Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Publication year range
1.
Mol Biol Evol ; 27(9): 2078-94, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20403965

ABSTRACT

Enamelin (ENAM) has been shown to be a crucial protein for enamel formation and mineralization. Previous molecular analyses have indicated a probable origin early in vertebrate evolution, which is supported by the presence of enamel/enameloid tissues in early vertebrates. In contrast to these hypotheses, ENAM was only characterized in mammals. Our aims were to 1) look for ENAM in representatives of nonmammalian tetrapods, 2) search for a pseudogene in the chicken genome, and 3) see whether the new sequences could bring new information on ENAM evolution. Using in silico approach and polymerase chain reaction, we obtained and characterized the messenger RNA sequences of ENAM in a frog, a lizard, and a crocodile; the genomic DNA sequences of ENAM in a frog and a lizard; and the putative sequence of chicken ENAM pseudogene. The comparison with mammalian ENAM sequences has revealed 1) the presence of an additional coding exon, named exon 8b, in sauropsids and marsupials, 2) a simpler 5'-untranslated region in nonmammalian ENAMs, 3) many sequence variations in the large exons while there are a few conserved regions in small exons, and 4) 25 amino acids that have been conserved during 350 million years of tetrapod evolution and hence of crucial biological importance. The chicken pseudogene was identified in a region that was not expected when considering the gene synteny in mammals. Together with the location of lizard ENAM in a homologous region, this result indicates that enamel genes were probably translocated in an ancestor of the sauropsid lineage. This study supports the origin of ENAM earlier in vertebrate evolution, confirms that tooth loss in modern birds led to the invalidation of enamel genes, and adds information on the important role played by, for example, the phosphorylated serines and the glycosylated asparagines for correct ENAM functions.


Subject(s)
Alligators and Crocodiles/genetics , Anura/genetics , Chickens/genetics , Dental Enamel Proteins/genetics , Evolution, Molecular , Lizards/genetics , Pseudogenes/genetics , Animals , Dental Enamel Proteins/classification , Molecular Sequence Data , Polymerase Chain Reaction
2.
Cells Tissues Organs ; 186(1): 25-48, 2007.
Article in English | MEDLINE | ID: mdl-17627117

ABSTRACT

BACKGROUND/AIMS: Enamel and enameloid were identified in early jawless vertebrates, about 500 million years ago (MYA). This suggests that enamel matrix proteins (EMPs) have at least the same age. We review the current data on the origin, evolution and relationships of enamel mineralization genes. METHODS AND RESULTS: Three EMPs are secreted by ameloblasts during enamel formation: amelogenin (AMEL), ameloblastin (AMBN) and enamelin (ENAM). Recently, two new genes, amelotin (AMTN) and odontogenic ameloblast associated (ODAM), were found to be expressed by ameloblasts during maturation, increasing the group of ameloblast-secreted proteins to five members. The evolutionary analysis of these five genes indicates that they are related: AMEL is derived from AMBN, AMTN and ODAM are sister genes, and all are derived from ENAM. Using molecular dating, we showed that AMBN/AMEL duplication occurred >600 MYA. The large sequence dataset available for mammals and reptiles was used to study AMEL evolution. In the N- and C-terminal regions, numerous residues were unchanged during >200 million years, suggesting that they are important for the proper function of the protein. CONCLUSION: The evolutionary analysis of AMEL led to propose a dataset that will be useful to validate AMEL mutations leading to X- linked AI.


Subject(s)
Dental Enamel Proteins/physiology , Dental Enamel/growth & development , Evolution, Molecular , Tooth Calcification/genetics , Amelogenin/classification , Amelogenin/genetics , Amelogenin/physiology , Amino Acid Sequence , Animals , Chromosome Mapping , Dental Enamel/metabolism , Dental Enamel Proteins/classification , Dental Enamel Proteins/genetics , Gene Duplication , Humans , Molecular Sequence Data , Mutation , Phylogeny , Sequence Analysis, Protein
3.
Arch Oral Biol ; 46(3): 201-8, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11165565

