Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.130
Filter
1.
Int J Esthet Dent ; 19(2): 126-138, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726855

ABSTRACT

AIM: The aim of the present retrospective case series was to longitudinally assess soft tissue volume changes on the vestibular aspect of implants in relation to keratinized mucosa thickness (KMT) and width (KMW) after the application of the microsurgical envelope technique combined with a connective tissue graft (CTG). MATERIALS AND METHODS: A total of 12 healthy patients received 12 dental implants placed either in the posterior maxilla or mandible. The study involved the harvesting of 12 CTGs with a minimally invasive single-incision technique, grafted to the vestibular peri-implant soft tissue utilizing the envelope technique, followed by the insertion of 12 screw-retained IPS e.max crowns. RESULTS: The healing process was uneventful across all areas, and all patients were followed up for a period of 5 years. The evaluation of KMT showed the highest decrease in the first 6 weeks after surgery (5.5 ± 0.79 to 4.59 ± 0.62 mm), then dropped slightly to 4 ± 0.85 mm, after which it maintained at 4 ± 0.36 mm until the 2-year time point. Between the second and third years after surgery, a further decrease of 3.59 ± 0.42 mm was recorded for KMT, which then remained constant until the end of the 5-year research period. The observations regarding KMW were slightly different, with the measurements demonstrating the greatest decrease in first 6 weeks (from 2.5 ± 0.42 to 1.5 ± 0.42 mm), which was maintained until the 1-year time point. Between the first and second years after surgery, the KMW increased to 2 ± 0.60 mm and remained level for the next 3 years, at 2 ± 0.85 mm. CONCLUSIONS: The current research demonstrated the advantages of using a combination of a minimally invasively harvested CTG and the microsurgical envelope technique for a duration of 5 years.


Subject(s)
Connective Tissue , Microsurgery , Humans , Retrospective Studies , Connective Tissue/transplantation , Male , Microsurgery/methods , Female , Adult , Middle Aged , Dental Implantation, Endosseous/methods , Dental Implants , Maxilla/surgery , Mandible/surgery , Gingiva/transplantation
2.
Int J Oral Implantol (Berl) ; 17(2): 203-220, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801333

ABSTRACT

PURPOSE: Complex bone defects with a horizontal and vertical combined deficiency pose a clinical challenge in implant dentistry. This study reports the case of a young female patient who presented with a perforating bone defect in the aesthetic zone. MATERIALS AND METHODS: Based on prosthetically guided bone regeneration, virtual 3D bone augmentation was planned. A 3D printed customised titanium mesh and the autogenous bone ring technique were then utilised simultaneously to achieve a customised bone contour. After 6 months, the titanium mesh was removed and connective tissue grafting was performed. Finally, implants were placed and the provisional and definitive prostheses were delivered following a digital approach. Vertical and horizontal bone gain, new bone density, pseudo-periosteum type and marginal bone loss were measured. Planned bone volume, regenerated bone volume and regeneration rate were analysed. RESULTS: Staged tooth shortening led to a coronal increase in keratinised mucosa. The customised titanium mesh and bone ring technique yielded 14.27 mm vertical bone gain and 12.9 mm horizontal bone gain in the perforating area. When the titanium mesh was removed, the reopening surgery showed a Type 1 pseudo-periosteum (none or < 1 mm), and CBCT scans revealed a new bone density of ~550 HU. With a planned bone volume of 1063.55 mm3, the regenerated bone volume was 969.29 mm3, indicating a regeneration rate of 91.14%. The 1-year follow-up after definitive restoration revealed no complications except for 0.55 to 0.60 mm marginal bone loss. CONCLUSION: Combined application of customised titanium mesh and an autogenous bone ring block shows promising potential to achieve prosthetically guided bone regeneration for complex bone defects in the aesthetic zone.


Subject(s)
Alveolar Ridge Augmentation , Printing, Three-Dimensional , Surgical Mesh , Titanium , Humans , Female , Alveolar Ridge Augmentation/methods , Adult , Bone Transplantation/methods , Bone Regeneration , Esthetics, Dental , Dental Implantation, Endosseous/methods
3.
Int J Oral Implantol (Berl) ; 17(2): 163-172, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801330

