Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.371
Filter
1.
Trop Biomed ; 41(1): 118-124, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38852141

ABSTRACT

Dengue is a mosquito-transmitted infection endemic in tropical and subtropical locations of the world where nearly half of the world's population resides. The disease may present as mild febrile illness to severe and can even be fatal if untreated. There are four genetically related but antigenically distinct dengue virus (DENV) serotypes. Immune responses to DENV infection are in general protective but under certain conditions, they can also aggravate the disease. The importance of the cellular immune responses and the antibody responses involving IgG and IgM has been well-studied. In contrast, not much has been described on the potential role of hypersensitivity reactions involving IgE in dengue. Several studies have shown elevated levels of IgE in patients with dengue fever, but its involvement in the immune response against the virus and disease is unknown. Activation of mast cells (MCs) and basophils mediated through dengue-specific IgE could result in the release of mediators affecting dengue virus infection. The present review explores the relationships between the induction of IgE in dengue virus infection, and the potential role of MCs and basophils, exploring both protective and pathogenic aspects, including antibody-dependent enhancement (ADE) of infection in dengue.


Subject(s)
Dengue Virus , Dengue , Immunoglobulin E , Dengue/immunology , Humans , Immunoglobulin E/immunology , Dengue Virus/immunology , Mast Cells/immunology , Animals , Antibody-Dependent Enhancement , Basophils/immunology , Antibodies, Viral
2.
J Med Virol ; 96(6): e29729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38860590

ABSTRACT

Dengue, the most prevalent mosquito-borne disease worldwide, poses a significant health burden. This study integrates clinical data and transcriptomic datasets from different phases of dengue to investigate distinctive and shared cellular and molecular features. Clinical data from 29 dengue patients were collected and analyzed alongside a public transcriptomic data set (GSE28405) to perform differential gene expression analysis, functional enrichment, immune landscape assessment, and development of machine learning model. Neutropenia was observed in 54.79% of dengue patients, particularly during the defervescence phase (65.79%) in clinical cohorts. Bioinformatics analyses corroborated a significant reduction in neutrophil immune infiltration in dengue patients. Receiver operating characteristic curve analysis demonstrated that dynamic changes in neutrophil infiltration levels could predict disease progression, especially during the defervescence phase, with the area under the curve of 0.96. Three neutrophil-associated biomarkers-DHRS12, Transforming growth factor alpha, and ZDHHC19-were identified as promising for diagnosing and predicting dengue progression. In addition, the activation of neutrophil extracellular traps was significantly enhanced and linked to FcγR-mediated signaling pathways and Toll-like receptor signaling pathways. Neutrophil activation and depletion play a critical role in dengue's immune response. The identified biomarkers and their associated pathways offer potential for improved diagnosis and understanding of dengue pathogenesis and progression.


Subject(s)
Biomarkers , Dengue , Disease Progression , Neutrophils , Humans , Neutrophils/immunology , Dengue/immunology , Biomarkers/blood , Female , Male , Adult , Extracellular Traps/immunology , Gene Expression Profiling , Computational Biology , Transcriptome , Neutrophil Infiltration , Neutrophil Activation , Neutropenia/immunology , Middle Aged , Young Adult , ROC Curve , Machine Learning
3.
Life Sci Alliance ; 7(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-38830771

ABSTRACT

Dengue fever, a neglected tropical arboviral disease, has emerged as a global health concern in the past decade. Necessitating a nuanced comprehension of the intricate dynamics of host-virus interactions influencing disease severity, we analysed transcriptomic patterns using bulk RNA-seq from 112 age- and gender-matched NS1 antigen-confirmed hospital-admitted dengue patients with varying severity. Severe cases exhibited reduced platelet count, increased lymphocytosis, and neutropenia, indicating a dysregulated immune response. Using bulk RNA-seq, our analysis revealed a minimal overlap between the differentially expressed gene and transcript isoform, with a distinct expression pattern across the disease severity. Severe patients showed enrichment in retained intron and nonsense-mediated decay transcript biotypes, suggesting altered splicing efficiency. Furthermore, an up-regulated programmed cell death, a haemolytic response, and an impaired interferon and antiviral response at the transcript level were observed. We also identified the potential involvement of the RBM39 gene among others in the innate immune response during dengue viral pathogenesis, warranting further investigation. These findings provide valuable insights into potential therapeutic targets, underscoring the importance of exploring transcriptomic landscapes between different disease sub-phenotypes in infectious diseases.


