Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 683
Filter
2.
Rev Med Suisse ; 20(872): 876-880, 2024 May 01.
Article in French | MEDLINE | ID: mdl-38693800

ABSTRACT

Vaccine could take a central role in the strategy to reduce the burden of dengue. The development of an effective and safe vaccine must address various immunological challenges. Several vaccines are currently in development. To date, two live-attenuated vaccines have been deployed. Both have an effectiveness that varies depending on the serotypes. The deployment of the Dengvaxia vaccine, which began in 2015, was marked by a major safety alert leading to its use being restricted to previously dengue-seropositive people over 9 years old. The Qdenga vaccine is currently being deployed. There is for now insufficient data to ensure its safety in seronegative people. Some travelers, who have previously been infected with dengue, are a group for whom a vaccination recommendation applies.


Les vaccins pourraient occuper une place centrale dans la stratégie de réduction du fardeau de la dengue. Le développement d'un vaccin efficace et sûr est complexe car il doit relever plusieurs défis immunologiques. Différents vaccins sont en développement. À ce jour, deux vaccins vivants atténués ont été déployés. Tous deux ont une efficacité qui varie selon les sérotypes. Le déploiement du vaccin Dengvaxia, débuté en 2015, a été marqué par une alerte de sécurité majeure conduisant à restreindre son usage aux personnes de plus de 9 ans, préalablement séropositives pour la dengue. Le vaccin Qdenga est en cours de déploiement. Le recul est insuffisant pour assurer son innocuité chez les séronégatifs. Certains voyageurs, ayant déjà été infectés par la dengue, constituent un groupe pour lequel une recommandation vaccinale s'applique.


Subject(s)
Dengue Vaccines , Dengue , Vaccines, Attenuated , Humans , Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue Vaccines/adverse effects , Dengue/prevention & control , Vaccines, Attenuated/administration & dosage , Vaccination/methods , Vaccination/trends
3.
Viruses ; 16(5)2024 05 05.
Article in English | MEDLINE | ID: mdl-38793612

ABSTRACT

As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Dengue Vaccines , Dengue Virus , Dengue , Epitopes, T-Lymphocyte , Epitopes, T-Lymphocyte/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Virus/classification , Humans , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , India , CD4-Positive T-Lymphocytes/immunology , Brazil , Thailand , Mexico , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood
4.
J Med Microbiol ; 73(5)2024 May.
Article in English | MEDLINE | ID: mdl-38722305

ABSTRACT

Background. Dengue is an important arboviral infection of considerable public health significance. It occurs in a wide global belt within a variety of tropical regions. The timely laboratory diagnosis of Dengue infection is critical to inform both clinical management and an appropriate public health response. Vaccination against Dengue virus is being introduced in some areas.Discussion. Appropriate diagnostic strategies will vary between laboratories depending on the available resources and skills. Diagnostic methods available include viral culture, the serological detection of Dengue-specific antibodies in using enzyme immunoassays (EIAs), microsphere immunoassays, haemagglutination inhibition or in lateral flow point of care tests. The results of antibody tests may be influenced by prior vaccination and exposure to other flaviviruses. The detection of non-structural protein 1 in serum (NS1) has improved the early diagnosis of Dengue and is available in point-of-care assays in addition to EIAs. Direct detection of viral RNA from blood by PCR is more sensitive than NS1 antigen detection but requires molecular skills and resources. An increasing variety of isothermal nucleic acid detection methods are in development. Timing of specimen collection and choice of test is critical to optimize diagnostic accuracy. Metagenomics and the direct detection by sequencing of viral RNA from blood offers the ability to rapidly type isolates for epidemiologic purposes.Conclusion. The impact of vaccination on immune response must be recognized as it will impact test interpretation and diagnostic algorithms.


