Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.302
Filter
1.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
2.
Int J Nanomedicine ; 19: 4719-4733, 2024.
Article in English | MEDLINE | ID: mdl-38813391

ABSTRACT

Introduction: Lung cancer's high incidence and dismal prognosis with traditional treatments like surgery and radiotherapy necessitate innovative approaches. Despite advancements in nanotherapy, the limitations of single-treatment modalities and significant side effects persist. To tackle lung cancer effectively, we devised a temperature-sensitive hydrogel-based local injection system with near-infrared triggered drug release. Utilizing 2D MXene nanosheets as carriers loaded with R837 and cisplatin (DDP), encapsulated within a temperature-sensitive hydrogel-forming PEG-MXene@DDP@R837@SHDS (MDR@SHDS), we administered in situ injections of MDR@SHDS into tumor tissues combined with photothermal therapy (PTT). The immune adjuvant R837 enhances dendritic cell (DC) maturation and tumor cell phagocytosis, while PTT induces tumor cell apoptosis and necrosis by converting light energy into heat energy. Methods: Material characterization employed transmission electron microscopy, X-ray photoelectron spectroscopy, phase transition temperature, and near-infrared thermography. In vitro experiments assessed Lewis cell proliferation and apoptosis using CCK-8, Edu, and TUNEL assays. In vivo experiments on C57 mouse Lewis transplant tumors evaluated the photothermal effect via near-infrared thermography and assessed DC maturation and CD4+/CD8+ T cell ratios using flow cytometry. The in vivo anti-tumor efficacy of MDR@SHDS was confirmed by tumor growth curve recording and HE and TUNEL staining of tumor sections. Results: The hydrogel exhibited excellent temperature sensitivity, controlled release properties, and high biocompatibility. In vitro experiments revealed that MDR@SHDS combined with PTT had a greater inhibitory effect on tumor cell proliferation compared to MDR@SHD alone. Combining local immunotherapy, chemotherapy, and PTT yielded superior anti-tumor effects than individual treatments. Conclusion: MDR@SHDS, with its simplicity, biocompatibility, and enhanced anti-tumor effects in combination with PTT, presents a promising therapeutic approach for lung cancer treatment, offering potential clinical utility.


Subject(s)
Cisplatin , Imiquimod , Lung Neoplasms , Mice, Inbred C57BL , Animals , Cisplatin/pharmacology , Cisplatin/chemistry , Cisplatin/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Mice , Imiquimod/chemistry , Imiquimod/administration & dosage , Imiquimod/pharmacology , Hydrogels/chemistry , Apoptosis/drug effects , Nanostructures/chemistry , Photothermal Therapy/methods , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Drug Delivery Systems/methods , Humans , Temperature , Dendritic Cells/drug effects , Drug Carriers/chemistry , Carcinoma, Lewis Lung/drug therapy , Carcinoma, Lewis Lung/pathology
3.
Commun Biol ; 7(1): 587, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755254

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Subject(s)
Antigen Presentation , Cytidine , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/pharmacology , Antigen Presentation/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female
4.
Acta Biomater ; 181: 402-414, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734282

