Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.341
Filter
1.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
2.
Sci Adv ; 10(18): eadn6537, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701219

ABSTRACT

In mammals, males and females show marked differences in immune responses. Males are globally more sensitive to infectious diseases, while females are more susceptible to systemic autoimmunity. X-chromosome inactivation (XCI), the epigenetic mechanism ensuring the silencing of one X in females, may participate in these sex biases. We perturbed the expression of the trigger of XCI, the noncoding RNA Xist, in female mice. This resulted in reactivation of genes on the inactive X, including members of the Toll-like receptor 7 (TLR7) signaling pathway, in monocyte/macrophages and dendritic and B cells. Consequently, female mice spontaneously developed inflammatory signs typical of lupus, including anti-nucleic acid autoantibodies, increased frequencies of age-associated and germinal center B cells, and expansion of monocyte/macrophages and dendritic cells. Mechanistically, TLR7 signaling is dysregulated in macrophages, leading to sustained expression of target genes upon stimulation. These findings provide a direct link between maintenance of XCI and female-biased autoimmune manifestations and highlight altered XCI as a cause of autoimmunity.


Subject(s)
Autoimmunity , Macrophages , Toll-Like Receptor 7 , X Chromosome Inactivation , Animals , Female , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Autoimmunity/genetics , Mice , Male , Macrophages/metabolism , Macrophages/immunology , RNA, Long Noncoding/genetics , Signal Transduction , Dendritic Cells/immunology , Dendritic Cells/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology
3.
Sci Adv ; 10(19): eadm9561, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38718119

ABSTRACT

Lactic acid (LA) accumulation in the tumor microenvironment poses notable challenges to effective tumor immunotherapy. Here, an intelligent tumor treatment microrobot based on the unique physiological structure and metabolic characteristics of Veillonella atypica (VA) is proposed by loading Staphylococcus aureus cell membrane-coating BaTiO3 nanocubes (SAM@BTO) on the surface of VA cells (VA-SAM@BTO) via click chemical reaction. Following oral administration, VA-SAM@BTO accurately targeted orthotopic colorectal cancer through inflammatory targeting of SAM and hypoxic targeting of VA. Under in vitro ultrasonic stimulation, BTO catalyzed two reduction reactions (O2 → •O2- and CO2 → CO) and three oxidation reactions (H2O → •OH, GSH → GSSG, and LA → PA) simultaneously, effectively inducing immunogenic death of tumor cells. BTO catalyzed the oxidative coupling of VA cells metabolized LA, effectively disrupting the immunosuppressive microenvironment, improving dendritic cell maturation and macrophage M1 polarization, and increasing effector T cell proportions while decreasing regulatory T cell numbers, which facilitates synergetic catalysis and immunotherapy.


Subject(s)
Colorectal Neoplasms , Immunotherapy , Tumor Microenvironment , Colorectal Neoplasms/therapy , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Immunotherapy/methods , Animals , Mice , Humans , Catalysis , Cell Line, Tumor , Nanostructures/chemistry , Biomimetic Materials/chemistry , Administration, Oral , Titanium/chemistry , Biomimetics/methods , Lactic Acid/chemistry , Dendritic Cells/immunology , Dendritic Cells/metabolism , Barium Compounds
4.
Front Immunol ; 15: 1392316, 2024.
Article in English | MEDLINE | ID: mdl-38711516

ABSTRACT

Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.


Subject(s)
Adaptive Immunity , Bacterial Proteins , Cytokines , Streptococcus pneumoniae , Humans , Streptococcus pneumoniae/immunology , Cytokines/metabolism , Bacterial Proteins/immunology , Lipoproteins/immunology , Lipoproteins/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Pneumococcal Vaccines/immunology , Pneumococcal Infections/immunology , Pneumococcal Infections/prevention & control , Macrophages/immunology , Macrophages/metabolism , Cells, Cultured
5.
J Immunother Cancer ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38754915