Subject(s)
Alternative Splicing , Dengue Virus , Severe Dengue , Humans , Alternative Splicing/genetics , Female , Male , Dengue Virus/genetics , Adult , Severe Dengue/genetics , Severe Dengue/immunology , Severe Dengue/virology , Middle Aged , Transcriptome/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Gene Expression Profiling/methods , Immunity, Innate/genetics , Dengue/genetics , Dengue/immunology , Dengue/virology , Young Adult , Severity of Illness Index , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology
4.
Front Immunol ; 15: 1260439, 2024.
Article in English | MEDLINE | ID: mdl-38863700

ABSTRACT

Dengue virus (DENV), transmitted by infected mosquitoes, is a major public health concern, with approximately half the world's population at risk for infection. Recent decades have increasing incidence of dengue-associated disease alongside growing frequency of outbreaks. Although promising progress has been made in anti-DENV immunizations, post-infection treatment remains limited to non-specific supportive treatments. Development of antiviral therapeutics is thus required to limit DENV dissemination in humans and to help control the severity of outbreaks. Dendritic cells (DCs) are amongst the first cells to encounter DENV upon injection into the human skin mucosa, and thereafter promote systemic viral dissemination to additional human target cells. Autophagy is a vesicle trafficking pathway involving the formation of cytosolic autophagosomes, and recent reports have highlighted the extensive manipulation of autophagy by flaviviruses, including DENV, for viral replication. However, the temporal profiling and function of autophagy activity in DENV infection and transmission by human primary DCs remains poorly understood. Herein, we demonstrate that mechanisms of autophagosome formation and extracellular vesicle (EV) release have a pro-viral role in DC-mediated DENV transmission. We show that DENV exploits early-stage canonical autophagy to establish infection in primary human DCs. DENV replication enhanced autophagosome formation in primary human DCs, and intrinsically-heightened autophagosome biogenesis correlated with relatively higher rates of DC susceptibility to DENV. Furthermore, our data suggest that viral replication intermediates co-localize with autophagosomes, while productive DENV infection introduces a block at the late degradative stages of autophagy in infected DCs but not in uninfected bystander cells. Notably, we identify for the first time that approximately one-fourth of DC-derived CD9/CD81/CD63+ EVs co-express canonical autophagy marker LC3, and demonstrate that DC-derived EV populations are an alternative, cell-free mechanism by which DCs promote DENV transmission to additional target sites. Taken together, our study highlights intersections between autophagy and secretory pathways during viral infection, and puts forward autophagosome accumulation and viral RNA-laden EVs as host determinants of DC-mediated DENV infection in humans. Host-directed therapeutics targeting autophagy and exocytosis pathways thus have potential to enhance DC-driven resistance to DENV acquisition and thereby limit viral dissemination by initial human target cells following mosquito-to-human transmission of DENV.


Subject(s)
Autophagosomes , Autophagy , Dendritic Cells , Dengue Virus , Dengue , Secretory Pathway , Virus Replication , Humans , Dengue Virus/physiology , Dendritic Cells/immunology , Dendritic Cells/virology , Dendritic Cells/metabolism , Dengue/transmission , Dengue/virology , Dengue/immunology , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Cells, Cultured
5.
Virus Res ; 345: 199382, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697295

ABSTRACT

Natural killer cells (NK cells) are the front line of immune cells to combat pathogens and able to influence the subsequent adaptive immune responses. One of the factors contributing to pathogenesis in dengue hemorrhagic fever (DHF) disease is aberrant immune activation during early phase of infection. This study explored the profile of NK cells in dengue infected pediatric patients with different degrees of disease severity. DHF patients contained higher frequency of activated NK cells but lower ratio of CD56dim:CD56bright NK subsets. Activated NK cells exhibited alterations in several NK receptors. Interestingly, the frequencies of NKp30 expressing activated NK cells were more pronounced in dengue fever (DF) than in DHF pediatric patients. In vitro functional analysis indicated that degranulation of NK cells in responding to dengue infected dendritic cells (DCs) required cell-cell contact and type I IFNs. Meanwhile, Interferon gamma (IFN-γ) production initially required cell-cell contact and type I IFNs followed by Interleukin-12 (IL-12), Interleukin-15 (IL-15) and Interleukin-18 (IL-18) resulting in the amplification of IFN-γ producing NK cells over time. This study highlighted the complexity and the factors influencing NK cells responses to dengue virus. Degree of activation, phenotypes of activated cells and the crosstalk between NK cells and other immune cells, could modulate the outcome of NK cells function in the dengue disease.