ABSTRACT

Tumor hypoxia, high oxidative stress, and low immunogenic create a deep-rooted immunosuppressive microenvironment, posing a major challenge to the therapeutic efficiency of cancer immunotherapy for solid tumor. Herein, an intelligent nanoplatform responsive to the tumor microenvironment (TME) capable of hypoxia relief and immune stimulation has been engineered for efficient solid tumor immunotherapy. The MnO2@OxA@OMV nanoreactor, enclosing bacterial-derived outer membrane vesicles (OMVs)-wrapped MnO2 nanoenzyme and the immunogenic cell death inducer oxaliplatin (OxA), demonstrated intrinsic catalase-like activity within the TME, which effectively catalyzed the endogenous H2O2 into O2 to enable a prolonged oxygen supply, thereby alleviating the tumor's oxidative stress and hypoxic TME, and expediting OxA release. The combinational action of OxA-caused ICD effect and Mn2+ from nanoreactor enabled the motivation of the cGAS-STING pathway to significantly improve the activation of STING and dendritic cells (DCs) maturation, resulting in metalloimmunotherapy. Furthermore, the immunostimulant OMVs played a crucial role in promoting the infiltration of activated CD8+T cells into the solid tumor. Overall, the nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy. STATEMENT OF SIGNIFICANCE: A tailor-made nanoreactor was fabricated by enclosing bacterial-derived outer membrane vesicles (OMVs) onto MnO2 nanoenzyme and loading with immunogenic cell death inducer oxaliplatin (OxA) for tumor metalloimmunotherapy. The nanoreactor possesses intrinsic catalase-like activity within the tumor microenvironment, which effectively enabled a prolonged oxygen supply by catalyzing the conversion of endogenous H2O2 into O2, thereby alleviating tumor hypoxia and expediting OxA release. Furthermore, the TME-responsive release of nutritional Mn2+ sensitized the cGAS-STING pathway and collaborated with OxA-induced immunogenic cell death (ICD). Combing with immunostimulatory OMVs enhances the uptake of nanoreactors by DCs and promotes the infiltration of activated CD8+T cells. This nanoreactor offers a robust platform for solid tumor treatment, highlighting the significant potential of combining relief from tumor hypoxia and immune stimulation for metalloimmunotherapy.


Subject(s)
Immunotherapy , Tumor Microenvironment , Animals , Immunotherapy/methods , Mice , Tumor Microenvironment/drug effects , Cell Line, Tumor , Tumor Hypoxia/drug effects , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Oxaliplatin/pharmacology , Oxaliplatin/chemistry , Oxides/chemistry , Oxides/pharmacology , Manganese/chemistry , Manganese/pharmacology , Humans , Female , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/immunology , Neoplasms/drug therapy , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Dendritic Cells/immunology , Mice, Inbred C57BL
5.
Front Immunol ; 15: 1374425, 2024.
Article in English | MEDLINE | ID: mdl-38745644

ABSTRACT

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Mice, Knockout , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate , Oleic Acids/pharmacology , Lactobacillus plantarum , Colitis/metabolism , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male
6.
Nano Lett ; 24(19): 5894-5903, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709593

ABSTRACT

The combination of radiotherapy (RT) and immunotherapy shows promise in improving the clinical treatment of solid tumors; however, it faces challenges of low response rates and systemic toxicity. Herein, an implantable alginate/collagen hydrogel encapsulating C-C motif ligand 21 (CCL21)-expressing dendritic cells (CCL21-DCs@gel) was developed to potentiate the systemic antitumor effects of RT. The hydrogel functioned as a suitable reservoir for in vivo culture and proliferation of CCL21-DCs, thereby enabling sustained CCL21 release. The local CCL21 gradient induced by CCL21-DCs@gel significantly enhanced the efficacy of RT in suppressing primary tumor growth and inhibiting distant metastasis across several mouse models. Furthermore, the combination of RT with CCL21-DCs@gel provided complete prophylactic protection to mice. Mechanistic investigations revealed that CCL21-DCs@gel potentiated RT by promoting tumor lymphangiogenesis and attracting immune cell infiltration into the tumor. Collectively, these results suggest that CCL21-DCs@gel is a promising adjunct to RT for effectively eradicating tumors and preventing tumor recurrence.


Subject(s)
Chemokine CCL21 , Dendritic Cells , Hydrogels , Animals , Hydrogels/chemistry , Mice , Dendritic Cells/drug effects , Dendritic Cells/immunology , Cell Line, Tumor , Humans , Alginates/chemistry , Neoplasms/radiotherapy , Neoplasms/pathology , Neoplasms/immunology , Collagen/chemistry , Immunotherapy/methods
7.
Theranostics ; 14(7): 2934-2945, 2024.
Article in English | MEDLINE | ID: mdl-38773971