ABSTRACT

PURPOSE: To examine the effects of buccal bone fenestration on maxillary anterior implants. MATERIALS AND METHODS: Patients who underwent implant placement in the maxillary anterior region between January 2017 and December 2021 and had received final restorations 1 to 6 years prior were screened for inclusion in the present study. Propensity score matching was used to match the two-group sample size and reduce the influence of potential confounding factors. Generalised linear mixed models were employed to evaluate the correlation between buccal bone fenestration and peri-implant marginal bone loss. RESULTS: A total of 42 patients with 50 implants were included in the study, 16 of whom had buccal bone fenestration (group 1) and 26 of whom did not (group 2). No implant failures occurred, resulting in a cumulative implant survival rate of 100.0%. There was no statistically significant difference between the pink aesthetic scores for the two groups. The mean marginal bone loss was 0.44 ± 0.46 mm for group 1 and 0.33 ± 0.32 mm for group 2 (P > 0.05). Buccal bone fenestration was not the influencing factor of marginal bone loss (P > 0.05). Marginal bone loss was greater around implants used to replace canines than those inserted to replace central incisors (P < 0.05). Far less marginal bone loss occurred around immediately loaded implants than delayed implants with cover screws (P < 0.05). When there is sufficient keratinised mucosa around the implant, marginal bone loss will decrease significantly (P < 0.05). CONCLUSIONS: Within the limitations of this study, buccal bone fenestration defects around dental implants cannot influence peri-implant bone loss. CONFLICT-OF-INTEREST STATEMENT: The authors report no conflicts of interest relating to this study.


Subject(s)
Alveolar Bone Loss , Dental Implants , Maxilla , Humans , Retrospective Studies , Male , Maxilla/surgery , Female , Middle Aged , Adult , Dental Implantation, Endosseous/methods , Aged , Propensity Score
4.
Int J Oral Implantol (Berl) ; 17(2): 189-198, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801332

ABSTRACT

Maxillary sinus grafting is a predictable regenerative technique to facilitate maxillary posterior implant placement when there is insufficient vertical bone height inferior to the maxillary sinuses to allow placement of implants of adequate dimensions. It enables an increase in vertical bone height, which makes implant placement easier. Maxillary sinus mucosal membrane perforation is one of the most common intraoperative complications during maxillary sinus grafting and may result in extrusion of graft material into the sinus. When this occurs, the mucociliary function of the maxillary sinus may expel the extruded graft material through its natural ostium, though graft particles may remain in the sinus or possibly occlude the natural ostium. After grafting, transient maxillary sinus mucosal oedema may occur. A postoperative CBCT scan may reveal varying degrees of sinus opacification, namely partial, subtotal or total. Although it is always possible to identify graft material, which may enter the sinus as a result of membrane perforation that might not even be visible to the implantologist during the surgical procedure, it is challenging to assess whether sinus opacification is due to mucosal thickening or mucus accumulation. The aim of the present case series was to offer a pragmatic approach to managing asymptomatic patients whose CBCT scans demonstrated partial, subtotal or total maxillary sinus opacification with bone graft particles that seemed to have been extruded into the sinus.


Subject(s)
Cone-Beam Computed Tomography , Maxillary Sinus , Sinus Floor Augmentation , Humans , Maxillary Sinus/surgery , Maxillary Sinus/diagnostic imaging , Sinus Floor Augmentation/adverse effects , Sinus Floor Augmentation/methods , Middle Aged , Male , Female , Nasal Mucosa/diagnostic imaging , Nasal Mucosa/pathology , Follow-Up Studies , Edema/etiology , Edema/diagnostic imaging , Edema/pathology , Bone Transplantation/methods , Bone Transplantation/adverse effects , Postoperative Complications/diagnostic imaging , Postoperative Complications/etiology , Aged , Adult , Dental Implantation, Endosseous/adverse effects , Dental Implantation, Endosseous/methods
5.
Int J Oral Implantol (Berl) ; 17(2): 175-185, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801331

ABSTRACT

PURPOSE: The reverse guided bone regeneration protocol is a digital workflow that has been introduced to reduce the complexity of guided bone regeneration and promote prosthetically guided bone reconstruction with a view to achieving optimal implant placement and prosthetic finalisation. The aim of the present study was to investigate the accuracy of this digital protocol. MATERIALS AND METHODS: Sixteen patients with partial edentulism in the maxilla or mandible and with vertical or horizontal bone defects were treated using the reverse guided bone regeneration protocol to achieve fixed implant rehabilitations. For each patient, a digital wax-up of the future rehabilitation was created and implant planning was carried out, then the necessary bone reconstruction was simulated virtually and the CAD/CAM titanium mesh was designed and used to perform guided bone regeneration. The computed tomography datasets from before and after guided bone regeneration were converted into 3D models and aligned digitally. The actual position of the mesh was compared to the virtual position to assess the accuracy of the digital project. Surgical and healing complications were also recorded. A descriptive analysis was conducted and a one-sample t test and Wilcoxon test were utilised to assess the statistical significance of the accuracy. The level of significance was set at 0.05. RESULTS: A total of 16 patients with 16 treated sites were enrolled. Comparing the virtually planned mesh position with the actual position, an overall mean discrepancy between the two of 0.487 ± 0.218 mm was achieved. No statistically significant difference was observed when comparing this to a predefined minimum tolerance (P = 0.06). No surgical complications occurred, but two healing complications were recorded (12.5%). CONCLUSION: Within the limitations of the present study, the reverse guided bone regeneration digital protocol seems to be able to achieve good accuracy in reproducing the content of the virtual plan. Nevertheless, further clinical comparative studies are required to confirm these results.