Subject(s)
Dendritic Cells , Dengue Virus , Interferon-gamma , Interleukin-12 , Killer Cells, Natural , Phenotype , Killer Cells, Natural/immunology , Humans , Child , Interleukin-12/immunology , Male , Female , Dendritic Cells/immunology , Dengue Virus/immunology , Interferon-gamma/immunology , Interleukin-15/immunology , Lymphocyte Activation , Interleukin-18/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Child, Preschool , Dengue/immunology , Dengue/virology , Severe Dengue/immunology , Severe Dengue/virology , Adolescent , CD56 Antigen/immunology , Interferon Type I/immunology
6.
Viruses ; 16(5)2024 05 04.
Article in English | MEDLINE | ID: mdl-38793609

ABSTRACT

Dengue virus (DENV) is a continuing global threat that puts half of the world's population at risk for infection. This mosquito-transmitted virus is endemic in over 100 countries. When a mosquito takes a bloodmeal, virus is deposited into the epidermal and dermal layers of human skin, infecting a variety of permissive cells, including keratinocytes, Langerhans cells, macrophages, dermal dendritic cells, fibroblasts, and mast cells. In response to infection, the skin deploys an array of defense mechanisms to inhibit viral replication and prevent dissemination. Antimicrobial peptides, pattern recognition receptors, and cytokines induce a signaling cascade to increase transcription and translation of pro-inflammatory and antiviral genes. Paradoxically, this inflammatory environment recruits skin-resident mononuclear cells that become infected and migrate out of the skin, spreading virus throughout the host. The details of the viral-host interactions in the cutaneous microenvironment remain unclear, partly due to the limited body of research focusing on DENV in human skin. This review will summarize the functional role of human skin, the cutaneous innate immune response to DENV, the contribution of the arthropod vector, and the models used to study DENV interactions in the cutaneous environment.


Subject(s)
Dengue Virus , Dengue , Immunity, Innate , Skin , Animals , Humans , Cytokines/immunology , Cytokines/metabolism , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Dengue Virus/physiology , Host-Pathogen Interactions/immunology , Skin/virology , Skin/immunology , Virus Replication , Arthropods/virology
7.
Viruses ; 16(5)2024 05 05.
Article in English | MEDLINE | ID: mdl-38793612

ABSTRACT

As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dengue Vaccines , Dengue Virus , Dengue , Epitopes, T-Lymphocyte , Epitopes, T-Lymphocyte/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/classification , Humans , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , India , CD4-Positive T-Lymphocytes/immunology , Brazil , Thailand , Mexico , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
8.
Viruses ; 16(5)2024 05 19.
Article in English | MEDLINE | ID: mdl-38793688

ABSTRACT

Arboviral diseases are serious threats to global health with increasing prevalence and potentially severe complications. Significant arthropod-borne viruses are the dengue viruses (DENV 1-4), the Zika virus (ZIKV), and the chikungunya virus (CHIKV). Among the areas most affected is the South Pacific Region (SPR). Here, arboviruses not only cause a high local burden of disease, but the region has also proven to contribute to their global spread. Outpatient serum samples collected between 08/2016 and 04/2017 on three islands of the island states of Vanuatu and the Cook Islands were tested for anti-DENV- and anti-ZIKV-specific antibodies (IgG) using enzyme-linked immunosorbent assays (ELISA). ELISA test results showed 89% of all test sera from the Cook Islands and 85% of the Vanuatu samples to be positive for anti-DENV-specific antibodies. Anti-ZIKV antibodies were identified in 66% and 52%, respectively, of the test populations. Statistically significant differences in standardized immunity levels were found only at the intranational level. Our results show that in both the Cook Islands and Vanuatu, residents were exposed to significant Flavivirus transmission. Compared to other seroprevalence studies, the marked difference between ZIKV immunity levels and previously published CHIKV seroprevalence rates in our study populations is surprising. We propose the timing of ZIKV and CHIKV emergence in relation to recurrent DENV outbreaks and the impact of seasonality as explanatory external factors for this observation. Our data add to the knowledge of arboviral epidemics in the SPR and contribute to a better understanding of virus spread, including external conditions with potential influence on outbreak dynamics. These data may support preventive and rapid response measures in the affected areas, travel-related risk assessment, and infection identification in locals and returning travelers.