ABSTRACT

Rationale: Nucleic acid constructs are commonly used for vaccination, immune stimulation, and gene therapy, but their use in cancer still remains limited. One of the reasons is that systemic delivery to tumor-associated antigen-presenting cells (dendritic cells and macrophages) is often inefficient, while off-target nucleic acid-sensing immune pathways can stimulate systemic immune responses. Conversely, certain carbohydrate nanoparticles with small molecule payloads have been shown to target these cells efficiently in the tumor microenvironment. Yet, nucleic acid incorporation into such carbohydrate-based nanoparticles has proven challenging. Methods: We developed a novel approach using cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles to efficiently deliver nucleic acids and small-molecule immune enhancer to phagocytic cells in tumor environments and lymph nodes. Our study involved incorporating these components into the nanoparticles and assessing their efficacy in activating antigen-presenting cells. Results: The multi-modality immune stimulators effectively activated antigen-presenting cells and promoted anti-tumor immunity in vivo. This was evidenced by enhanced delivery to phagocytic cells and subsequent immune response activation in tumor environments and lymph nodes. Conclusion: Here, we describe a new approach to incorporating both nucleic acids and small-molecule immune enhancers into cross-linked bis succinyl-cyclodextrin (b-s-CD) nanoparticles for efficient delivery to phagocytic cells in tumor environments and lymph nodes in vivo. These multi-modality immune stimulators can activate antigen-presenting cells and foster anti-tumor immunity. We argue that this strategy can potentially be used to enhance anti-tumor efficacy.


Subject(s)
Dendritic Cells , Nanoparticles , Nucleic Acids , Dendritic Cells/immunology , Dendritic Cells/drug effects , Animals , Nucleic Acids/administration & dosage , Mice , Nanoparticles/chemistry , Cyclodextrins/chemistry , Mice, Inbred C57BL , Humans , Cell Line, Tumor , Tropism , Tumor Microenvironment/drug effects , Lymph Nodes/immunology , Female , Neoplasms/therapy , Neoplasms/immunology
8.
Balkan Med J ; 41(3): 174-185, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700313

ABSTRACT

Background: Psoriasis is a chronic inflammatory skin disease that has no cure. While the specific cause of psoriasis is unknown, interactions between immune cells and inflammatory cytokines are believed to be important in its pathogenesis. Thymic stromal lymphopoietin (TSLP) is a cytokine produced by epithelial cells that profoundly affects dendritic cells (DCs) and is involved in allergy and inflammatory diseases. In some studies, its expression is higher in the skin of psoriasis patients, whereas it is increased in treated psoriasis patients when compared with untreated patients in others. Aims: To investigate the role of TSLP in the pathogenesis of psoriasis. Study Design: In vitro and in vivo study. Methods: To investigate the effect of TSLP on psoriasis in vivo, a mouse psoriasis model and shRNA targeting TSLP to reduce its expression were used. Mouse primary bone marrow dendritic cells (BMDCs) were cultured in vitro and used to investigate the signaling pathways activated by TSLP. Results: We found that reducing TSLP expression in psoriasis skin alleviated disease severity. TSLP activated the Janus kinase (JAK)/SYK pathway in psoriatic skin. In vitro studies with BMDCs demonstrated that TSLP increased DC maturation through the JAK/SYK pathway and activated DCs-secreted cytokines that stimulated CD4+ T cells to develop into T helper 17 (Th17) cells by activating STAT3 signaling. The JAK/SYK pathway inhibitor reduced the effect of TSLP on activating BMDCs and promoting Th17 differentiation by CD4+ T cells. Conclusion: These findings indicated that TSLP exerted its immune-modulating effect in psoriasis through the JAK/SYK pathway.