ABSTRACT

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Subject(s)
Hematopoietic Stem Cell Transplantation , Killer Cells, Natural , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Killer Cells, Natural/drug effects , Humans , Hematopoietic Stem Cell Transplantation/methods , Animals , Mice , Transplantation, Homologous , Dendritic Cells/immunology , Dendritic Cells/metabolism , Female , Graft vs Host Disease/prevention & control
6.
Front Immunol ; 15: 1368118, 2024.
Article in English | MEDLINE | ID: mdl-38756770

ABSTRACT

Frequencies and phenotypes of immune cells differ between neonates and adults in association with age-specific immune responses. Lymph nodes (LN) are critical tissue sites to quantify and define these differences. Advances in flow cytometry have enabled more multifaceted measurements of complex immune responses. Tissue processing can affect the immune cells under investigation that influence key findings. To understand the impact on immune cells in the LN after processing for single-cell suspension, we compared three dissociation protocols: enzymatic digestion, mechanical dissociation with DNase I treatment, and mechanical dissociation with density gradient separation. We analyzed cell yields, viability, phenotypic and maturation markers of immune cells from the lung-draining LN of neonatal and adult mice two days after intranasal respiratory syncytial virus (RSV) infection. While viability was consistent across age groups, the protocols influenced the yield of subsets defined by important phenotypic and activation markers. Moreover, enzymatic digestion did not show higher overall yields of conventional dendritic cells and macrophages from the LN. Together, our findings show that the three dissociation protocols have similar impacts on the number and viability of cells isolated from the neonatal and adult LN. However, enzymatic digestion impacts the mean fluorescence intensity of key lineage and activation markers that may influence experimental findings.


Subject(s)
Animals, Newborn , Lymph Nodes , Lymphocytes , Myeloid Cells , Phenotype , Respiratory Syncytial Virus Infections , Animals , Lymph Nodes/immunology , Lymph Nodes/cytology , Mice , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus Infections/virology , Lymphocytes/immunology , Lymphocytes/metabolism , Myeloid Cells/immunology , Cell Separation/methods , Flow Cytometry/methods , Immunophenotyping , Female , Mice, Inbred C57BL , Dendritic Cells/immunology , Dendritic Cells/metabolism
8.
Front Immunol ; 15: 1372927, 2024.
Article in English | MEDLINE | ID: mdl-38742105

ABSTRACT

The parasitic helminth Schistosoma mansoni is a potent inducer of type 2 immune responses by stimulating dendritic cells (DCs) to prime T helper 2 (Th2) responses. We previously found that S. mansoni soluble egg antigens (SEA) promote the synthesis of Prostaglandin E2 (PGE2) by DCs through ERK-dependent signaling via Dectin-1 and Dectin-2 that subsequently induces OX40L expression, licensing them for Th2 priming, yet the ligands present in SEA involved in driving this response and whether specific targeting of PGE2 synthesis by DCs could affect Th2 polarization are unknown. We here show that the ability of SEA to bind Dectin-2 and drive ERK phosphorylation, PGE2 synthesis, OX40L expression, and Th2 polarization is impaired upon cleavage of high-mannose glycans by Endoglycosidase H treatment. This identifies high-mannose glycans present on glycoproteins in SEA as important drivers of this signaling axis. Moreover, we find that OX40L expression and Th2 induction are abrogated when microsomal prostaglandin E synthase-1 (mPGES) is selectively inhibited, but not when a general COX-1/2 inhibitor is used. This shows that the de novo synthesis of PGE2 is vital for the Th2 priming function of SEA-stimulated DCs as well as points to the potential existence of other COX-dependent lipid mediators that antagonize PGE2-driven Th2 polarization. Lastly, specific PGE2 inhibition following immunization with S. mansoni eggs dampened the egg-specific Th cell response. In summary, our findings provide new insights in the molecular mechanisms underpinning Th2 induction by S. mansoni and identify druggable targets for potential control of helminth driven-Th2 responses.