Subject(s)
Antibodies, Viral , Dengue Virus , Dengue , Zika Virus Infection , Zika Virus , Humans , Zika Virus Infection/epidemiology , Zika Virus Infection/blood , Zika Virus Infection/immunology , Zika Virus Infection/virology , Seroepidemiologic Studies , Dengue Virus/immunology , Zika Virus/immunology , Vanuatu/epidemiology , Dengue/epidemiology , Dengue/immunology , Dengue/blood , Dengue/virology , Polynesia/epidemiology , Antibodies, Viral/blood , Adult , Female , Adolescent , Young Adult , Male , Middle Aged , Aged , Child , Enzyme-Linked Immunosorbent Assay , Child, Preschool , Immunoglobulin G/blood , Infant
9.
Narra J ; 4(1): e309, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38798833

ABSTRACT

Recent studies have demonstrated that cytokine dysregulation has a critical role in the pathogenesis of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The aim of this study was to investigate the association between tumor necrosis factor (TNF- α), interleukin 6 (IL-6), interleukin 10 (IL-10), and interleukin 17 (IL-17) with infection status, and severity of dengue. A prospective cross-sectional study was conducted at three hospitals in Gianyar regency and Denpasar municipality, Bali, Indonesia, from June to December 2022. Sixty-four dengue infected patients were involved. Patients' serum was tested for dengue infection using NS1 antigen rapid test, dengue virus immunoglobulin M (IgM) and immunoglobulin G (IgG) test, and reverse transcription polymerase chain reaction (RT-PCR). Cytokine levels (TNF-α, IL-6, IL-10, and IL-17) were measured using enzyme-linked immunosorbent assay (ELISA). Infection status was determined by combining serological and RT-PCR results, categorizing patients into primary and secondary infections. The present study found that DF patients had lower TNF-α, IL-6, and IL-17 but higher IL-10 levels compared to DHF patients (p<0.001). Elevated TNF-α, IL-6, and IL-17 levels were higher in secondary infection, while IL-10 level was higher in primary infection (p<0.001). In conclusion, cytokines play a crucial role in the interplay between cytokine dysregulation and dengue infection dynamics.


Subject(s)
Cytokines , Dengue , Severe Dengue , Humans , Indonesia/epidemiology , Severe Dengue/blood , Severe Dengue/immunology , Severe Dengue/epidemiology , Male , Female , Cytokines/blood , Cross-Sectional Studies , Prospective Studies , Adult , Dengue/blood , Dengue/immunology , Dengue/epidemiology , Middle Aged , Interleukin-6/blood , Enzyme-Linked Immunosorbent Assay , Adolescent , Interleukin-10/blood , Tumor Necrosis Factor-alpha/blood , Young Adult
10.
Front Immunol ; 15: 1368066, 2024.
Article in English | MEDLINE | ID: mdl-38751433

ABSTRACT

Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.


Subject(s)
Aedes , Dengue , Insect Proteins , Mosquito Vectors , Salivary Proteins and Peptides , Humans , Aedes/immunology , Aedes/virology , Animals , Salivary Proteins and Peptides/immunology , Child , Mosquito Vectors/immunology , Mosquito Vectors/virology , Dengue/immunology , Dengue/transmission , Insect Proteins/immunology , Female , Child, Preschool , Immunoglobulin G/immunology , Immunoglobulin G/blood , Male , Cambodia , Longitudinal Studies , Dengue Virus/immunology , Adolescent , Insect Bites and Stings/immunology
11.
mBio ; 15(6): e0006324, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38752787