Subject(s)
Cytokines , Dendritic Cells , Psoriasis , Th17 Cells , Thymic Stromal Lymphopoietin , Animals , Humans , Mice , Cytokines/metabolism , Cytokines/drug effects , Dendritic Cells/drug effects , Dendritic Cells/immunology , Disease Models, Animal , Janus Kinases , Signal Transduction/drug effects , Syk Kinase , Th17 Cells/drug effects , Th17 Cells/immunology
9.
Biomaterials ; 309: 122626, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38795524

ABSTRACT

The development of manganese oxide-based chemodynamic immunotherapy is emerging as a key strategy against solid tumors. However, the limited efficacy of nanoplatform in inducing efficient tumor therapeutic effects and creating the prominent antitumor immune responses remains a crucial issue. In this study, we construct a novel multifunctional biomimetic nanovaccine comprising manganese oxide-loaded poly(2-diisopropylaminoethyl methacrylate) (MP) nanoparticles and a coating layer of hybrid cell membrane (RHM) derived from manganese oxide-remodeled 4T1 cells and dendritic cells (DCs) (collectively called MP@RHM) for combination chemodynamic immunotherapy. Compared with the nanovaccines coated with the single cell membrane, the MP@RHM nanovaccine highly efficiently activates both DCs and T cells to boost tumor-specific T cell, owing to the synergistic effects of abundant damage-associated molecular patterns, Mn2+, and T cell-stimulating moieties. Upon peritumoral injection, the MP@RHM nanovaccine targets both the tumor site for focused chemodynamic therapy and the lymph nodes for robust tumor-specific T cell priming, thereby achieving highly efficient chemodynamic immunotherapy. Moreover, as a preventive cancer nanovaccine, MP@RHM generates strong immunological memory to inhibit postoperative tumor metastasis and recurrence. Our study findings highlight a promising approach to construct a multifunctional biomimetic nanovaccine for personalized chemodynamic immunotherapy against solid tumors.


Subject(s)
Cancer Vaccines , Immunotherapy , Manganese Compounds , Oxides , T-Lymphocytes , Manganese Compounds/chemistry , Animals , Cancer Vaccines/immunology , Oxides/chemistry , Cell Line, Tumor , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Immunotherapy/methods , Mice , Nanoparticles/chemistry , Mice, Inbred BALB C , Female , Dendritic Cells/immunology , Dendritic Cells/drug effects , Biomimetic Materials/chemistry , Neoplasms/therapy , Neoplasms/immunology , Nanovaccines
10.
Cell Commun Signal ; 22(1): 281, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773618

ABSTRACT

BACKGROUND: Restoring impaired peripheral immune tolerance is the primary challenge in treating autoimmune diseases. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs), a fraction of low molecular weight proteins, in inhibiting the progression of psoriatic arthritis, even in the presence of high levels of the proinflammatory cytokine TNFα in the bloodstream. When specifically targeting dendritic cells (DCs), SSPs transform them into tolerogenic cells, which efficiently induce the development of regulatory Foxp3+ Treg cells. In this study, we provide further insights into the mechanism of action of SSPs. RESULTS: We found that SSPs stimulate the activation of the mTOR signaling pathway in dendritic cells, albeit in a different manner than the classical immunogenic stimulus LPS. While LPS-induced activation is rapid, strong, and sustained, the activity induced by SSPs is delayed, less intense, yet still significant. These distinct patterns of activation, as measured by phosphorylation of key components of the pathway are also observed in response to other immunogenic and tolerogenic stimuli such as GM-CSF + IL-4 or IL-10 and TGFß. The disparity in mTOR activation between immunogenic and tolerogenic stimuli is quantitative rather than qualitative. In both cases, mTOR activation primarily occurs through the PI3K/Akt signaling axis and involves ERK and GSK3ß kinases, with minimal involvement of AMPK or NF-kB pathways. Furthermore, in the case of SSPs, mTOR activation seems to involve adenosine receptors. Additionally, we observed that DCs treated with SSPs exhibit an energy metabolism with high plasticity, which is typical of tolerogenic cells rather than immunogenic cells. CONCLUSION: Hence, the decision whether dendritic cells enter an inflammatory or tolerogenic state seems to rely on varying activation thresholds and kinetics of the mTOR signaling pathway.