Subject(s)
Dengue Vaccines , Dengue Virus , Dengue , Humans , Dengue/diagnosis , Dengue/prevention & control , Dengue/immunology , Dengue Virus/immunology , Dengue Virus/genetics , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Clinical Laboratory Techniques/methods , Antibodies, Viral/blood , RNA, Viral/genetics , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/genetics
5.
Nat Microbiol ; 9(5): 1356-1367, 2024 May.
Article in English | MEDLINE | ID: mdl-38561497

ABSTRACT

Dengue human infection models present an opportunity to explore the potential of a vaccine, anti-viral or immuno-compound for clinical benefit in a controlled setting. Here we report the outcome of a phase 1 open-label assessment of a low-dose dengue virus 3 (DENV-3) challenge model (NCT04298138), in which nine participants received a subcutaneous inoculation with 0.5 ml of a 1.4 × 103 plaque-forming unit per ml suspension of the attenuated DENV-3 strain CH53489. The primary and secondary endpoints of the study were to assess the safety of this DENV-3 strain in healthy flavivirus-seronegative individuals. All participants developed RNAaemia within 7 days after inoculation with peak titre ranging from 3.13 × 104 to 7.02 × 108 genome equivalents per ml. Solicited symptoms such as fever and rash, clinical laboratory abnormalities such as lymphopenia and thrombocytopenia, and self-reported symptoms such as myalgia were consistent with mild-to-moderate dengue in all volunteers. DENV-3-specific seroconversion and memory T cell responses were observed within 14 days after inoculation as assessed by enzyme-linked immunosorbent assay and interferon-gamma-based enzyme-linked immunospot. RNA sequencing and serum cytokine analysis revealed anti-viral responses that overlapped with the period of viraemia. The magnitude and frequency of clinical and immunologic endpoints correlated with an individual's peak viral titre.


Subject(s)
Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Viremia , Humans , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Adult , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Vaccines/adverse effects , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Young Adult , Cytokines/blood , Cytokines/metabolism , RNA, Viral/blood , Seroconversion , Memory T Cells/immunology , Middle Aged
6.
J Virol ; 98(5): e0023924, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38647327

ABSTRACT

Dengue virus (DENV) represents a significant global health burden, with 50% of the world's population at risk of infection, and there is an urgent need for next-generation vaccines. Virus-like particle (VLP)-based vaccines, which mimic the antigenic structure of the virus but lack the viral genome, are an attractive approach. Here, we describe a dengue VLP (DENVLP) vaccine which generates a neutralizing antibody response against all four DENV serotypes in 100% of immunized non-human primates for up to 1 year. Additionally, DENVLP vaccination produced no ADE response against any of four DENV serotypes in vitro. DENVLP vaccination reduces viral replication in a non-human primate challenge model. We also show that transfer of purified IgG from immunized monkeys into immunodeficient mice protects against subsequent lethal DENV challenge, indicating a humoral mechanism of protection. These results indicate that this DENVLP vaccine is immunogenic and can be considered for clinical evaluation. Immunization of non-human primates with a tetravalent DENVLP vaccine induces high levels of neutralizing antibodies and reduces the severity of infection for all four dengue serotypes.IMPORTANCEDengue is a viral disease that infects nearly 400 million people worldwide and causes dengue hemorrhagic fever, which is responsible for 10,000 deaths each year. Currently, there is no therapeutic drug licensed to treat dengue infection, which makes the development of an effective vaccine essential. Virus-like particles (VLPs) are a safe and highly immunogenic platform that can be used in young children, immunocompromised individuals, as well as healthy adults. In this study, we describe the development of a dengue VLP vaccine and demonstrate that it induces a robust immune response against the dengue virus for over 1 year in monkeys. The immunity induced by this vaccine reduced live dengue infection in both murine and non-human primate models. These results indicate that our dengue VLP vaccine is a promising vaccine candidate.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Vaccines, Virus-Like Particle , Animals , Female , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/prevention & control , Dengue/immunology , Dengue/virology , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Virus/immunology , Disease Models, Animal , Immunoglobulin G/immunology , Macaca fascicularis , Macaca mulatta , Serogroup , Vaccination , Vaccines, Virus-Like Particle/immunology , Vaccines, Virus-Like Particle/administration & dosage , Virus Replication
7.
Int J Infect Dis ; 143: 107014, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38499058

ABSTRACT

Tropical infectious diseases inflict an unacceptable burden of disease on humans living in developing countries. Although anti-pathogenic drugs have been widely used, they carry a constant threat of selecting for resistance. Vaccines offer a promising means by which to enhance the global control of tropical infectious diseases; however, these have been difficult to develop, mostly because of the complex nature of the pathogen lifecycles. Here, we present recently developed vaccine candidates for five tropical infectious diseases in the form of a catalog that have either entered clinical trials or have been licensed for use. We deliberate on recently licensed dengue vaccines, provide evidence why combination vaccination could have a synergistic impact on schistosomiasis, critically appraise the value of typhoid conjugate vaccines, and discuss the potential of vaccines in the efforts to eliminate vivax malaria and hookworms.