ABSTRACT

Amelin (also known as ameloblastin and sheathlin) is a recently described protein that is secreted by ameloblasts during enamel formation. Here, the extracellular distribution and processing of amelin during rat incisor amelogenesis were investigated by Western blot probing using anti-recombinant rat amelin antibodies. In addition, the solubility behaviour and aggregative properties of rat amelin were investigated using a sequential extraction procedure involving (1) extraction with simulated enamel fluid to extract proteins most likely to be soluble in vivo; (2) extraction with phosphate buffer to desorb proteins bound to enamel crystal surfaces; (3) extraction with sodium dodecyl sulphate (SDS) to extract proteins present as insoluble aggregates; followed by (4) a final acid demineralization step to release any remaining proteins. Proteins immunoreactive to the anti-amelin antibodies were detectable in secretory- and transition-stage enamel. Maturation-stage enamel appeared devoid of amelin. The largest immunoreactive protein detected migrated at 68 kDa on SDS gels, corresponding to the M(r) of nascent amelin. Other immunoreactive bands at 52, 40, 37, 19, 17, 16, 15, 14 and 13 kDa were presumably amelin processing products. The sequential extraction procedure revealed that the 68-, 52-, 40-, 37- and 13-kDa amelins were completely extracted under solution conditions similar to those reported to exist in vivo. In contrast, the 19-, 17- and 16-kDa amelins were only partially extracted, whilst the 15- and 14-kDa amelins could not be extracted with simulated enamel fluid. A proportion of the remaining 17- and 16-kDa amelins was desorbed from the enamel crystals with phosphate buffer and appeared to have been mineral-bound. The 15- and 14-kDa amelins and the remainder of the 17- and 16-kDa amelins were extracted with SDS only, suggesting that these species were present in vivo as an insoluble aggregate. The results provide additional information on amelin processing and degradation, and on how such processing influences the solubility and aggregative properties of amelin-derived proteins.


Subject(s)
Amelogenesis/physiology , Dental Enamel Proteins/metabolism , Extracellular Matrix/metabolism , Ameloblasts/classification , Ameloblasts/metabolism , Animals , Antibodies , Blotting, Western , Crystallography , Dental Enamel/cytology , Dental Enamel/metabolism , Dental Enamel Proteins/analysis , Dental Enamel Proteins/classification , Dental Enamel Solubility/physiology , Electrophoresis, Polyacrylamide Gel , Incisor , Male , Molecular Weight , Rats , Rats, Wistar , Solubility
5.
Arch Oral Biol ; 37(11): 953-62, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1334650

ABSTRACT

The present study was undertaken to investigate glycosylation of porcine enamel proteins secreted in the secretory stage of amelogenesis and to gain insight into functional roles of glycosylated proteins in enamel mineralization. Enamel proteins, isolated from various zones of the secretory enamel, were separated by SDS-PAGE and then transferred on to a nitrocellulose membrane. The transblotted proteins were visualized with either antibodies against porcine amelogenins or various biotin-conjugated lectins. The lectins used were Con-A, GS-II, STA, WGA, s-WGA, GS-I, MPA, VVA, PNA, RCA-I, DBA, SJA, UEA-I, Lotus-A and LPA. The results of the immuno- and lectin blottings revealed that most of the lectins did not bind to porcine amelogenins, while a large number of non-amelogenins having various molecular masses were stained strongly with the conjugated WGA, Con A and MPA lectins. On the basis of the binding specificity with the lectins, porcine non-amelogenins were classified into two groups: WGA (and Con A)-binding moieties at 60-90 kDa (WGA-HMW); and MPA-binding moieties at 13-17 kDa (MPA-LMW). These two groups of non-amelogenins differed distinctly in terms of their localization and stability in the secretory tissue and their adsorption properties onto hydroxyapatite. The WGA-HMW were concentrated in the outer region adjacent to the ameloblasts and disappeared (due to degradation) in the underlying inner secretory enamel. In contrast, the MPA-LMW were found in all zones of the secretory enamel and their quantity remained relatively constant. Histochemical studies using FITC-conjugated WGA and MPA showed that the fluorescence-labelling of WGA was localized in the core region of prism rods, while the fluorescence-labelling of MPA was locally limited at the rim of prism rods or at the prism sheath. In separate adsorption studies, it was found that the WGA-HMW, as well as the intact amelogenins, displayed a high adsorption affinity on to apatite crystals, whereas the MPA-LMW showed only marginal adsorption on to apatitic surfaces. The overall results indicate that part of the heterogeneity found in porcine enamel proteins can be ascribed to variations of carbohydrate moieties attached to non-amelogenins.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Amelogenesis/physiology , Dental Enamel Proteins/analysis , Dental Enamel Proteins/physiology , Dental Enamel/chemistry , Tooth Calcification/physiology , Adsorption , Amelogenin , Animals , Chromatography, Gel , Dental Enamel/anatomy & histology , Dental Enamel Proteins/chemistry , Dental Enamel Proteins/classification , Durapatite , Electrophoresis, Polyacrylamide Gel , Enamel Organ/anatomy & histology , Enamel Organ/chemistry , Glycosylation , Histocytochemistry , Hydroxyapatites/chemistry , Lectins , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...