Subject(s)
Dendritic Cells , Immune Tolerance , Signal Transduction , TOR Serine-Threonine Kinases , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , TOR Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Animals , Mice , Inflammation/metabolism , Kinetics , Lipopolysaccharides/pharmacology
11.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
12.
Nat Commun ; 15(1): 3882, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719809

ABSTRACT

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Subject(s)
CD8-Positive T-Lymphocytes , Cancer Vaccines , Carboxymethylcellulose Sodium/analogs & derivatives , Dendritic Cells , Glioma , Interferons , Poly I-C , Polylysine/analogs & derivatives , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Glioma/immunology , Glioma/therapy , Female , Male , Middle Aged , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Poly I-C/administration & dosage , Poly I-C/pharmacology , Adult , Toll-Like Receptors/agonists , Imidazoles/pharmacology , Imidazoles/therapeutic use , Aged , Vaccination , Monocytes/immunology , Monocytes/drug effects , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Toll-Like Receptor Agonists
13.
ACS Appl Mater Interfaces ; 16(22): 28070-28079, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38779939

ABSTRACT

Cellular hitchhiking is an emerging strategy for the in vivo control of adoptively transferred immune cells. Hitchhiking approaches are primarily mediated by adhesion of nano and microparticles to the cell membrane, which conveys an ability to modulate transferred cells via local drug delivery. Although T cell therapies employing this strategy have progressed into the clinic, phagocytic cells including dendritic cells (DCs) are much more challenging to engineer. DC vaccines hold great potential for a spectrum of diseases, and the combination drug delivery is an attractive strategy to manipulate their function and overcome in vivo plasticity. However, DCs are not compatible with current hitchhiking approaches due to their broad phagocytic capacity. In this work, we developed and validated META (membrane engineering using tannic acid) to enable DC cellular hitchhiking for the first time. META employs the polyphenol tannic acid (TA) to facilitate supramolecular assembly of protein drug cargoes on the cell membrane, enabling the creation of cell surface-bound formulations for local drug delivery to carrier DCs. We optimized META formulations to incorporate and release protein cargoes with varying physical properties alone and in combination and to preserve DC viability and critical functions such as migration. We further show that META loaded with either a pro- or anti-inflammatory cargo can influence the carrier cell phenotype, thus demonstrating the flexibility of the approach for applications from cancer to autoimmune disease. Overall, this approach illustrates a new platform for the local control of phagocytic immune cells as a next step to advance DC therapies in the clinic.


Subject(s)
Dendritic Cells , Polyphenols , Tannins , Dendritic Cells/drug effects , Dendritic Cells/immunology , Tannins/chemistry , Tannins/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Humans , Animals , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Mice , Cell Membrane/metabolism , Cell Survival/drug effects
14.
Open Biol ; 14(5): 230315, 2024 May.
Article in English | MEDLINE | ID: mdl-38806144

ABSTRACT

Candida glabrata is an important pathogen causing invasive infection associated with a high mortality rate. One mechanism that causes the failure of Candida eradication is an increase in regulatory T cells (Treg), which play a major role in immune suppression and promoting Candida pathogenicity. To date, how C. glabrata induces a Treg response remains unclear. Dendritic cells (DCs) recognition of fungi provides the fundamental signal determining the fate of the T-cell response. This study investigated the interplay between C. glabrata and DCs and its effect on Treg induction. We found that C. glabrata ß-glucan was a major component that interacted with DCs and consequently mediated the Treg response. Blocking the binding of C. glabrata ß-glucan to dectin-1 and complement receptor 3 (CR3) showed that CR3 activation in DCs was crucial for the induction of Treg. Furthermore, a ligand-receptor binding assay showed the preferential binding of C. glabrata ß-glucan to CR3. Our data suggest that C. glabrata ß-glucan potentially mediates the Treg response, probably through CR3-dependent activation in DCs. This study contributes new insights into immune modulation by C. glabrata that may lead to a better design of novel immunotherapeutic strategies for invasive C. glabrata infection.