Subject(s)
Dengue , Humans , Dengue/prevention & control , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Schistosomiasis/prevention & control , Communicable Diseases , Tropical Medicine , Vaccines/immunology , Typhoid Fever/prevention & control , Malaria, Vivax/prevention & control , Vaccine Development
9.
Internet resource in Portuguese | LIS -Health Information Locator | ID: lis-49560

ABSTRACT

O Ministério da Saúde iniciou, nesta quinta-feira (8), a distribuição das vacinas contra dengue para os municípios que atendem aos critérios definidos pela Pasta em conjunto com o Conselho Nacional de Secretários de Saúde (Conass) e Conselho Nacional de Secretarias Municipais de Saúde (Conasems). A operação logística do Ministério da Saúde irá trabalhar ininterruptamente nos próximos dias para garantir a entrega o mais breve possível.


Subject(s)
Dengue Vaccines/immunology ,
12.
Cell Rep ; 38(6): 110341, 2022 02 08.
Article in English | MEDLINE | ID: mdl-35139383

ABSTRACT

The tetravalent dengue vaccine candidate, TAK-003, induces a functional antibody response, but the titers of antibodies against the four serotypes of the dengue virus (DENV) can vary. Here, through a transcriptomic analysis on whole blood collected from recipients of a two-dose schedule of TAK-003, we examine gene expression, splicing, and transcript isoform-level changes for both protein-coding and noncoding genes to broaden our understanding of the immune response. Our analysis reveals a dynamic pattern of vaccine-associated regulation of long noncoding RNAs (lncRNAs), differential splicing of interferon-stimulated gene exons, and gene expression changes related to multiple signaling pathways that detect viral infection. Co-expression networks isolate immune cell-type-related and interferon-response modules that represent specific biological processes that correlate with more robust antibody responses. These data provide insights into the early determinants of the variable immune response to the vaccine, highlighting the significance of splicing and isoform-level gene regulatory mechanisms in defining vaccine immunogenicity.


Subject(s)
Antibodies, Viral/immunology , Dengue Vaccines/immunology , Dengue Virus/pathogenicity , RNA, Long Noncoding/genetics , Transcriptome/genetics , Antibodies, Neutralizing/immunology , Dengue/virology , Dengue Virus/genetics , Humans , Immunogenicity, Vaccine/immunology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Viral Vaccines/pharmacology
13.
PLoS Pathog ; 18(1): e1009903, 2022 01.
Article in English | MEDLINE | ID: mdl-35061851

ABSTRACT

It has been estimated that more than 390 million people are infected with Dengue virus every year; around 96 millions of these infections result in clinical pathologies. To date, there is only one licensed viral vector-based Dengue virus vaccine CYD-TDV approved for use in dengue endemic areas. While initially approved for administration independent of serostatus, the current guidance only recommends the use of this vaccine for seropositive individuals. Therefore, there is a critical need for investigating the influence of Dengue virus serostatus and immunological mechanisms that influence vaccine outcome. Here, we provide comprehensive evaluation of sero-status and host immune factors that correlate with robust immune responses to a Dengue virus vector based tetravalent vaccine (TV003) in a Phase II clinical cohort of human participants. We observed that sero-positive individuals demonstrate a much stronger immune response to the TV003 vaccine. Our multi-layered immune profiling revealed that sero-positive subjects have increased baseline/pre-vaccination frequencies of circulating T follicular helper (cTfh) cells and the Tfh related chemokine CXCL13/BLC. Importantly, this baseline/pre-vaccination cTfh profile correlated with the vaccinees' ability to launch neutralizing antibody response against all four sero-types of Dengue virus, an important endpoint for Dengue vaccine clinical trials. Overall, we provide novel insights into the favorable cTfh related immune status that persists in Dengue virus sero-positive individuals that correlate with their ability to mount robust vaccine specific immune responses. Such detailed interrogation of cTfh cell biology in the context of clinical vaccinology will help uncover mechanisms and targets for favorable immuno-modulatory agents.