ABSTRACT

The pathogenesis of dengue involves a complex interplay between the viral factor and the host immune response. A mismatch between the infecting serotype and the adaptive memory response is hypothesized to lead to exacerbated immune responses resulting in severe dengue. Here, we aim to define in detail the phenotype and function of different regulatory T cell (Treg) subsets and their association with disease severity in a cohort of acute dengue virus (DENV)-infected Cambodian children. Treg frequencies and proliferation of Tregs are increased in dengue patients compared to age-matched controls. Tregs from dengue patients are skewed to a Th1-type Treg phenotype. Interestingly, Tregs from severe dengue patients produce more interleukin-10 after in vitro stimulation compared to Tregs from classical dengue fever patients. Functionally, Tregs from dengue patients have reduced suppressive capacity, irrespective of disease severity. Taken together, these data suggest that even though Treg frequencies are increased in the blood of acute DENV-infected patients, Tregs fail to resolve inflammation and thereby could contribute to the immunopathology of dengue. IMPORTANCE: According to the World Health Organization, dengue is the fastest-spreading, epidemic-prone infectious disease. The extent of dengue virus infections increased over the years, mainly driven by globalization-including travel and trade-and environmental changes. Dengue is an immunopathology caused by an imbalanced immune response to a secondary heterotypic infection. As regulatory T cells (Tregs) are essential in maintaining immune homeostasis and dampening excessive immune activation, this study addressed the role of Tregs in dengue immunopathology. We show that Tregs from dengue patients are highly activated, skewed to a Th1-like Treg phenotype and less suppressive compared to healthy donor Tregs. Our data suggest that Tregs fail to resolve ongoing inflammation during dengue infection and hence contribute to the immunopathology of severe dengue disease. These data clarify the role of Tregs in dengue immunopathogenesis, emphasizing the need to develop T cell-based vaccines for dengue.


Subject(s)
Dengue Virus , Dengue , Phenotype , T-Lymphocytes, Regulatory , Th1 Cells , Humans , T-Lymphocytes, Regulatory/immunology , Dengue/immunology , Child , Male , Dengue Virus/immunology , Th1 Cells/immunology , Female , Interleukin-10/immunology , Interleukin-10/genetics , Child, Preschool , Adolescent , Cambodia , Lymphocyte Activation
12.
Front Immunol ; 15: 1385473, 2024.
Article in English | MEDLINE | ID: mdl-38720890

ABSTRACT

Interferons (IFNs) are a family of cytokines that activate the JAK-STAT signaling pathway to induce an antiviral state in cells. Interleukin 27 (IL-27) is a member of the IL-6 and/or IL-12 family that elicits both pro- and anti-inflammatory responses. Recent studies have reported that IL-27 also induces a robust antiviral response against diverse viruses, both in vitro and in vivo, suggesting that IFNs and IL-27 share many similarities at the functional level. However, it is still unknown how similar or different IFN- and IL-27-dependent signaling pathways are. To address this question, we conducted a comparative analysis of the transcriptomic profiles of human monocyte-derived macrophages (MDMs) exposed to IL-27 and those exposed to recombinant human IFN-α, IFN-γ, and IFN-λ. We utilized bioinformatics approaches to identify common differentially expressed genes between the different transcriptomes. To verify the accuracy of this approach, we used RT-qPCR, ELISA, flow cytometry, and microarrays data. We found that IFNs and IL-27 induce transcriptional changes in several genes, including those involved in JAK-STAT signaling, and induce shared pro-inflammatory and antiviral pathways in MDMs, leading to the common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs)Importantly, the ability of IL-27 to induce those responses is independent of IFN induction and cellular lineage. Additionally, functional analysis demonstrated that like IFNs, IL-27-mediated response reduced chikungunya and dengue viruses replication in MDMs. In summary, IL-27 exhibits properties similar to those of all three types of human IFN, including the ability to stimulate a protective antiviral response. Given this similarity, we propose that IL-27 could be classified as a distinct type of IFN, possibly categorized as IFN-pi (IFN-π), the type V IFN (IFN-V).


Subject(s)
Chikungunya Fever , Dengue , Interleukin-27 , Janus Kinases , Macrophages , Signal Transduction , Humans , Cells, Cultured , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/physiology , Dengue Virus/immunology , Interferons/metabolism , Interleukin-27/metabolism , Interleukins/immunology , Interleukins/pharmacology , Janus Kinases/metabolism , Macrophages/immunology , Macrophages/virology , Signal Transduction/genetics , STAT Transcription Factors/metabolism , Transcriptome , Virus Replication
13.
Sci Transl Med ; 16(749): eadn2199, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809964