Subject(s)
Bone Regeneration , Computer-Aided Design , Surgical Mesh , Titanium , Humans , Female , Male , Middle Aged , Aged , Adult , Tomography, X-Ray Computed/methods , Jaw, Edentulous, Partially/surgery , Jaw, Edentulous, Partially/rehabilitation , Dental Implantation, Endosseous/methods , Treatment Outcome , Imaging, Three-Dimensional/methods , Guided Tissue Regeneration, Periodontal/methods
6.
Clin Oral Investig ; 28(6): 342, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801474

ABSTRACT

OBJECTIVE: To compare implant stability and clinical outcome in implant placement between osteotome sinus floor elevation (OSFE) with biphasic calcium phosphate (BCP) which consisted of 30% of hydroxyapatite (HA) and 70% of beta-tricalcium phosphate (ß -TCP) grafting material and OSFE without using bone grafting material. The research questions is whether the BCP provides any benefit in OSFE or not. MATERIALS AND METHODS: Thirty patients (30 implants) with a single edentulous area of upper premolar or molar were randomly separated into OSFE with BCP (n = 15) and OSFE without grafting (n = 15). The patients were reevaluated 3, 6, 9, and 12 months after implant loading. The clinical assessments (implant stability quotient (ISQ), implant survival-failure rate, and surgical complication) were analyzed. Together with radiographic assessments in 2D (endo-sinus bone gain (ESBG), mean marginal bone change (MMBC)) and 3D (endo-sinus bone gain in CBCT (ESBG-CT)) were evaluated, with a mean follow-up time of at least 12 months of functional loading and prosthetic complication. RESULTS: 20 remaining implants (OSFE with BCP, n = 10; OSFE without grafting, n = 10) were analyzed. Mean ISQ was 79.18 ± 3.43 in 1-year follow-up (ISQ; OSFE with BCP = 78.72 ± 3.46, OSFE without grafting = 79.65 ± 3.52). ISQ in both groups increased steadily without significant differences in each follow-up. (p = 0.56). In radiographic evaluation, at 6-, 9-, and 12-month, OSFE without grafting group showed statistically significant lower MMBC (p < 0.05). The 1-year clinical results showed that 2 implants failed in OSFE with BCP, and 1 implant failed in OSFE without grafting. CONCLUSIONS: Graft material "BCP" (HA30:TCP70) coupled with OSFE presents no extraordinary benefit in implant stability, clinical and radiographic outcome in 1-year follow-up. CLINICAL RELEVANCE: Clinically, OSFE with grafting materials provides no additional benefit. CLINICAL TRIAL REGISTRATION NUMBER: TCTR20210517008 (date of registration: May 17, 2021).


Subject(s)
Bone Substitutes , Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Hydroxyapatites , Sinus Floor Augmentation , Humans , Sinus Floor Augmentation/methods , Male , Female , Middle Aged , Treatment Outcome , Hydroxyapatites/therapeutic use , Dental Implantation, Endosseous/methods , Adult , Bone Substitutes/therapeutic use , Bone Transplantation/methods , Aged , Osteotomy/methods
7.
Head Face Med ; 20(1): 33, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760840

ABSTRACT

BACKGROUND: Dental cone beam computed tomography (CBCT) is commonly used to evaluate cancellous bone density before dental implant surgery. However, to our knowledge, no measurement approach has been standardized yet. This study aimed to evaluate the relationship between three different regions of interest (ROI) methods on cancellous bone density at the dental implant site using dental CBCT images. METHODS: Patients' dental CBCT images (n = 300) obtained before dental implant surgery were processed using Mimics (Materialise, Leuven, Belgium). At the potential implant sites, the rectangle, cylinder, and surrounding cylinder ROI methods were used to measure bone density. Repeated measures one-way analysis of variance was performed to compare the three ROI methods in terms of measurement results. Pearson correlation analysis was performed to identify the likely pair-wise correlations between the three ROI methods. RESULTS: The density value obtained using the surrounding cylinder approach (grayscale value [GV],523.56 ± 228.03) was significantly higher than the values obtained using the rectangle (GV, 497.04 ± 236.69) and cylinder (GV,493 ± 231.19) ROI methods in terms of results. Furthermore, significant correlations were noted between the ROI methods (r > 0.965; p < 0.001). CONCLUSIONS: The density measured using the surrounding cylinder method was the highest. The choice of method may not influence the trends of measurement results. TRIAL REGISTRATION: This study was approved by the Institutional Review Board of China Medical University Hospital, No. CMUH111-REC3-205. Informed consent was waived by the Institutional Review Board of China Medical University Hospital, CMUH111-REC3-205, owing to the retrospective nature of the study.


