/immunology , Dendritic Cells/immunology , Immunization, Secondary , Immunity, Humoral
5.
Front Immunol ; 15: 1355566, 2024.
Article in English | MEDLINE | ID: mdl-38835775

ABSTRACT

Dendritic cell (DC)-based vaccines have emerged as a promising strategy in cancer immunotherapy due to low toxicity. However, the therapeutic efficacy of DC as a monotherapy is insufficient due to highly immunosuppressive tumor environment. To address these limitations of DC as immunotherapeutic agent, we have developed a polymeric nanocomplex incorporating (1) oncolytic adenovirus (oAd) co-expressing interleukin (IL)-12 and granulocyte-macrophage colony-stimulating factor (GM-CSF) and (2) arginine-grafted bioreducible polymer with PEGylated paclitaxel (APP) to restore antitumor immune surveillance function in tumor milieu and potentiate immunostimulatory attributes of DC vaccine. Nanohybrid complex (oAd/APP) in combination with DC (oAd/APP+DC) induced superior expression level of antitumor cytokines (IL-12, GM-CSF, and interferon gamma) than either oAd/APP or DC monotherapy in tumor tissues, thus resulting in superior intratumoral infiltration of both endogenous and exogenous DCs. Furthermore, oAd/APP+DC treatment led superior migration of DC to secondary lymphoid organs, such as draining lymph nodes and spleen, in comparison with either monotherapy. Superior migration profile of DCs in oAd/APP+DC treatment group resulted in more prolific activation of tumor-specific T cells in these lymphoid organs and greater intratumoral infiltration of T cells. Additionally, oAd/APP+DC treatment led to lower subset of tumor infiltrating lymphocytes and splenocytes being immunosuppressive regulatory T cells than any other treatment groups. Collectively, oAd/APP+DC led to superior induction of antitumor immune response and amelioration of immunosuppressive tumor microenvironment to elicit potent tumor growth inhibition than either monotherapy.


Subject(s)
Adenoviridae , Dendritic Cells , Oncolytic Virotherapy , Oncolytic Viruses , Paclitaxel , Dendritic Cells/immunology , Animals , Paclitaxel/pharmacology , Adenoviridae/genetics , Mice , Oncolytic Viruses/immunology , Oncolytic Viruses/genetics , Oncolytic Virotherapy/methods , Combined Modality Therapy , Cell Line, Tumor , Humans , Mice, Inbred C57BL , Cancer Vaccines/immunology , Immunotherapy/methods , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Female , Tumor Microenvironment/immunology , Tumor Microenvironment/drug effects
6.
Front Immunol ; 15: 1415573, 2024.
Article in English | MEDLINE | ID: mdl-38835772

ABSTRACT

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Subject(s)
Dendritic Cells , Macrophages , Phagocytosis , Dendritic Cells/immunology , Humans , Phagocytosis/immunology , Animals , Macrophages/immunology , Apoptosis/immunology , Immune Tolerance , Efferocytosis
7.
Commun Biol ; 7(1): 674, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824207

ABSTRACT

Studying cellular mechanoresponses during cancer metastasis is limited by sample variation or complex protocols that current techniques require. Metastasis is governed by mechanotransduction, whereby cells translate external stimuli, such as circulatory fluid shear stress (FSS), into biochemical cues. We present high-throughput, semi-automated methods to expose cells to FSS using the VIAFLO96 multichannel pipetting device custom-fitted with 22 G needles, increasing the maximum FSS 94-fold from the unmodified tips. Specifically, we develop protocols to semi-automatically stain live samples and to fix, permeabilize, and intracellularly process cells for flow cytometry analysis. Our first model system confirmed that the pro-apoptotic effects of TRAIL therapeutics in prostate cancer cells can be enhanced via FSS-induced Piezo1 activation. Our second system implements this multiplex methodology to show that FSS exposure (290 dyn cm-2) increases activation of murine bone marrow-derived dendritic cells. These methodologies greatly improve the mechanobiology workflow, offering a high-throughput, multiplex approach.