ABSTRACT

Infection with any of the four dengue virus serotypes (DENV1-4) can protect against or enhance subsequent dengue depending on preexisting antibodies and infecting serotype. Additionally, primary infection with the related flavivirus Zika virus (ZIKV) is associated with increased risk of DENV2 disease. Here, we measured how prior DENV and ZIKV immunity influenced risk of disease caused by DENV1-4 in a pediatric Nicaraguan cohort. Of 3412 participants in 2022, 10.6% experienced dengue cases caused by DENV1 (n = 139), DENV4 (n = 133), DENV3 (n = 54), DENV2 (n = 9), or an undetermined serotype (n = 39). Longitudinal clinical and serological data were used to define infection histories, and generalized linear and additive models adjusted for age, sex, time since last infection, and year, and repeat measurements were used to predict disease risk. Compared with flavivirus-naïve participants, primary ZIKV infection was associated with increased risk of disease caused by DENV4 (relative risk = 2.62, 95% confidence interval: 1.48 to 4.63) and DENV3 (2.90, 1.34 to 6.27), but not DENV1 infection. Primary DENV infection or DENV followed by ZIKV infection was also associated with increased risk of DENV4 disease. We reanalyzed 19 years of cohort data and demonstrated that prior flavivirus immunity and antibody titer had distinct associations with disease risk depending on incoming serotype. We thus find that prior ZIKV infection, like prior DENV infection, is associated with increased risk of disease with certain DENV serotypes. Cross-reactivity among flaviviruses should be considered when assessing vaccine safety and efficacy.


Subject(s)
Dengue Virus , Dengue , Serogroup , Zika Virus Infection , Zika Virus , Humans , Zika Virus/immunology , Dengue/immunology , Dengue/virology , Dengue Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/virology , Child , Female , Male , Nicaragua/epidemiology , Child, Preschool , Risk Factors , Adolescent , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cohort Studies
14.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38722305

ABSTRACT

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue/prevention & control , Dengue/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Clinical Laboratory Techniques/methods , Antibodies, Viral/blood , RNA, Viral/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
15.
Sci Transl Med ; 16(744): eadk3259, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657027

ABSTRACT

Many pathogens continuously change their protein structure in response to immune-driven selection, resulting in weakened protection even in previously exposed individuals. In addition, for some pathogens, such as dengue virus, poorly targeted immunity is associated with increased risk of severe disease through a mechanism known as antibody-dependent enhancement. However, it remains unclear whether the antigenic distances between an individual's first infection and subsequent exposures dictate disease risk, explaining the observed large-scale differences in dengue hospitalizations across years. Here, we develop a framework that combines detailed antigenic and genetic characterization of viruses with details on hospitalized cases from 21 years of dengue surveillance in Bangkok, Thailand, to identify the role of the antigenic profile of circulating viruses in determining disease risk. We found that the risk of hospitalization depended on both the specific order of infecting serotypes and the antigenic distance between an individual's primary and secondary infections, with risk maximized at intermediate antigenic distances. These findings suggest that immune imprinting helps determine dengue disease risk and provide a pathway to monitor the changing risk profile of populations and to quantifying risk profiles of candidate vaccines.


Subject(s)
Antigens, Viral , Dengue Virus , Dengue , Humans , Dengue/immunology , Dengue/epidemiology , Dengue/virology , Dengue Virus/immunology , Antigens, Viral/immunology , Thailand/epidemiology , Risk Factors , Hospitalization
16.
PLoS Pathog ; 20(4): e1012167, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662771

ABSTRACT

Dengue virus (DENV) is a medically important flavivirus causing an estimated 50-100 million dengue cases annually, some of whom progress to severe disease. DENV non-structural protein 1 (NS1) is secreted from infected cells and has been implicated as a major driver of dengue pathogenesis by inducing endothelial barrier dysfunction. However, less is known about how DENV NS1 interacts with immune cells and what role these interactions play. Here we report that DENV NS1 can trigger activation of inflammasomes, a family of cytosolic innate immune sensors that respond to infectious and noxious stimuli, in mouse and human macrophages. DENV NS1 induces the release of IL-1ß in a caspase-1 dependent manner. Additionally, we find that DENV NS1-induced inflammasome activation is independent of the NLRP3, Pyrin, and AIM2 inflammasome pathways, but requires CD14. Intriguingly, DENV NS1-induced inflammasome activation does not induce pyroptosis and rapid cell death; instead, macrophages maintain cellular viability while releasing IL-1ß. Lastly, we show that caspase-1/11-deficient, but not NLRP3-deficient, mice are more susceptible to lethal DENV infection. Together, these results indicate that the inflammasome pathway acts as a sensor of DENV NS1 and plays a protective role during infection.