Subject(s)
Antibodies, Viral/immunology , Dengue Vaccines/immunology , Immunogenicity, Vaccine/immunology , T Follicular Helper Cells/immunology , Antibodies, Neutralizing/immunology , Dengue/prevention & control , Female , Humans , Male , Vaccines, Combined/immunology
14.
Cell Host Microbe ; 29(11): 1634-1648.e5, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34610295

ABSTRACT

Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Cross Protection , Dengue Vaccines/immunology , Dengue Virus/genetics , Dengue Virus/immunology , Dengue/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/blood , Cross Reactions , Dengue/prevention & control , Dengue/virology , Female , Genotype , Humans , Immunization, Passive , Immunogenicity, Vaccine , Macaca mulatta , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Serogroup , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
15.
Biomed Pharmacother ; 144: 112304, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34634560

ABSTRACT

Dengue virus (DENV) is a global health threat causing about half of the worldwide population to be at risk of infection, especially the people living in tropical and subtropical area. Although the dengue disease caused by dengue virus (DENV) is asymptomatic and self-limiting in most people with first infection, increased severe dengue symptoms may be observed in people with heterotypic secondary DENV infection. Since there is a lack of specific antiviral medication, the development of dengue vaccines is critical in the prevention and control this disease. Several targets and strategies in the development of dengue vaccine have been demonstrated. Currently, Dengvaxia, a live-attenuated chimeric yellow-fever/tetravalent dengue vaccine (CYD-TDV) developed by Sanofi Pasteur, has been licensed and approved for clinical use in some countries. However, this vaccine has demonstrated low efficacy in children and dengue-naïve individuals and also increases the risk of severe dengue in young vaccinated recipients. Accordingly, many novel strategies for the dengue vaccine are under investigation and development. Here, we conducted a systemic literature review according to PRISMA guidelines to give a concise overview of various aspects of the vaccine development process against DENVs, mainly targeting five potential strategies including live attenuated vaccine, inactivated virus vaccine, recombinant subunit vaccine, viral-vector vaccine, and DNA vaccine. This study offers the comprehensive view of updated information and current progression of immunogen selection as well as strategies of vaccine development against DENVs.


Subject(s)
Dengue Vaccines/therapeutic use , Dengue Virus/immunology , Dengue/prevention & control , Vaccine Development , Viral Envelope Proteins/immunology , Viral Nonstructural Proteins/immunology , Animals , Dengue/immunology , Dengue/virology , Dengue Vaccines/adverse effects , Dengue Vaccines/immunology , Dengue Virus/genetics , Dengue Virus/pathogenicity , Humans , Treatment Outcome , Vaccine Efficacy , Vaccines, Attenuated/immunology , Vaccines, Attenuated/therapeutic use , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , Vaccines, Inactivated/immunology , Vaccines, Inactivated/therapeutic use , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics
16.
Sci Rep ; 11(1): 19707, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34611250

ABSTRACT

Dengue poses a global health threat, which will persist without therapeutic intervention. Immunity induced by exposure to one serotype does not confer long-term protection against secondary infection with other serotypes and is potentially capable of enhancing this infection. Although vaccination is believed to induce durable and protective responses against all the dengue virus (DENV) serotypes in order to reduce the burden posed by this virus, the development of a safe and efficacious vaccine remains a challenge. Immunoinformatics and computational vaccinology have been utilized in studies of infectious diseases to provide insight into the host-pathogen interactions thus justifying their use in vaccine development. Since vaccination is the best bet to reduce the burden posed by DENV, this study is aimed at developing a multi-epitope based vaccines for dengue control. Combined approaches of reverse vaccinology and immunoinformatics were utilized to design multi-epitope based vaccine from the sequence of DENV. Specifically, BCPreds and IEDB servers were used to predict the B-cell and T-cell epitopes, respectively. Molecular docking was carried out using Schrödinger, PATCHDOCK and FIREDOCK. Codon optimization and in silico cloning were done using JCAT and SnapGene respectively. Finally, the efficiency and stability of the designed vaccines were assessed by an in silico immune simulation and molecular dynamic simulation, respectively. The predicted epitopes were prioritized using in-house criteria. Four candidate vaccines (DV-1-4) were designed using suitable adjuvant and linkers in addition to the shortlisted epitopes. The binding interactions of these vaccines against the receptors TLR-2, TLR-4, MHC-1 and MHC-2 show that these candidate vaccines perfectly fit into the binding domains of the receptors. In addition, DV-1 has a better binding energies of - 60.07, - 63.40, - 69.89 kcal/mol against MHC-1, TLR-2, and TLR-4, with respect to the other vaccines. All the designed vaccines were highly antigenic, soluble, non-allergenic, non-toxic, flexible, and topologically assessable. The immune simulation analysis showed that DV-1 may elicit specific immune response against dengue virus. Moreover, codon optimization and in silico cloning validated the expressions of all the designed vaccines in E. coli. Finally, the molecular dynamic study shows that DV-1 is stable with minimum RMSF against TLR4. Immunoinformatics tools are now applied to screen genomes of interest for possible vaccine target. The designed vaccine candidates may be further experimentally investigated as potential vaccines capable of providing definitive preventive measure against dengue virus infection.