Subject(s)
Bone Density , Cone-Beam Computed Tomography , Humans , Cone-Beam Computed Tomography/methods , Female , Male , Middle Aged , Adult , Aged , Retrospective Studies , Preoperative Care/methods , Dental Implantation/methods , Young Adult , Dental Implants , Dental Implantation, Endosseous/methods
8.
PLoS One ; 19(5): e0290595, 2024.
Article in English | MEDLINE | ID: mdl-38776308

ABSTRACT

Non-invasive objective implant stability measurements are needed to determine the appropriate timing of prosthetic fitting after implant placement. We compared the early implant stability results obtained using resonance frequency analysis (RFA) and damping capacity analysis (DCA) depending on the implant length and bone density. Total 60, 4.0 mm diameter implants of various lengths (7.3 mm, 10 mm, and 13 mm) were used. In Group I, low-density bone was described using 15 PCF (0.24 g/cm3) polyurethane bone blocks, and in Group II, 30 PCF (0.48 g/cm3) polyurethane bone blocks were used to describe medium density bone. RFA was performed using an Osstell® Beacon+; DCA was performed using Anycheck®. Measurements were repeated five times for each implant. Statistical significance was set at P <0.05. In Group I, bone density and primary implant stability were positively correlated, while implant length and primary implant stability were positively correlated. In Group II, the implant stability quotient (ISQ) and implant stability test (IST) values in did not change significantly above a certain length. Primary implant stability was positively correlated with bone density and improved with increasing implant length at low bone densities. Compared with the Osstell® Beacon+, the simplicity of Anycheck® was easy to use and accessible.


Subject(s)
Bone Density , Dental Implants , Humans , Resonance Frequency Analysis , Dental Implantation, Endosseous/methods , Dental Implantation, Endosseous/instrumentation
9.
BMC Oral Health ; 24(1): 596, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778269

ABSTRACT

BACKGROUND: Dynamic navigation for implant placement is becoming popular under the concept of top-down treatment. The purpose of this study is to verify the accuracy of a dynamic navigation system for implant placement. METHODS: Implant placement was performed on 38 patients using 50 implant fixtures. Patients in group C were treated using a conventional method, in which thermoplastic clips were fixed to the teeth, and patients in group M were treated using thermoplastic clips fixed to a mouthpiece attached to the teeth. The groups were compared to verify whether an accuracy difference existed. A treatment planning support program for dental implants was used to superimpose the postoperative computed tomography data on the preoperative implant design data to measure the entry point, apex point, and angular deviation. RESULTS: The accuracy of group C was 1.36 ± 0.51 mm for entry point, 1.30 ± 0.59 mm for apex point, and 3.20 ± 0.74° for angular deviation. The accuracy of group M was 1.06 ± 0.31 mm for the entry point, 1.02 ± 0.30 mm for the apex point, and 2.91 ± 0.97° for angular deviation. Significant differences were observed in the entry and apex points between the two groups. CONCLUSIONS: The results indicate that group M exhibited better accuracy than group C, indicating that the stability of the thermoplastic clip is important for ensuring the accuracy of the dynamic navigation system. No previous studies have verified the accuracy of this system using the mouthpiece method, and additional data is required to confirm its accuracy for dental implant placement. The mouthpiece method improves the accuracy of implant placement and provides a safer implant treatment than the conventional method. TRIAL REGISTRATION: University hospital Medical Information Network Clinical Trials Registry (UMIN-CTR), Registration Number: UMIN000051949, URL: https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view_his.cgi on August 21, 2023.


Subject(s)
Dental Implantation, Endosseous , Humans , Male , Female , Dental Implantation, Endosseous/methods , Middle Aged , Surgery, Computer-Assisted/methods , Tomography, X-Ray Computed , Surgical Navigation Systems , Adult , Dental Implants , Aged , Patient Care Planning
10.
BMC Oral Health ; 24(1): 600, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778313

ABSTRACT

OBJECTIVES: To assess the accuracy of implant placement in models and satisfaction in dynamic navigation assisted postgraduate dental students training. METHODS: Postgraduate dental students who had at least one year of dental clinical practice with no experience in dental implant surgeries were included. Students were instructed to make treatment plans in the dynamic navigation system. Each student placed two maxillary right incisors, using freehand approach at first and then under dynamic navigation. The implant position was compared with treatment plan. Factors influencing the accuracy of implants placed under dynamic navigation were analyzed. Student acceptance towards the training and use of dynamic navigation was recorded using a questionnaire. RESULTS: A total of 21 students placed 42 implants. For freehand implant placement, the median entry point deviation, apex point deviation, and implant axis deviation was 3.79 mm, 4.32 mm, and 10.08°. For dynamic guided implant placement, the median entry point deviation, apex point deviation, and implant axis deviation was 1.29 mm, 1.25 mm, and 4.89° (p < 0.001). The accuracy of dynamic guided implant was not influenced by student gender or familiarity with computer games. All students were satisfied with the training. CONCLUSIONS: Dynamic navigation system assisted students in improving the accuracy of implant placement and was well accepted by students.