Subject(s)
Mechanotransduction, Cellular , Prostatic Neoplasms , Animals , Humans , Mice , Prostatic Neoplasms/pathology , Prostatic Neoplasms/immunology , Male , Dendritic Cells/immunology , Cell Line, Tumor , High-Throughput Screening Assays/methods , Stress, Mechanical , TNF-Related Apoptosis-Inducing Ligand/metabolism , Flow Cytometry/methods , Ion Channels
8.
Front Immunol ; 15: 1374425, 2024.
Article in English | MEDLINE | ID: mdl-38745644

ABSTRACT

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Mice, Knockout , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate , Oleic Acids/pharmacology , Lactobacillus plantarum , Colitis/metabolism , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male
9.
Front Immunol ; 15: 1353922, 2024.
Article in English | MEDLINE | ID: mdl-38745645

ABSTRACT

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Subject(s)
Dendritic Cells , Inflammation , Interleukin-4 , Mast Cells , Mice, Inbred C57BL , Toll-Like Receptor 2 , Zymosan , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Inflammation/immunology , Inflammation/metabolism , Interleukin-4/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Mice, Knockout
10.
Life Sci ; 348: 122686, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38710282

ABSTRACT

Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.


Subject(s)
Autoimmune Diseases , Autoimmunity , Dendritic Cells , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Neoplasms , Dendritic Cells/immunology , Dendritic Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Humans , Neoplasms/immunology , Neoplasms/therapy , Inflammasomes/immunology , Inflammasomes/metabolism , Animals , Autoimmunity/immunology , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/metabolism , Communicable Diseases/immunology , Communicable Diseases/metabolism , Communicable Diseases/therapy
11.
Aging (Albany NY) ; 16(9): 8217-8245, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728262

ABSTRACT

Thyroid-associated ophthalmopathy (TAO) is the most prevalent orbital disease in adults caused by an autoimmune disorder, which can lead to disfigurement and vision impairment. Developing effective treatments for this condition presents challenges due to our limited understanding of its underlying immune aberrations. In this study, we profiled the immune components in the peripheral blood of patients with TAO as well as healthy individuals, utilizing single-cell RNA sequencing and B-cell receptor repertoires (BCR) analysis. We observed a significant reduction in the proportions of regulatory B cells (Bregs) and type 2 conventional dendritic cells (DCs) in patients with TAO during the active phase. Conversely, there was a significant increase in the proportion of type 1 DCs. Further analysis of cell differentiation trajectory revealed potential impairment in the transition of B cells towards Breg phenotype during the active phase of TAO. Besides, the activation process of TAO appeared to involve inflammation and immune dysfunction, as indicated by the dynamic changes in the activities of key regulators. The abnormalities in the peripheral immune system, such as the reduced capacity of Bregs to suppress inflammation, were primarily driven by the enhanced interaction among Breg, DCs, and monocytes (i.e., CD22-PTPRC and BTLA-TNFRSF14). Collectively, our findings offer a comprehensive insight into the molecular regulation and cellular reconfiguration during the active phase of TAO at the single-cell level, in order to explore the pathogenesis of TAO and provide new ideas for the future treatment of TAO.


Subject(s)
Gene Expression Profiling , Graves Ophthalmopathy , Single-Cell Analysis , Humans , Graves Ophthalmopathy/genetics , Graves Ophthalmopathy/immunology , Graves Ophthalmopathy/blood , Female , Middle Aged , Male , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Dendritic Cells/immunology , Adult , Transcriptome , B-Lymphocytes, Regulatory/immunology
12.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
13.
Int J Biol Macromol ; 270(Pt 2): 132236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38768924