Subject(s)
Antigens, Helminth , Dendritic Cells , Dinoprostone , Lectins, C-Type , Mannose , Polysaccharides , Schistosoma mansoni , Th2 Cells , Animals , Schistosoma mansoni/immunology , Dinoprostone/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Mannose/metabolism , Mannose/immunology , Mice , Polysaccharides/immunology , Polysaccharides/metabolism , Antigens, Helminth/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Schistosomiasis mansoni/immunology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , Ovum/immunology , Ovum/metabolism , Mice, Inbred C57BL , OX40 Ligand/metabolism
9.
Commun Biol ; 7(1): 587, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755254

ABSTRACT

DNA methylation is an important epigenetic mechanism involved in the anti-tumor immune response, and DNA methyltransferase inhibitors (DNMTi) have achieved impressive therapeutic outcomes in patients with certain cancer types. However, it is unclear how inhibition of DNA methylation bridges the innate and adaptive immune responses to inhibit tumor growth. Here, we report that DNMTi zebularine reconstructs tumor immunogenicity, in turn promote dendritic cell maturation, antigen-presenting cell activity, tumor cell phagocytosis by APCs, and efficient T cell priming. Further in vivo and in vitro analyses reveal that zebularine stimulates cGAS-STING-NF-κB/IFNß signaling to enhance tumor cell immunogenicity and upregulate antigen processing and presentation machinery (AgPPM), which promotes effective CD4+ and CD8+ T cell-mediated killing of tumor cells. These findings support the use of combination regimens that include DNMTi and immunotherapy for cancer treatment.


Subject(s)
Antigen Presentation , Cytidine , Membrane Proteins , Nucleotidyltransferases , Signal Transduction , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Animals , Membrane Proteins/metabolism , Membrane Proteins/genetics , Cytidine/analogs & derivatives , Cytidine/pharmacology , Antigen Presentation/drug effects , Mice , Signal Transduction/drug effects , Mice, Inbred C57BL , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/drug therapy , Neoplasms/metabolism , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Female
10.
Nat Commun ; 15(1): 4051, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744839

ABSTRACT

Intestinal homeostasis is maintained by the response of gut-associated lymphoid tissue to bacteria transported across the follicle associated epithelium into the subepithelial dome. The initial response to antigens and how bacteria are handled is incompletely understood. By iterative application of spatial transcriptomics and multiplexed single-cell technologies, we identify that the double negative 2 subset of B cells, previously associated with autoimmune diseases, is present in the subepithelial dome in health. We show that in this location double negative 2 B cells interact with dendritic cells co-expressing the lupus autoantigens DNASE1L3 and C1q and microbicides. We observe that in humans, but not in mice, dendritic cells expressing DNASE1L3 are associated with sampled bacteria but not DNA derived from apoptotic cells. We propose that fundamental features of autoimmune diseases are microbiota-associated, interacting components of normal intestinal immunity.


Subject(s)
B-Lymphocytes , Dendritic Cells , Endodeoxyribonucleases , Gastrointestinal Microbiome , Animals , Humans , Mice , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Gastrointestinal Microbiome/immunology , Endodeoxyribonucleases/metabolism , Endodeoxyribonucleases/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Female , Mice, Inbred C57BL , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Male
11.
Immun Inflamm Dis ; 12(5): e1264, 2024 May.
Article in English | MEDLINE | ID: mdl-38780041

ABSTRACT

AIM: Metastasis is the leading cause of mortality in hepatocellular carcinoma (HCC). The metastasis-associated immune signature in HCC is worth exploring. METHODS: Bioinformatic analysis was conducted based on the single-cell transcriptome data derived from HCC patients in different stages. Cellular composition, pseudotime state transition, and cell-cell interaction were further analyzed and verified. RESULTS: Generally, HCC with metastasis exhibited suppressive immune microenvironment, while HCC without metastasis exhibited active immune microenvironment. Concretely, effector regulatory T cells (eTregs) were found to be enriched in HCC with metastasis. PHLDA1 was identified as one of exhaustion-specific genes and verified to be associated with worse prognosis in HCC patients. Moreover, A novel cluster of CCR7+ dendritic cells (DCs) was identified with high expression of maturation and migration marker genes. Pseudotime analysis showed that inhibition of differentiation occurred in CCR7+ DCs rather than cDC1 in HCC with metastasis. Furthermore, interaction analysis showed that the reduction of CCR7+ DCs lead to impaired CCR7/CCL19 interaction in HCC with metastasis. CONCLUSIONS: HCC with metastasis exhibited upregulation of exhaustion-specific genes of eTregs and inhibition of CCL signal of a novel DC cluster, which added new dimensions to the immune landscape and provided new immune therapeutic targets in advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Dendritic Cells , Liver Neoplasms , Single-Cell Analysis , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/mortality , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Neoplasm Metastasis , Transcriptome , Receptors, CCR7/genetics , Receptors, CCR7/metabolism , Gene Expression Regulation, Neoplastic/immunology , Gene Expression Profiling , T-Lymphocytes, Regulatory/immunology , Prognosis , Computational Biology/methods , Chemokine CCL19/genetics , Chemokine CCL19/metabolism
12.
Cells ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38786101