Subject(s)
Students, Dental , Humans , Female , Male , Surgery, Computer-Assisted/methods , Education, Dental, Graduate , Dental Implantation, Endosseous , In Vitro Techniques , Education, Dental/methods , Dental Implants , Surveys and Questionnaires , Dental Implantation/education , Clinical Competence
11.
PLoS One ; 19(5): e0304091, 2024.
Article in English | MEDLINE | ID: mdl-38781146

ABSTRACT

OBJECTIVE: To date, it remains a challenge to conduct maxillary sinus floor elevation (MSFE) owing to heterogeneity of anatomical structures and limited operative visibility of the maxillary sinus. The aim of this study is to investigate the safety of MSFE and the accuracy of implant placement using dynamic navigation. METHODS: Forty-two implants were placed in thirty-five patients requiring implantation in posterior maxilla with dynamic navigation. They were assigned to either lateral window sinus floor elevation (LWSFE) group (n = 22) or transcrestal sinus floor elevation (TSFE) group (n = 20) according to the residual alveolar bone height (RBH). Platform deviation, apex deviation and angular deviation between actual and planned implant placement were measured in precision evaluation software. Three deviations of two groups were compared via SPSS 22.0 software. RESULTS: Neither accidental bleeding nor perforation of Schneiderian membrane occurred in any patients. The actual window position of LWSFE was consistent with the preoperative design. There were no significant differences in platform, apex and angular deviations between the two groups (P > 0.05). CONCLUSION: In this study the dynamic navigation harvested clinically acceptable safety of MSFE and accuracy for implant placement in posterior maxillary region. The dynamic navigation would provide the clinician with assistance in achieving precise preoperative planning and reducing complications in surgical procedures. The granular bone grafts used in the LWSFE did not significantly affection on the accuracy of the simultaneous implant placement under the guidance of dynamic navigation.


Subject(s)
Maxillary Sinus , Sinus Floor Augmentation , Humans , Male , Female , Middle Aged , Sinus Floor Augmentation/methods , Maxillary Sinus/surgery , Adult , Aged , Dental Implants , Dental Implantation, Endosseous/methods , Dental Implantation, Endosseous/adverse effects , Maxilla/surgery , Surgery, Computer-Assisted/methods
12.
Wiad Lek ; 77(3): 462-471, 2024.
Article in English | MEDLINE | ID: mdl-38691788

ABSTRACT

OBJECTIVE: Aim: To study the specifics of the impact of immediate intraoperative loading with a splinting component on supporting tissues during a one-stage implantation protocol. PATIENTS AND METHODS: Materials and Methods: In the course of the study, orthopedic treatment was carried out for 55 patients aged 29 to 60 years. The following were performed: cone-beam computed tomography, software planning and intraoral scanning with an optical scanner, one-stage implantation protocol, assessment of implant stability with the Osstell ISQ device, microcirculation study in the peri-implant area using laser Doppler flowmetry (LDF). RESULTS: Results: It was established that around loaded implants there is an increase in blood flow and vasomotor activity of the microcirculatory channel of the supporting tissues, an increase in the volume of bone tissue and an increase in torque, which is the optimal forecast for the acceleration of the pace of osseointegration. CONCLUSION: Conclusions: The use of a splinting component during immediate intraoperative functional masticatory load accelerates the dynamics of bone tissue remodeling processes around the implant, which is an optimal prediction of osseointegration rates in various dental implantation protocols and is consistent with high values of the implant stability coefficient.


Subject(s)
Immediate Dental Implant Loading , Humans , Middle Aged , Adult , Male , Female , Splints , Osseointegration , Dental Implants , Dental Implantation, Endosseous/methods , Cone-Beam Computed Tomography
13.
Head Face Med ; 20(1): 30, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745297