ABSTRACT

Antigen presenting cells (APCs)-derived exosomes are nano-vesicles that can induce antigen-specific T cell responses, and possess therapeutic effects in clinical settings. Moreover, dendritic cells (DCs)-based vaccines have been developed to combat human immunodeficiency virus-1 (HIV-1) infection in preclinical and clinical trials. We investigated the immunostimulatory effects (B- and T-cells activities) of DCs- and exosomes-based vaccine constructs harboring HIV-1 Nefmut-Tat fusion protein as an antigen candidate and heat shock protein 70 (Hsp70) as an adjuvant in mice. The modified DCs and engineered exosomes harboring Nefmut-Tat protein or Hsp70 were prepared using lentiviral vectors compared to electroporation, characterized and evaluated by in vitro and in vivo immunological tests. Our data indicated that the engineered exosomes induced high levels of total IgG, IgG2a, IFN-γ, TNF-α and Granzyme B. Moreover, co-injection of exosomes harboring Hsp70 could significantly increase the secretion of antibodies, cytokines and Granzyme B. The highest levels of IFN-γ and TNF-α were observed in exosomes harboring Nefmut-Tat combined with exosomes harboring Hsp70 (Exo-Nefmut-Tat + Exo-Hsp70) regimen after single-cycle replicable (SCR) HIV-1 exposure. Generally, Exo-Nefmut-Tat + Exo-Hsp70 regimen can be considered as a promising safe vaccine candidate due to high T-cells (Th1 and CTL) activity and its maintenance against SCR HIV-1 exposure.


Subject(s)
AIDS Vaccines , Dendritic Cells , Exosomes , HIV-1 , HSP70 Heat-Shock Proteins , nef Gene Products, Human Immunodeficiency Virus , tat Gene Products, Human Immunodeficiency Virus , Exosomes/immunology , Exosomes/metabolism , Dendritic Cells/immunology , Animals , HIV-1/immunology , HIV-1/genetics , HSP70 Heat-Shock Proteins/immunology , HSP70 Heat-Shock Proteins/genetics , AIDS Vaccines/immunology , nef Gene Products, Human Immunodeficiency Virus/immunology , nef Gene Products, Human Immunodeficiency Virus/genetics , Mice , tat Gene Products, Human Immunodeficiency Virus/immunology , tat Gene Products, Human Immunodeficiency Virus/genetics , Humans , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/genetics , Female , HIV Infections/immunology , HIV Infections/prevention & control , Cytokines/metabolism
14.
Int Immunopharmacol ; 134: 112169, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38728879

ABSTRACT

GUANKE is a Lactobacillus plantarum isolated from the feces of healthy volunteer. We have previously shown that GUANKE enhances the efficacy of the SARS-CoV-2 vaccine and prolongs the duration of vaccine protection by upregulating the IFN pathway and T and B lymphocyte functions of the host. The purpose of this study was to evaluate the protective effects and mechanism of oral administration of Lactobacillus plantarum GUANKE in the influenza (A virus A/Puerto Rico/8/34) infection mouse model. In our experiment, oral administration of GUANKE significantly decreased viral load and increased tight junction proteins expression in lung tissues of influenza-infected mice. After GUANKE was co-cultured with mBMDCs in vitro, mBMDCs' maturity and antiviral ability were enhanced, and matured mBMDCs induced polarization of naïve CD4+ T cells into T helper (Th) 1 cells. Adoptive transfer of GUANKE-treated mBMDCs could protect mice from influenza infections. This study suggests that oral administration of Lactobacillus plantarum GUANKE could provide protection against influenza infection in mice, and this protective effect may be mediated, at least in part, by dendritic cells.


Subject(s)
Dendritic Cells , Lactobacillus plantarum , Orthomyxoviridae Infections , Animals , Lactobacillus plantarum/immunology , Dendritic Cells/immunology , Orthomyxoviridae Infections/immunology , Mice , Probiotics/administration & dosage , Female , Mice, Inbred C57BL , Humans , COVID-19/immunology , COVID-19/prevention & control , Administration, Oral , Viral Load , Lung/immunology , Lung/virology , Lung/microbiology , Disease Models, Animal , Mice, Inbred BALB C , SARS-CoV-2/immunology , Influenza A virus/immunology
15.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
16.
Oncoimmunology ; 13(1): 2349347, 2024.
Article in English | MEDLINE | ID: mdl-38746870

ABSTRACT

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Subject(s)
Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
17.
Commun Biol ; 7(1): 587, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755254

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Subject(s)
Antigen Presentation , Cytidine , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/pharmacology , Antigen Presentation/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female
18.
Microb Biotechnol ; 17(5): e14461, 2024 May.
Article in English | MEDLINE | ID: mdl-38758181