Subject(s)
Dengue Virus , Dengue , Inflammasomes , Macrophages , Viral Nonstructural Proteins , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/immunology , Animals , Inflammasomes/metabolism , Inflammasomes/immunology , Dengue/immunology , Dengue/virology , Dengue/metabolism , Mice , Dengue Virus/immunology , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/virology , Interleukin-1beta/metabolism , Interleukin-1beta/immunology , Mice, Inbred C57BL , Mice, Knockout , Caspase 1/metabolism
17.
Nat Microbiol ; 9(5): 1356-1367, 2024 May.
Article in English | MEDLINE | ID: mdl-38561497

ABSTRACT

Dengue human infection models present an opportunity to explore the potential of a vaccine, anti-viral or immuno-compound for clinical benefit in a controlled setting. Here we report the outcome of a phase 1 open-label assessment of a low-dose dengue virus 3 (DENV-3) challenge model (NCT04298138), in which nine participants received a subcutaneous inoculation with 0.5 ml of a 1.4 × 103 plaque-forming unit per ml suspension of the attenuated DENV-3 strain CH53489. The primary and secondary endpoints of the study were to assess the safety of this DENV-3 strain in healthy flavivirus-seronegative individuals. All participants developed RNAaemia within 7 days after inoculation with peak titre ranging from 3.13 × 104 to 7.02 × 108 genome equivalents per ml. Solicited symptoms such as fever and rash, clinical laboratory abnormalities such as lymphopenia and thrombocytopenia, and self-reported symptoms such as myalgia were consistent with mild-to-moderate dengue in all volunteers. DENV-3-specific seroconversion and memory T cell responses were observed within 14 days after inoculation as assessed by enzyme-linked immunosorbent assay and interferon-gamma-based enzyme-linked immunospot. RNA sequencing and serum cytokine analysis revealed anti-viral responses that overlapped with the period of viraemia. The magnitude and frequency of clinical and immunologic endpoints correlated with an individual's peak viral titre.


Subject(s)
Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Viremia , Humans , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Adult , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Vaccines/adverse effects , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Young Adult , Cytokines/blood , Cytokines/metabolism , RNA, Viral/blood , Seroconversion , Memory T Cells/immunology , Middle Aged
18.
Am J Trop Med Hyg ; 110(5): 856-867, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38579704

ABSTRACT

Dengue fever (DF) is an endemic infectious tropical disease and is rapidly becoming a global problem. Dengue fever is caused by one of the four dengue virus (DENV) serotypes and is spread by the female Aedes mosquito. Clinical manifestations of DF may range from asymptomatic to life-threatening severe illness with conditions of hemorrhagic fever and shock. Early and precise diagnosis is vital to avoid mortality from DF. A different approach is required to combat DF because of the challenges with the vaccines currently available, which are nonspecific; each is capable of causing cross-reaction and disease-enhancing antibody responses against the residual serotypes. MicroRNAs (miRNAs) are known to be implicated in DENV infection and are postulated to be involved in most of the host responses. Thus, they might be a suitable target for new strategies against the disease. The involvement of miRNAs in cellular activities and pathways during viral infections has been explored under numerous conditions. Interestingly, miRNAs have also been shown to be involved in viral replication. In this review, we summarize the role of known miRNAs, specifically the role of miRNA Let-7c (miR-Let-7c), miR-133a, miR-30e, and miR-146a, in the regulation of DENV replication and their possible effects on the initial immune reaction.


Subject(s)
Dengue Virus , Dengue , MicroRNAs , Virus Replication , MicroRNAs/genetics , Dengue Virus/genetics , Humans , Dengue/immunology , Dengue/virology , Animals , Virus Replication/genetics , Aedes/virology , Aedes/genetics
19.
J Virol ; 98(5): e0023924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647327

ABSTRACT

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Animals , Female , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Virus/immunology , Disease Models, Animal , Immunoglobulin G/immunology , Macaca fascicularis , Macaca mulatta , Serogroup , Vaccination , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...