Subject(s)
Computational Biology/methods , Dengue Vaccines/immunology , Dengue Virus/immunology , Epitopes/chemistry , Epitopes/immunology , Models, Molecular , Vaccinology/methods , Amino Acid Sequence , Antigens, Viral , Chemical Phenomena , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Genetic Engineering , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Vaccine Development
17.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34578424

ABSTRACT

The use of dengue virus (DENV) vaccines has been hindered by the complexities of antibody dependent enhancement (ADE). Current late-stage vaccine candidates utilize attenuated and chimeric DENVs that produce particles of varying maturities. Antibodies that are elicited by preferentially exposed epitopes on immature virions have been linked to increased ADE. We aimed to further understand the humoral immunity promoted by DENV particles of varying maturities in an AG129 mouse model using a chimeric insect specific vaccine candidate, bDENV-2. We immunized mice with mature, partially mature, and immature bDENV-2 and found that immunization with partially mature bDENV-2 produced more robust and cross-neutralizing immune responses than immunization with immature or mature bDENV-2. Upon challenge with mouse adapted DENV-2 (D220), we observed 80% protection for mature bDENV-2 vaccinated mice and 100% for immature and partially mature vaccinated mice, suggesting that protection to homotypic challenge is not dependent on maturation. Finally, we found reduced in vitro ADE at subneutralising serum concentrations for mice immunized with mature bDENV-2. These results suggest that both immature and mature DENV particles play a role in homotypic protection; however, the increased risk of in vitro ADE from immature particles indicates potential safety benefits from mature DENV-based vaccines.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/growth & development , Dengue Virus/immunology , Dengue/prevention & control , Immunity, Humoral , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody-Dependent Enhancement , Broadly Neutralizing Antibodies/blood , Broadly Neutralizing Antibodies/immunology , Dengue/immunology , Mice , Vaccine Efficacy
18.
Crit Rev Eukaryot Gene Expr ; 31(5): 7-19, 2021.
Article in English | MEDLINE | ID: mdl-34591385

ABSTRACT

Dengue is a vector-borne highly systemic infectious disease of the tropical and subtropical countries and is devastating millions of lives worldwide. It may be self-eliminated like a mild fever or may cause life-threatening fatal complications as dengue hemorrhagic fever and dengue shock syndrome. The lack of specific and effective antiviral drugs and vaccines amplify its transmission rate across the world. The development of the dengue vaccine has been an ambitious task due to the presence of four different dengue serotypes capable of carrying antibody enhancement complex mechanisms. In this review, we have summarized the ongoing challenges in the construction of a dengue vaccine and the current status of the vaccine development. Limited knowledge of immune responses against dengue infection, lack of human or animal model of disease, and suboptimal assay strategies to detect immune responses after infection or vaccination, are some barriers to vaccine and drug development. A tetravalent vaccine with low cost, high efficiency, and capable of eliciting immune responses against all four serotypes is needed to minimize the epidemics. Currently, only one live attenuated chimeric dengue vaccine, the CYD Dengue Vaccine, has completed its third phase and has been licensed. DENVax and TetraVax-DV-TV003 (TV003) are in the third phase while others are still in the first trial phase.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Immunity , Vaccine Development , Aedes/virology , Animals , Chimera , Humans , Vaccination , Vaccines, Attenuated/immunology
19.
J Virol ; 95(23): e0095621, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34549976