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized, at least in part, by autoimmunity through amplified T helper 1 and 17 (Th1 and Th17) immune responses. The loss of immune tolerance controlled by programmed death-ligand 1 (PD-L1) may contribute to this. OBJECTIVES: We studied the tolerogenic role of PD-L1+ dendritic cells (DCs) and their subtypes in relation to specific T cell immunity and the clinical phenotypes of COPD. METHODS: We used flow cytometry to analyze PD-L1 expression by the DCs and their subtypes in the peripheral blood mononuclear cells (PBMCs) from normal participants and those with COPD. T cell proliferation and the signature cytokines of T cell subtypes stimulated with elastin as autoantigens were measured using flow cytometry and enzyme-linked immunosorbent assays (ELISA), respectively. MEASUREMENT AND MAIN RESULTS: A total of 83 participants were enrolled (normal, n = 29; COPD, n = 54). A reduced PD-L1+ conventional dendritic cell 1 (cDC1) ratio in the PBMCs of the patients with COPD was shown (13.7 ± 13.7%, p = 0.03). The decrease in the PD-L1+ cDC1 ratio was associated with a rapid decline in COPD (p = 0.02) and correlated with the CD4+ T cells (r = -0.33, p = 0.02). This is supported by the NCBI GEO database accession number GSE56766, the researchers of which found that the gene expressions of PD-L1 and CD4, but not CD8 were negatively correlated from PBMC in COPD patients (r = -0.43, p = 0.002). Functionally, the PD-L1 blockade enhanced CD4+ T cell proliferation stimulated by CD3/elastin (31.2 ± 22.3%, p = 0.04) and interleukin (IL)-17A production stimulated by both CD3 (156.3 ± 54.7, p = 0.03) and CD3/elastin (148 ± 64.9, p = 0.03) from the normal PBMCs. The PD-L1 blockade failed to increase IL-17A production in the cDC1-depleted PBMCs. By contrast, there was no significant change in interferon (IFN)-γ, IL-4, or IL-10 after the PD-L1 blockade. Again, these findings were supported by the NCBI GEO database accession number GSE56766, the researchers of which found that only the expression of RORC, a master transcription factor driving the Th17 cells, was significantly negatively correlated to PD-L1 (r = -0.33, p = 0.02). CONCLUSIONS: Circulating PD-L1+ cDC1 was reduced in the patients with COPD, and the tolerogenic role was suppressed with susceptibility to self-antigens and linked to rapid decline caused by Th17-skewed chronic inflammation.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Immune Tolerance , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , B7-H1 Antigen/metabolism , Female , Male , Middle Aged , Aged , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Cytokines/metabolism
13.
J Biochem Mol Toxicol ; 38(6): e23719, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764138

ABSTRACT

Cancer stem cells (CSCs) are associated with the tumor microenvironment (TME). CSCs induce tumorigenesis, tumor recurrence and progression, and resistance to standard therapies. Indeed, CSCs pose an increasing challenge to current cancer therapy due to their stemness or self-renewal properties. The molecular and cellular interactions between heterogeneous CSCs and surrounding TME components and tumor-supporting immune cells show synergistic effects toward treatment failure. In the immunosuppressive TME, CSCs express various immunoregulatory proteins, growth factors, metabolites and cytokines, and also produce exosomes, a type of extracellular vesicles, to protect themselves from host immune surveillance. Among these, the identification and application of CSC-derived exosomes could be considered for the development of therapeutic approaches to eliminate CSCs or cancer, in addition to targeting the modulators that remodel the composition of the TME, as reviewed in this study. Here, we introduce the role of CSCs and how their interaction with TME complicates immunotherapies, and then present the CSC-based immunotherapy and the limitation of these therapies. We describe the biology and role of tumor/CSC-derived exosomes that induce immune suppression in the TME, and finally, introduce their potentials for the development of CSC-based targeted immunotherapy in the future.