Subject(s)
Candida glabrata , Dendritic Cells , Macrophage-1 Antigen , T-Lymphocytes, Regulatory , beta-Glucans , Candida glabrata/metabolism , Candida glabrata/pathogenicity , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , beta-Glucans/metabolism , beta-Glucans/pharmacology , Animals , Macrophage-1 Antigen/metabolism , Mice , Lectins, C-Type/metabolism , Candidiasis/immunology , Candidiasis/microbiology , Candidiasis/metabolism , Mice, Inbred C57BL
15.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659058

ABSTRACT

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Subject(s)
Cell-Derived Microparticles , Dendritic Cells , Inflammation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Inflammation/drug therapy , Cell-Derived Microparticles/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Extracellular Vesicles , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Sepsis/immunology , Sepsis/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Humans , Immunotherapy/methods
16.
Biomolecules ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38672485

ABSTRACT

Restoring peripheral immune tolerance is crucial for addressing autoimmune diseases. An ancient mechanism in maintaining the balance between inflammation and tolerance is the ratio of extracellular ATP (exATP) and adenosine. Our previous research demonstrated the effectiveness of small spleen peptides (SSPs) in inhibiting psoriatic arthritis progression, even in the presence of the pro-inflammatory cytokine TNFα, by transforming dendritic cells (DCs) into tolerogenic cells and fostering regulatory Foxp3+ Treg cells. Here, we identified thymosins as the primary constituents of SSPs, but recombinant thymosin peptides were less efficient in inhibiting arthritis than SSPs. Since Tß4 is an ecto-ATPase-binding protein, we hypothesized that SSPs regulate exATP profiles. Real-time investigation of exATP levels in DCs revealed that tolerogenic stimulation led to robust de novo exATP synthesis followed by significant degradation, while immunogenic stimulation resulted in a less pronounced increase in exATP and less effective degradation. These contrasting exATP profiles were crucial in determining whether DCs entered an inflammatory or tolerogenic state, highlighting the significance of SSPs as natural regulators of peripheral immunological tolerance, with potential therapeutic benefits for autoimmune diseases. Finally, we demonstrated that the tolerogenic phenotype of SSPs is mainly influenced by adenosine receptors, and in vivo administration of SSPs inhibits psoriatic skin inflammation.


Subject(s)
Adenosine Triphosphate , Cell Differentiation , Dendritic Cells , Spleen , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Dendritic Cells/immunology , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Differentiation/drug effects , Spleen/cytology , Spleen/metabolism , Spleen/drug effects , Spleen/immunology , Mice , Thymosin/pharmacology , Thymosin/metabolism , Peptides/pharmacology , Arthritis, Psoriatic/drug therapy , Arthritis, Psoriatic/metabolism , Arthritis, Psoriatic/immunology , Humans , Mice, Inbred C57BL , Immune Tolerance/drug effects
17.
ACS Nano ; 18(17): 11070-11083, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38639726

ABSTRACT

Effective antitumor immunotherapy depends on evoking a cascade of cancer-immune cycles with lymph nodes (LNs) as the initial sites for activating antitumor immunity, making drug administration through the lymphatic system highly attractive. Here, we describe a nanomedicine with dual responsiveness to pH and enzyme for a programmed activation of antitumor immune through the lymphatic system. The proposed nanomedicine can release the STING agonist diABZI-C2-NH2 in the LNs' acidic environment to activate dendritic cells (DCs) and T cells. Then, the remaining nanomedicine hitchhikes on the activated T cells (PD-1+ T cells) through binding to PD-1, resulting in an effective delivery into tumor tissues owing to the tumor-homing capacity of PD-1+ T cells. The enzyme matrix metalloproteinase-2 (MMP-2) being enriched in tumor tissue triggers the release of PD-1 antibody (aPD-1) which exerts immune checkpoint blockade (ICB) therapy. Eventually, the nanomedicine delivers a DNA methylation inhibitor GSK-3484862 (GSK) into tumor cells, and then the latter combines with granzyme B (GZMB) to trigger tumor cell pyroptosis. Consequently, the pyroptotic tumor cells induce robust immunogenic cell death (ICD) enhancing the DCs maturation and initiating the cascading antitumor immune response. Study on a 4T1 breast tumor mouse model demonstrates the prominent antitumor therapeutic outcome of this nanomedicine through creating a positive feedback loop of cancer-immunity cycles including immune activation in LNs, T cell-mediated drug delivery, ICB therapy, and tumor cell pyroptosis-featured ICD.