ABSTRACT

BACKGROUND: Computer-guided implant surgery has improved the quality of implant treatment by facilitating the placement of implants in a more accurate manner. This study aimed to assess the accuracy of implant placement in a clinical setting using three techniques: dynamic navigation, static surgical guides, and freehand placement. We also investigated potential factors influencing accuracy to provide a comprehensive evaluation of each technique's advantages and disadvantages. MATERIALS AND METHODS: Ninety-four implants in 65 patients were included in this prospective study. Patients were randomly assigned to one of three groups: dynamic navigation, static surgical guides, or freehand placement. Implants were placed using a prosthetically oriented digital implant planning approach, and postoperative CBCT scans were superimposed on preoperative plans to measure accuracy. Seven deviation values were calculated, including angular, platform, and apical deviations. Demographic and consistency analyses were performed, along with one-way ANOVA and post-hoc tests for deviation values. RESULTS: The mean global platform, global apical, and angular deviations were 0.99 mm (SD 0.52), 1.14 mm (SD 0.56), and 3.66° (SD 1.64°) for the dynamic navigation group; 0.92 mm (SD 0.36), 1.06 mm (SD 0.47), and 2.52° (SD 1.18°) for the surgical guide group; and 1.36 mm (SD 0.62), 1.73 mm (SD 0.66), and 5.82° (SD 2.79°) for the freehand group. Both the dynamic navigation and surgical guide groups exhibited statistically significant differences in all values except depth deviations compared to the freehand group (p < 0.05), whereas only the angular deviation showed a significant difference between the dynamic navigation and surgical guide groups (p = 0.002). CONCLUSION: Our findings highlight the superior accuracy and consistency of dynamic navigation and static surgical guides compared to freehand placement in implant surgery. Dynamic navigation offers precision and flexibility. However, it comes with cost and convenience considerations. Future research should focus on improving its practicality. TRIAL REGISTRATION: This study was retrospectively registered at the Thai Clinical Trials Register-Medical Research Foundation of Thailand (MRF) with the TCTR identification number TCTR20230804001 on 04/08/2023. It was also conducted in accordance with the Declaration of Helsinki and approved by the institutional ethics committee at the Xian Jiaotong University Hospital of Stomatology, Xian, China (xjkqII[2021] No: 043). Written informed consent was obtained from all participants.


Subject(s)
Cone-Beam Computed Tomography , Dental Implantation, Endosseous , Surgery, Computer-Assisted , Adult , Aged , Female , Humans , Male , Middle Aged , Cone-Beam Computed Tomography/methods , Dental Implantation, Endosseous/methods , Prospective Studies , Surgery, Computer-Assisted/methods
14.
Clin Oral Investig ; 28(6): 313, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748295

ABSTRACT

OBJECTIVES: This randomized clinical trial focused on patients with thin peri-implant soft-tissue height (STH) (≤ 2.5 mm) and investigated the impact of an allogenic collagen scaffold (aCS) on supracrestal tissue height and marginal bone loss (MBL). MATERIAL & METHODS: Forty patients received bone level implants and were randomly assigned to the test group with simultaneous tissue thickening with aCS or the control group. After three months, prosthetic restoration occurred. STH measurements were taken at baseline (T0) and reopening surgery (TR), with MBL assessed at 12 months (T1). Descriptive statistics were calculated for continuous variables, and counts for categorical variables (significance level, p = 0.05). RESULTS: At T1, 37 patients were available. At T0, control and test groups had mean STH values of 2.3 ± 0.3 mm and 2.1 ± 0.4 mm. TR revealed mean STH values of 2.3 ± 0.2 mm (control) and 2.6 ± 0.7 mm (test), with a significant tissue thickening of 0.5 ± 0.6 mm in the test group (p < 0.03). At T1, control and test groups showed MBL mean values of 1.1 ± 0.8 mm and 1.0 ± 0.6 mm, with a moderate but significant correlation with STH thickening (-0.34), implant position (0.43), history of periodontitis (0.39), and smoking status (0.27). CONCLUSION: The use of an aCS protocol resulted in soft tissue thickening but did not reach a threshold to reliably reduce MBL compared to the control group within the study's limitations. CLINICAL RELEVANCE: Peri-implant STH is crucial for maintaining peri-implant marginal bone stability. Marginal bone stability represents a crucial factor in prevention of peri-implantitis development. German register of clinical trial registration number DRKS00033290.


Subject(s)
Alveolar Bone Loss , Collagen , Tissue Scaffolds , Humans , Male , Female , Middle Aged , Alveolar Bone Loss/prevention & control , Treatment Outcome , Dental Implantation, Endosseous/methods , Adult , Aged , Dental Implants
15.
BMC Oral Health ; 24(1): 550, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734597