Subject(s)
Dendritic Cells , Exosomes , Immune Checkpoint Inhibitors , Immunotherapy , Neoplastic Stem Cells , Tumor Microenvironment , Humans , Exosomes/immunology , Exosomes/metabolism , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Immunotherapy/methods , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Receptors, Chimeric Antigen/immunology , Neoplasms/immunology , Neoplasms/therapy , Cancer Vaccines/immunology , Animals
14.
Sci Rep ; 14(1): 11387, 2024 05 18.
Article in English | MEDLINE | ID: mdl-38762567

ABSTRACT

Identifying and controlling tumor escape mechanisms is crucial for improving cancer treatment effectiveness. Experimental studies reveal tumor hypoxia and adenosine as significant contributors to such mechanisms. Hypoxia exacerbates adenosine levels in the tumor microenvironment. Combining inhibition of these factors with dendritic cell (DC)-based immunotherapy promises improved clinical outcomes. However, challenges include understanding dynamics, optimal vaccine dosages, and timing. Mathematical models, including agent-based, diffusion, and ordinary differential equations, address these challenges. Here, we employ these models for the first time to elucidate how hypoxia and adenosine facilitate tumor escape in DC-based immunotherapy. After parameter estimation using experimental data, we optimize vaccination protocols to minimize tumor growth. Sensitivity analysis highlights adenosine's significant impact on immunotherapy efficacy. Its suppressive role impedes treatment success, but inhibiting adenosine could enhance therapy, as suggested by the model. Our findings shed light on hypoxia and adenosine-mediated tumor escape mechanisms, informing future treatment strategies. Additionally, identifiability analysis confirms accurate parameter determination using experimental data.


Subject(s)
Adenosine , Dendritic Cells , Immunotherapy , Tumor Escape , Adenosine/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Models, Theoretical , Neoplasms/therapy , Neoplasms/immunology , Tumor Hypoxia , Mice , Hypoxia/metabolism
15.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732086

ABSTRACT

The ability of the immune system to combat pathogens relies on processes like antigen sampling by dendritic cells and macrophages migrating through endo- and epithelia or penetrating them with their dendrites. In addition, other immune cell subtypes also migrate through the epithelium after activation. For paracellular migration, interactions with tight junctions (TJs) are necessary, and previous studies reported TJ protein expression in several immune cells. Our investigation aimed to characterize, in more detail, the expression profiles of TJ proteins in different immune cells in both naïve and activated states. The mRNA expression analysis revealed distinct expression patterns for TJ proteins, with notable changes, mainly increases, upon activation. At the protein level, LSR appeared predominant, being constitutively present in naïve cell membranes, suggesting roles as a crucial interaction partner. Binding experiments suggested the presence of claudins in the membrane only after stimulation, and claudin-8 translocation to the membrane occurred after stimulation. Our findings suggest a dynamic TJ protein expression in immune cells, implicating diverse functions in response to stimulation, like interaction with TJ proteins or regulatory roles. While further analysis is needed to elucidate the precise roles of TJ proteins, our findings indicate important non-canonical functions of TJ proteins in immune response.