ABSTRACT

Immunotherapies have revolutionized cancer treatment. These treatments rely on immune cell activation in tumours, which limits the number of patients that respond. Inflammatory molecules, like lipopolysaccharides (LPS), can activate innate immune cells, which convert tumour microenvironments from cold to hot, and increase therapeutic efficacy. However, systemic delivery of lipopolysaccharides (LPS) can induce cytokine storm. In this work, we developed immune-controlling Salmonella (ICS) that only produce LPS in tumours after colonization and systemic clearance. We tuned the expression of msbB, which controls production of immunogenic LPS, by optimizing its ribosomal binding sites and protein degradation tags. This genetic system induced a controllable inflammatory response and increased dendritic cell cross-presentation in vitro. The strong off state did not induce TNFα production and prevented adverse events when injected into mice. The accumulation of ICS in tumours after intravenous injection focused immune responses specifically to tumours. Tumour-specific expression of msbB increased infiltration of immune cells, activated monocytes and neutrophils, increased tumour levels of IL-6, and activated CD8 T cells in draining lymph nodes. These immune responses reduced tumour growth and increased mouse survival. By increasing the efficacy of bacterial anti-cancer therapy, localized production of LPS could provide increased options to patients with immune-resistant cancers.


Subject(s)
Lipopolysaccharides , Neoplasms , Animals , Lipopolysaccharides/immunology , Neoplasms/therapy , Neoplasms/immunology , Mice , Salmonella/immunology , Salmonella/genetics , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Immunotherapy/methods , Humans
19.
Adv Protein Chem Struct Biol ; 140: 347-379, 2024.
Article in English | MEDLINE | ID: mdl-38762274

ABSTRACT

Platelets, derived from bone marrow megakaryocytes, are essential for vascular integrity and play multifaceted roles in both physiological and pathological processes within the vasculature. Despite their small size and absence of a nucleus, platelets are increasingly recognized for their diverse immune functions. Recent research highlights their pivotal role in interactions with various immune cells, including professional cells like macrophages, dendritic cells, natural killer cells, T cells, and B cells, influencing host immune responses. Platelets also engage with non-professional immune cells, contributing to immune responses and structural maintenance, particularly in conditions like inflammation and atherosclerosis. This review underscores the emerging significance of platelets as potent immune cells, elucidating their interactions with the immune system. We explore the mechanisms of platelet activation, leading to diverse functions, such as aggregation, immunity, activation of other immune cells, and pathogen clearance. Platelets have become the predominant immune cells in circulation, involved in chronic inflammation, responses to infections, and autoimmune disorders. Their immunological attributes, including bioactive granule molecules and immune receptors, contribute to their role in immune responses. Unlike professional antigen-presenting cells, platelets process and present antigens through an MHC-I-dependent pathway, initiating T-cell immune responses. This review illuminates the unique features of platelets and their central role in modulating host immune responses in health and disease.


Subject(s)
Blood Platelets , Cell Communication , Humans , Blood Platelets/immunology , Cell Communication/immunology , Animals , T-Lymphocytes/immunology , Dendritic Cells/immunology
20.
Bull Exp Biol Med ; 176(5): 672-679, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38733483

ABSTRACT

A culture of cells expressing markers of mesenchymal stem cells (MSC) (CD73, CD90, CD44, CD29, and CD49b), but not hematopoietic cell markers, and capable of multilineage differentiation was isolated from the deciduous tooth pulp. Co-culturing with immature dendritic cells in the presence of LPS did not reveal an ability of the MSC to suppress the maturation of dendritic cells. On the contrary, co-culturing of MSC with monocytes in the presence of granulocyte-macrophage CSF and IL-4 led to complete suppression of monocyte differentiation into dendritic cells. However, long-term culturing of MSC from dental pulp showed that by the passage 11, they almost completely lose their suppressor ability. These results indicate that the immunological properties of MSC can change during culturing without changing their phenotypic markers. This should be taken into account when creating biomedical cell products.


Subject(s)
Cell Differentiation , Coculture Techniques , Dendritic Cells , Dental Pulp , Mesenchymal Stem Cells , Tooth, Deciduous , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Dental Pulp/cytology , Dendritic Cells/cytology , Humans , Tooth, Deciduous/cytology , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Monocytes/cytology , Monocytes/immunology , Interleukin-4/metabolism , Interleukin-4/pharmacology , Lipopolysaccharides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...