ABSTRACT

Dengue virus cocirculates globally as four serotypes (DENV1 to -4) that vary up to 40% at the amino acid level. Viral strains within a serotype further cluster into multiple genotypes. Eliciting a protective tetravalent neutralizing antibody response is a major goal of vaccine design, and efforts to characterize epitopes targeted by polyclonal mixtures of antibodies are ongoing. Previously, we identified two E protein residues (126 and 157) that defined the serotype-specific antibody response to DENV1 genotype 4 strain West Pac-74. DENV1 and DENV2 human vaccine sera neutralized DENV1 viruses incorporating these substitutions equivalently. In this study, we explored the contribution of these residues to the neutralization of DENV1 strains representing distinct genotypes. While neutralization of the genotype 1 strain TVP2130 was similarly impacted by mutation at E residues 126 and 157, mutation of these residues in the genotype 2 strain 16007 did not markedly change neutralization sensitivity, indicating the existence of additional DENV1 type-specific antibody targets. The accessibility of antibody epitopes can be strongly influenced by the conformational dynamics of virions and modified allosterically by amino acid variation. We found that changes at E domain II residue 204, shown previously to impact access to a poorly accessible E domain III epitope, impacted sensitivity of DENV1 16007 to neutralization by vaccine immune sera. Our data identify a role for minor sequence variation in changes to the antigenic structure that impacts antibody recognition by polyclonal immune sera. Understanding how the many structures sampled by flaviviruses influence antibody recognition will inform the design and evaluation of DENV immunogens. IMPORTANCE Dengue virus (DENV) is an important human pathogen that cocirculates globally as four serotypes. Because sequential infection by different DENV serotypes is associated with more severe disease, eliciting a protective neutralizing antibody response against all four serotypes is a major goal of vaccine efforts. Here, we report that neutralization of DENV serotype 1 by polyclonal antibody is impacted by minor sequence variation among virus strains. Our data suggest that mechanisms that control neutralization sensitivity extend beyond variation within antibody epitopes but also include the influence of single amino acids on the ensemble of structural states sampled by structurally dynamic virions. A more detailed understanding of the antibody targets of DENV-specific polyclonal sera and factors that govern their access to antibody has important implications for flavivirus antigen design and evaluation.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue Virus , Molecular Conformation , Serogroup , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibody Formation , Dengue , Dengue Vaccines/chemistry , Dengue Vaccines/immunology , Epitopes/chemistry , Epitopes/immunology , Flavivirus , Humans , Mutation , Taiwan , Viral Envelope Proteins , Virion/metabolism
20.
Front Immunol ; 12: 715136, 2021.
Article in English | MEDLINE | ID: mdl-34489965

ABSTRACT

The four serotypes of Dengue virus (DENV1-4) are arboviruses (arthropod-borne viruses) that belong to the Flavivirus genus, Flaviviridae family. They are the causative agents of an infectious disease called dengue, an important global public health problem with significant social-economic impact. Thus, the development of safe and effective dengue vaccines is a priority according to the World Health Organization. Only one anti-dengue vaccine has already been licensed in endemic countries and two formulations are under phase III clinical trials. In this study, we aimed to compare the main anti-dengue virus vaccines, DENGVAXIA®, LAV-TDV, and TAK-003, regarding their antigens and potential to protect. We studied the conservation of both, B and T cell epitopes involved in immunological control of DENV infection along with vaccine viruses and viral isolates. In addition, we assessed the population coverage of epitope sets contained in each vaccine formulation with regard to different human populations. As main results, we found that all three vaccines contain the main B cell epitopes involved in viral neutralization. Similarly, LAV-TDV and TAK-003 contain most of T cell epitopes involved in immunological protection, a finding not observed in DENGVAXIA®, which explains main limitations of the only licensed dengue vaccine. In summary, the levels of presence and absence of epitopes that are target for protective immune response in the three main anti-dengue virus vaccines are shown in this study. Our results suggest that investing in vaccines that contain the majority of epitopes involved in protective immunity (cellular and humoral arms) is an important issue to be considered.


Subject(s)
Dengue Vaccines/immunology , Dengue Virus/immunology , Dengue/prevention & control , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Amino Acid Sequence , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Conserved Sequence , Dengue Vaccines/genetics , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/genetics , Humans , Immunization Programs , Models, Molecular , Structure-Activity Relationship , Vaccination , Vaccines, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...