ABSTRACT

BACKGROUND: Large cross-arch free-end surgical guides can obscure the visual field, compromising surgical accuracy due to insufficient stability at the free-end. This in vitro study aims to evaluate the accuracy of novel digital non-cross-arch surgical guides designed for implant placement at the mandibular free-end, incorporating tooth undercut retention and screw-bone support. MATERIALS AND METHODS: A mandibular dental model lacking left molars was utilized to fabricate unilateral (cross-arch) tooth-supported surgical guides (GT I, n = 20). Subsequently, two additional types of surgical guides were fabricated: GT II (covering two teeth, n = 20) and GT III (covering three teeth, n = 20). These novel surgical guides were designed to utilize the undercut of the supporting teeth for retention and enhance stability with screw-bone support at the guide's free-end. Furthermore, 60 identical guiding blocks were assembled on the three types of surgical guides to facilitate the implants' insertion. On a phantom head, 120 implant replicas were placed at the Federal Dentaire Internationale (FDI) teeth positions #36 and #37 on the dental model, employing a combination of surgical guides and guiding blocks. To assess accuracy, planned and placed implant positions were compared using intraoral optical scanning. Discrepancies in angulation and linear deviations, including the coronal/apical 3D deviations, lateral deviation as well as depth deviation, were measured. Statistical analysis was performed using two-way ANOVA and Bonferroni test (α = 0.05). RESULTS: GT I exhibited significantly largest discrepancies, including angular and linear deviations at the crest and apex at every implant site. Especially in depth, at implant site #36, the mean deviation value of GT I (0.27 ± 0.13 mm) was twice as large as GT III (0.13 ± 0.07 mm), and almost twice as large as GT II (0.14 ± 0.08 mm). However, at implant site #37, this deviation increased to almost a five-fold relationship between GT I (0.63 ± 0.12 mm) and II (0.14 ± 0.09 mm), as well as between GT I and III (0.13 ± 0.09 mm). No significant discrepancies existed between the novel surgical guides at either implant site #36 or #37. CONCLUSION: This study provides a practical protocol for enhancing accuracy of implant placement and reducing the size of free-end surgical guides used at mandibular molar sites.


Subject(s)
Bone Screws , Mandible , Models, Dental , Surgery, Computer-Assisted , Humans , Mandible/surgery , Surgery, Computer-Assisted/methods , Dental Implantation, Endosseous/methods , Computer-Aided Design , In Vitro Techniques
16.
Int J Implant Dent ; 10(1): 21, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691252

ABSTRACT

BACKGROUND: Beta-tricalcium phosphate (ß-TCP) is a biocompatible ceramic material widely used in the field of oral regeneration. Due to its excellent biological and mechanical properties, it is increasingly utilized for alveolar ridge augmentation or guided bone regeneration (GBR). With recent advances in computer-aided design and manufacturing (CAD/CAM), ß-TCP can now be used in the form of digitally designed patient-specific scaffolds for customized bone regeneration (CBR) of advanced defects in a two-stage implant therapy concept. In this case report following the CARE case report guidelines, we present a novel application of a patient-specific ß-TCP scaffold in pre-implant mandibular alveolar ridge augmentation. CASE PRESENTATION: A 63-year-old female patient with significant horizontal bone loss in the posterior mandible was treated with a custom ß-TCP scaffold in the context of a two-stage backward-planned implant therapy. Cone-beam computed tomography nine months after augmentation showed successful integration of the scaffold into the surrounding bone, allowing implant placement. Follow-up until two years after initial surgery showed excellent oral and peri-implant health. CONCLUSIONS: This case highlights the potential of patient-specific ß-TCP scaffolds for alveolar ridge augmentation and their advantage over traditional techniques, including avoidance of xeno-, allo-, and autografts. The results provide encouraging evidence for their use in clinical practice. Patient-specific ß-TCP scaffolds may be a promising alternative for clinicians seeking to provide their patients with safe, predictable, and effective alveolar ridge augmentation results in customized bone regeneration procedures.


Subject(s)
Alveolar Ridge Augmentation , Calcium Phosphates , Cone-Beam Computed Tomography , Tissue Scaffolds , Humans , Alveolar Ridge Augmentation/methods , Calcium Phosphates/therapeutic use , Female , Middle Aged , Mandible/surgery , Bone Regeneration/drug effects , Dental Implantation, Endosseous/methods , Computer-Aided Design , Alveolar Bone Loss/surgery
17.
Medicina (Kaunas) ; 60(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38792943

ABSTRACT

This report describes the use of Self Inflating Tissue Expanders (SITEs) to rehabilitate severely atrophic edentulous mandibular ridges, enabling successful bone grafting and implant placement. The treatment resulted in stable and complication-free implants over a seven-year follow-up, demonstrating SITEs' effectiveness in providing sufficient bone volume and soft tissue coverage for dental implants.