Subject(s)
Nanomedicine , Animals , Mice , Humans , Immunotherapy , Female , Lymph Nodes/immunology , Lymph Nodes/drug effects , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Line, Tumor
18.
Theranostics ; 14(6): 2573-2588, 2024.
Article in English | MEDLINE | ID: mdl-38646638

ABSTRACT

Background: Hypofractionated radiotherapy (hRT) can induce a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade (ICB). However, clinically, this effect is still rare, and ICB-mediated adverse events are common. Lenalidomide (lena) is an anti-angiogenic and immunomodulatory drug used in the treatment of hematologic malignancies. We here investigated in solid tumor models whether lena can enhance the abscopal effect in double combination with hRT. Methods: In two syngeneic bilateral tumor models (B16-CD133 melanoma and MC38 colon carcinoma), the primary tumor was treated with hRT. Lena was given daily for 3 weeks. Besides tumor size and survival, the dependence of the antitumor effects on CD8+ cells, type-I IFN signaling, and T cell costimulation was determined with depleting or blocking antibodies. Tumor-specific CD8+ T cells were quantified, and their differentiation and effector status were characterized by multicolor flow cytometry using MHC-I tetramers and various antibodies. In addition, dendritic cell (DC)-mediated tumor antigen cross-presentation in vitro and directly ex vivo and the composition of tumor-associated vascular endothelial cells were investigated. Results: In both tumor models, the hRT/lena double combination induced a significant abscopal effect. Control of the non-irradiated secondary tumor and survival were considerably better than with the respective monotherapies. The abscopal effect was strongly dependent on CD8+ cells and associated with an increase in tumor-specific CD8+ T cells in the non-irradiated tumor and its draining lymph nodes. Additionally, we found more tumor-specific T cells with a stem-like (TCF1+ TIM3- PD1+) and a transitory (TCF1- TIM3+ CD101- PD1+) exhausted phenotype and more expressing effector molecules such as GzmB, IFNγ, and TNFα. Moreover, in the non-irradiated tumor, hRT/lena treatment also increased DCs cross-presenting a tumor model antigen. Blocking type-I IFN signaling, which is essential for cross-presentation, completely abrogated the abscopal effect. A gene expression analysis of bone marrow-derived DCs revealed that lena augmented the expression of IFN response genes and genes associated with differentiation, maturation (including CD70, CD83, and CD86), migration to lymph nodes, and T cell activation. Flow cytometry confirmed an increase in CD70+ CD83+ CD86+ DCs in both irradiated and abscopal tumors. Moreover, the hRT/lena-induced abscopal effect was diminished when these costimulatory molecules were blocked simultaneously using antibodies. In line with the enhanced infiltration by DCs and tumor-specific CD8+ T cells, including more stem-like cells, hRT/lena also increased tumor-associated high endothelial cells (TA-HECs) in the non-irradiated tumor. Conclusions: We demonstrate that lena can augment the hRT-induced abscopal effect in mouse solid tumor models in a CD8 T cell- and IFN-I-dependent manner, correlating with enhanced anti-tumor CD8 T cell immunity, DC cross-presentation, and TA-HEC numbers. Our findings may be helpful for the planning of clinical trials in (oligo)metastatic patients.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Lenalidomide , Radiation Dose Hypofractionation , Animals , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Mice, Inbred C57BL , Dendritic Cells/immunology , Dendritic Cells/drug effects , Cell Line, Tumor , Combined Modality Therapy/methods , Female , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/radiotherapy , Melanoma, Experimental/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/radiotherapy , Colonic Neoplasms/drug therapy , Colonic Neoplasms/therapy
19.
J Nanobiotechnology ; 22(1): 214, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689291