Subject(s)
Tight Junction Proteins , Tight Junctions , Tight Junction Proteins/metabolism , Tight Junction Proteins/genetics , Humans , Tight Junctions/metabolism , Dendritic Cells/metabolism , Dendritic Cells/immunology , Animals , Macrophages/metabolism , Macrophages/immunology , Claudins/metabolism , Claudins/genetics , Cell Membrane/metabolism
16.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732169

ABSTRACT

Infections may affect the course of autoimmune inflammatory diseases of the central nervous system (CNS), such as multiple sclerosis (MS). Infections with lactate dehydrogenase-elevating virus (LDV) protected mice from developing experimental autoimmune encephalomyelitis (EAE), a mouse counterpart of MS. Uninfected C57BL/6 mice immunized with the myelin oligodendrocyte glycoprotein peptide (MOG35-55) experienced paralysis and lost weight at a greater rate than mice who had previously been infected with LDV. LDV infection decreased the presentation of the MOG peptide by CD11b+CD11c+ dendritic cells (DC) to pathogenic T lymphocytes. When comparing non-infected mice to infected mice, the histopathological examination of the CNS showed more areas of demyelination and CD45+ and CD3+, but not Iba1+ cell infiltration. These results suggest that the protective effect of LDV infection against EAE development is mediated by a suppression of myelin antigen presentation by a specific DC subset to autoreactive T lymphocytes. Such a mechanism might contribute to the general suppressive effect of infections on autoimmune diseases known as the hygiene hypothesis.


Subject(s)
Dendritic Cells , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Lactate dehydrogenase-elevating virus , Mice, Inbred C57BL , Multiple Sclerosis , Myelin-Oligodendrocyte Glycoprotein , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Myelin-Oligodendrocyte Glycoprotein/immunology , Mice , Multiple Sclerosis/immunology , Multiple Sclerosis/virology , Multiple Sclerosis/pathology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/virology , Lactate dehydrogenase-elevating virus/immunology , CD11b Antigen/metabolism , CD11b Antigen/immunology , Antigen Presentation/immunology , Female , CD11c Antigen/metabolism , Cardiovirus Infections/immunology , Peptide Fragments/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
17.
ACS Nano ; 18(19): 12295-12310, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695532

ABSTRACT

Immune checkpoint blockade (ICB) has brought tremendous clinical progress, but its therapeutic outcome can be limited due to insufficient activation of dendritic cells (DCs) and insufficient infiltration of cytotoxic T lymphocytes (CTLs). Evoking immunogenic cell death (ICD) is one promising strategy to promote DC maturation and elicit T-cell immunity, whereas low levels of ICD induction of solid tumors restrict durable antitumor efficacy. Herein, we report a genetically edited cell membrane-coated cascade nanozyme (gCM@MnAu) for enhanced cancer immunotherapy by inducing ICD and activating the stimulator of the interferon genes (STING) pathway. In the tumor microenvironment (TME), the gCM@MnAu initiates a cascade reaction and generates abundant cytotoxic hydroxyl (•OH), resulting in improved chemodynamic therapy (CDT) and boosted ICD activation. In addition, released Mn2+ during the cascade reaction activates the STING pathway and further promotes the DC maturation. More importantly, activated immunogenicity in the TME significantly improves gCM-mediated PD-1/PD-L1 checkpoint blockade therapy by eliciting systemic antitumor responses. In breast cancer subcutaneous and lung metastasis models, the gCM@MnAu showed synergistically enhanced therapeutic effects and significantly prolonged the survival of mice. This work develops a genetically edited nanozyme-based therapeutic strategy to improve DC-mediated cross-priming of T cells against poorly immunogenic solid tumors.


Subject(s)
Immunotherapy , Animals , Mice , Female , Humans , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mice, Inbred BALB C , Cell Line, Tumor , Immunogenic Cell Death/drug effects , Membrane Proteins/genetics , Membrane Proteins/immunology , Nanoparticles/chemistry
18.
Front Immunol ; 15: 1374425, 2024.
Article in English | MEDLINE | ID: mdl-38745644