Subject(s)
Mandible , Humans , Mandible/surgery , Jaw, Edentulous/surgery , Tissue Expansion Devices , Atrophy/surgery , Female , Middle Aged , Male , Alveolar Ridge Augmentation/methods , Dental Implants , Dental Implantation, Endosseous/methods
18.
Int J Periodontics Restorative Dent ; 44(3): 1-12, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787705

ABSTRACT

Titanium has been proposed as a mesh material for guided bone regeneration (GBR) since the 1990s. To overcome difficulties in shaping and adapting meshes to the defect, digital techniques were introduced to digitally print meshes capable of fitting the bone perfectly, reproduced through the patient's CT scan. Five patients were included in this case series, and their CBCT data were acquired and sent to the producer of the titanium meshes. 3D regenerative surgery was performed with titanium meshes and a mix of demineralized bovine bone matrix (DBBM) and autogenous bone (1:1 ratio). Radiographic measures were evaluated on paraxial sections of the CBCT through a dedicated software. When possible, regenerated bone samples were obtained at implant insertion. Four out of five regenerated areas healed without local or systemic complications. One mesh was removed after 2 months and 2 weeks due to exposure. The mean vertical bone gain was 4.3 ± 1.5 mm (range: 2.5 to 7 mm). Two histologic samples were obtained. In sample 1, bone tissue area and graft material area were 44.4% and 12.5%, respectively; in sample 2, the same parameters were 15.6% and 16.9%, respectively.


Subject(s)
Computer-Aided Design , Cone-Beam Computed Tomography , Surgical Mesh , Titanium , Humans , Middle Aged , Male , Female , Adult , Guided Tissue Regeneration, Periodontal/methods , Bone Regeneration/physiology , Animals , Cattle , Dental Implantation, Endosseous/methods , Bone Transplantation/methods , Aged , Bone Matrix/transplantation
19.
Int J Periodontics Restorative Dent ; 44(3): 1-11, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787707

ABSTRACT

This pilot case series histologically and histometrically investigated the influence of implant surface hydrophilicity on early osseointegration and peri-implant bone formation around simultaneously grafted immediate implants. Hydrophilic test (SLAactive) or hydrophobic control (SLA) implants were immediately placed in maxillary molar extraction sites and simultaneously grafted with mineralized cancellous bone allograft (MCBA). Core biopsy samples were obtained at 3 weeks postplacement and histometrically compared for bone-to-implant contact, quantity of graft material, new bone formation, tissue reaction, and inflammatory scores. Test implants showed a more pronounced implant-bone apposition, peri-implant bone formation, and bone aggregate than control implants. Trabecular bone formation and maturation were also qualitatively advanced around test implants. These results indicate that the combination of implant surface and bone graft may affect periimplant bone formation.


Subject(s)
Dental Implants , Hydrophobic and Hydrophilic Interactions , Osseointegration , Osteogenesis , Surface Properties , Titanium , Humans , Female , Male , Osteogenesis/physiology , Pilot Projects , Middle Aged , Adult , Bone Transplantation/methods , Immediate Dental Implant Loading/methods , Maxilla/surgery , Maxilla/pathology , Dental Implantation, Endosseous/methods
20.
Int J Periodontics Restorative Dent ; 44(3): 1-10, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787708

ABSTRACT

This study aimed to investigate the dimensional stability and quality of the alveolar ridge augmented using a synthetic bone block (SBB) at damaged extraction sockets. Four participants were included, and socket augmentation was performed using SBB and a collagen membrane. Intraoral and CBCT scans were performed before extraction (baseline), immediately postoperative (IP), and at 6 months postoperative (6M). At 6M, a trephine biopsy sample was obtained during implant placement, and the sample was observed using synchrotron. Soft tissue profile changes were assessed using profilometric analysis of the intraoral scan data, while dimensional changes in hard tissue were evaluated based on CBCT measurements. Bone quality was analyzed using synchrotron imaging. There were minimal changes in the soft tissue profile between baseline and IP, baseline and 6M, and IP and 6M (0.11 ± 1.08 mm3, 0.02 ± 0.8 mm3, and -0.65 ± 0.82 mm3, respectively). Horizontal bone width was measured at 1-mm increments from the augmented bone crest to 5 mm apically and revealed only a slight reduction (< 1 mm) at all levels between IP and 6M. The augmented bone height was well maintained from IP until 6M (-0.21 ± 0.53 mm). Synchrotron analysis revealed low to moderate bone quality after 6M (percentage of new bone: 16.49% ± 4.91%). Socket augmentation using SBB appears to be a viable technique for regenerating damaged extraction sockets, with the augmented ridge dimensions maintained up to 6M. Further long-term randomized clinical trials are needed.


Subject(s)
Alveolar Ridge Augmentation , Cone-Beam Computed Tomography , Synchrotrons , Tooth Socket , Humans , Tooth Socket/surgery , Tooth Socket/diagnostic imaging , Pilot Projects , Alveolar Ridge Augmentation/methods , Middle Aged , Male , Female , Tooth Extraction , Dental Implantation, Endosseous/methods , Adult , Bone Substitutes/therapeutic use , Aged , Collagen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...