ABSTRACT

Combination of tumor immunotherapy with photothermal therapy (PTT) is a feasible tactic to overcome the drawback of immunotherapy such as poor immune response. Via triggering the immunogenic cells death (ICD), PTT can stimulate the activity of immune cells, but meanwhile, the level of adenosine is elevated via the CD73-induced decomposition of ATP which is overexpressed accompanying with the PTT process, resulting in negative feedback to impair the immune stimulation. Herein, we developed a novel biomimetic photothermal nanodrug to specifically block CD73 for inhibition of adenosine production and more efficient priming of the suppressive immune microenvironments. The nanodrug, named as AptEM@CBA, is constructed by encapsulation of photothermal agent black phosphorus quantum dots (BPQDs) and selective CD73 inhibitor α, ß-Methyleneadenosine 5'-diphosphate (AMPCP) in chitosan nanogels, which are further covered with aptamer AS1411 modified erythrocyte membrane (EM) for biomimetic camouflage. With AS1411 induced active targeting and EM induced long blood circulation time, the enrichment of the nanodrug tumor sites is promoted. The photothermal treatment promotes the maturation of dendritic cells. Meanwhile, the release of AMPCP suppress the adenosine generation via CD73 blockade, alleviating the impairment of adenosine to dendritic cells and suppressing regulatory T cells, synergically stimulate the activity of T cells. The combination of CD73 blockade with PTT, not only suppresses the growth of primary implanted tumors, but also boosts strong antitumor immunity to inhibit the growth of distal tumors, providing good potential for tumor photoimmunotherapy.


Subject(s)
5'-Nucleotidase , Adenosine Diphosphate , Adenosine , Immunotherapy , Photothermal Therapy , Animals , Humans , Mice , 5'-Nucleotidase/antagonists & inhibitors , Adenosine/chemistry , Adenosine/analogs & derivatives , Adenosine/pharmacology , Adenosine Diphosphate/analogs & derivatives , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetics/methods , Cell Line, Tumor , Dendritic Cells/drug effects , Dendritic Cells/immunology , Immunotherapy/methods , Mice, Inbred BALB C , Mice, Inbred C57BL , Nanoparticles/chemistry , Neoplasms/therapy , Neoplasms/drug therapy , Photothermal Therapy/methods , Quantum Dots/chemistry , Tumor Microenvironment/drug effects , Male
20.
Nanoscale ; 16(17): 8417-8426, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38591110

ABSTRACT

Tumor recurrence after surgical resection remains a significant challenge in breast cancer treatment. Immune checkpoint blockade therapy, as a promising alternative therapy, faces limitations in combating tumor recurrence due to the low immune response rate. In this study, we developed an implantable photo-responsive self-healing hydrogel loaded with MoS2 nanosheets and the immunoadjuvant R837 (PVA-MoS2-R837, PMR hydrogel) for in situ generation of tumor-associated antigens at the post-surgical site of the primary tumor, enabling sustained and effective activation of the immune response. This PMR hydrogel exhibited potential for near-infrared (NIR) light response, tissue adhesion, self-healing, and sustained adjuvant release. When implanted at the site after tumor resection, NIR irradiation triggered a photothermal effect, resulting in the ablation of residual cancer cells. The in situ-generated tumor-associated antigens promoted dendritic cell (DC) maturation. In a mouse model, PMR hydrogel-mediated photothermal therapy combined with immune checkpoint blockade effectively inhibited the recurrence of resected tumors, providing new insights for combating post-resection breast cancer recurrence.


Subject(s)
Adjuvants, Immunologic , Breast Neoplasms , Disulfides , Hydrogels , Molybdenum , Neoplasm Recurrence, Local , Molybdenum/chemistry , Molybdenum/pharmacology , Animals , Female , Disulfides/chemistry , Disulfides/pharmacology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Mice , Hydrogels/chemistry , Hydrogels/pharmacology , Neoplasm Recurrence, Local/prevention & control , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Humans , Cell Line, Tumor , Nanostructures/chemistry , Mice, Inbred BALB C , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigens, Neoplasm/immunology , Photothermal Therapy , Infrared Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...