ABSTRACT

Various gut bacteria, including Lactobacillus plantarum, possess several enzymes that produce hydroxy fatty acids (FAs), oxo FAs, conjugated FAs, and partially saturated FAs from polyunsaturated FAs as secondary metabolites. Among these derivatives, we identified 10-oxo-cis-6,trans-11-octadecadienoic acid (γKetoC), a γ-linolenic acid (GLA)-derived enon FA, as the most effective immunomodulator, which inhibited the antigen-induced immunoactivation and LPS-induced production of inflammatory cytokines. The treatment with γKetoC significantly suppressed proliferation of CD4+ T cells, LPS-induced activation of bone marrow-derived dendritic cells (BMDCs), and LPS-induced IL-6 release from peritoneal cells, splenocytes, and CD11c+ cells isolated from the spleen. γKetoC also inhibited the release of inflammatory cytokines from BMDCs stimulated with poly-I:C, R-848, or CpG. Further in vitro experiments using an agonist of GPR40/120 suggested the involvement of these GPCRs in the effects of γKetoC on DCs. We also found that γKetoC stimulated the NRF2 pathway in DCs, and the suppressive effects of γKetoC and agonist of GPR40/120 on the release of IL-6 and IL-12 were reduced in Nrf2-/- BMDCs. We evaluated the role of NRF2 in the anti-inflammatory effects of γKetoC in a dextran sodium sulfate-induced colitis model. The oral administration of γKetoC significantly reduced body weight loss, improved stool scores, and attenuated atrophy of the colon, in wild-type C57BL/6 and Nrf2+/- mice with colitis. In contrast, the pathology of colitis was deteriorated in Nrf2-/- mice even with the administration of γKetoC. Collectively, the present results demonstrated the involvement of the NRF2 pathway and GPCRs in γKetoC-mediated anti-inflammatory responses.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice, Inbred C57BL , NF-E2-Related Factor 2 , Receptors, G-Protein-Coupled , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Mice , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/drug effects , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/metabolism , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/immunology , Mice, Knockout , Cytokines/metabolism , Disease Models, Animal , Dextran Sulfate , Oleic Acids/pharmacology , Lactobacillus plantarum , Colitis/metabolism , Colitis/chemically induced , Colitis/drug therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Male
19.
Front Immunol ; 15: 1353922, 2024.
Article in English | MEDLINE | ID: mdl-38745645

ABSTRACT

Introduction: During an innate inflammation, immune cells form distinct pro- and anti-inflammatory regions around pathogen-containing core-regions. Mast cells are localized in an anti-inflammatory microenvironment during the resolution of an innate inflammation, suggesting antiinflammatory roles of these cells. Methods: High-content imaging was used to investigated mast cell-dependent changes in the regional distribution of immune cells during an inflammation, induced by the toll-like receptor (TLR)-2 agonist zymosan. Results: The distance between the zymosan-containing core-region and the anti-inflammatory region, described by M2-like macrophages, increased in mast cell-deficient mice. Absence of mast cells abolished dendritic cell (DC) activation, as determined by CD86-expression and localized the DCs in greater distance to zymosan particles. The CD86- DCs had a higher expression of the pro-inflammatory interleukins (IL)-1ß and IL-12/23p40 as compared to activated CD86+ DCs. IL-4 administration restored CD86 expression, cytokine expression profile and localization of the DCs in mast cell-deficient mice. The IL-4 effects were mast cell-specific, since IL-4 reduction by eosinophil depletion did not affect activation of DCs. Discussion: We found that mast cells induce DC activation selectively at the site of inflammation and thereby determine their localization within the inflammation. Overall, mast cells have antiinflammatory functions in this inflammation model and limit the size of the pro-inflammatory region surrounding the zymosan-containing core region.


Subject(s)
Dendritic Cells , Inflammation , Interleukin-4 , Mast Cells , Mice, Inbred C57BL , Toll-Like Receptor 2 , Zymosan , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Mast Cells/immunology , Mast Cells/metabolism , Mice , Inflammation/immunology , Inflammation/metabolism , Interleukin-4/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 2/genetics , Mice, Knockout
20.
Front Cell Infect Microbiol ; 14: 1334211, 2024.
Article in English | MEDLINE | ID: mdl-38817444

ABSTRACT

Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-ß genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.


Subject(s)
Autophagy , Dendritic Cells , Echinococcosis , Echinococcus granulosus , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Echinococcus granulosus/immunology , Autophagy/immunology , Echinococcosis/immunology , Echinococcosis/parasitology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Mice , Lectins, C-Type/metabolism , Cytokines/metabolism , Female , Autophagosomes/immunology , Autophagosomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...