Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20.097
Filter
1.
J Mater Sci Mater Med ; 35(1): 28, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38833196

ABSTRACT

AIM: This study aimed to comprehensively assess the biocompatibility and toxicity profiles of poly(methyl methacrylate) (PMMA) and its monomeric unit, methyl methacrylate (MMA), crucial components in dental materials for interim prosthetic restorations. METHODOLOGY: Molecular docking was employed to predict the binding affinities, energetics, and steric features of MMA and PMMA with selected receptors involved in bone metabolism and tissue development, including RANKL, Fibronectin, BMP9, NOTCH2, and other related receptors. The HADDOCK standalone version was utilized for docking calculations, employing a Lamarckian genetic algorithm to explore the conformational space of ligand-receptor interactions. Furthermore, molecular dynamics (MD) simulations over 100 nanoseconds were conducted using the GROMACS package to evaluate dynamic actions and structural stability. The LigandScout was utilized for pharmacophore modeling, which employs a shape-based screening approach to identify potential ligand binding sites on protein targets. RESULTS: The molecular docking studies elucidated promising interactions between PMMA and MMA with key biomolecular targets relevant to dental applications. MD simulation results provided strong evidence supporting the structural stability of PMMA complexes over time. Pharmacophore modeling highlighted the significance of carbonyl and hydroxyl groups as pharmacophoric features, indicating compounds with favorable biocompatibility profiles. CONCLUSION: This study underscores the potential of PMMA in dental applications, emphasizing its structural stability, molecular interactions, and safety considerations. These findings lay a foundation for future advancements in dental biomaterials, guiding the design and optimization of materials for enhanced biocompatibility. Future directions include experimental validation of computational findings and the development of PMMA-based dental materials with improved biocompatibility and clinical performance.


Subject(s)
Biocompatible Materials , Dental Materials , Materials Testing , Molecular Docking Simulation , Molecular Dynamics Simulation , Polymethyl Methacrylate , Biocompatible Materials/chemistry , Polymethyl Methacrylate/chemistry , Dental Materials/chemistry , Humans , Ligands , Computer Simulation , Binding Sites
2.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822501

ABSTRACT

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Subject(s)
Composite Resins , Dental Bonding , Dentin , Fluorides, Topical , Shear Strength , Silver Compounds , Humans , Silver Compounds/chemistry , Dentin/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Quaternary Ammonium Compounds/chemistry , Materials Testing , Dental Restoration, Permanent/methods , Dental Materials/chemistry , Dental Stress Analysis , Tooth Demineralization/prevention & control , In Vitro Techniques , Acrylic Resins/chemistry , Color
3.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
4.
J Contemp Dent Pract ; 25(3): 221-225, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690693

ABSTRACT

AIM: This study aimed to assess the color stability of bioactive restorative materials vs nanohybrid resin composites after 3 months of immersion in three frequently consumed beverages. MATERIALS AND METHODS: Thirty disk-shaped specimens of Giomer dental restorative material (Shofu, Japan) and nanohybrid resin composite (Tokuyama, Japan) were performed using a Teflon mold. Super-Snap system (Shofu, Japan) was utilized to finish and polish the specimens to be preserved for 24 hours in distilled water at 37°C. The samples had been divided into three subgroups (Coffee, tea, Pepsi) (n = 5). The initially displayed color measurements of the samples were performed using a spectrophotometer (VITA Easyshade® V). After 7 days, 30 days, and 90 days, color measurements were repeated, and the E of each sample was estimated. E of each sample was calculated. RESULTS: The Giomer group showed statistically significant higher E values than the nanohybrid resin composite where the p-value was ≤0.0001. Tea subgroup showed the highest statistically significant E values in both groups where the p-value was ≤ 0.0001. The highest statistically significant color change was recorded at 3 months. CONCLUSION: The color of bioactive restorative material is less stable if compared with nanohybrid resin composite. CLINICAL SIGNIFICANCE: As tea and coffee are popular beverages, particularly in Middle Eastern nations, dentists must advise patients about the color change of resin restorations. Patients are advised to brush their teeth immediately after consuming these beverages. How to cite this article: Saber EH, Abielhassan MH, Abed YA, et al. Color Stability of Bioactive Restorative Material vs Nanohybrid Resin Composite: An In Vitro Study. J Contemp Dent Pract 2024;25(3):221-225.


Subject(s)
Color , Composite Resins , Materials Testing , Tea , Composite Resins/chemistry , In Vitro Techniques , Coffee , Spectrophotometry , Dental Restoration, Permanent , Nanocomposites/chemistry , Dental Materials/chemistry , Humans , Beverages
5.
J Contemp Dent Pract ; 25(3): 241-244, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690697

ABSTRACT

AIM: The current study was designed to assess the linear dimensional changes and adaptability of two heat-cured denture base resins using various cooling methods. MATERIALS AND METHODS: To prepare a total of 90 acrylic resin samples (45 acrylic resin samples for each material), four rectangular stainless-steel plates measuring 25 × 25 × 10 mm were fabricated. For both groups, the material was put into the mold at the dough stage. Group I - SR Triplex Hot Heat Cure acrylic; group II - DPI Heat Cure acrylic. Both groups used the same curing procedure. One of the following three techniques was used to cool the material (15 samples from each material) once the curing cycle was finished: (A) water bath, (b) quenching, and (C) air. A traveling microscope was used to measure the distance between the markings on the acrylic samples. The data was recorded and statistically analyzed. RESULTS: In SR Triplex Hot heat cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.242 ± 0.05), followed by the air technique (0.168 ± 0.11) and the least was found in the water bath technique (0.146 ± 0.01). In DPI Heat Cure acrylic material, the maximum linear dimensional changes were found in the quenching technique (0.284 ± 0.09), followed by the air technique (0.172 ± 0.18) and the least was found in the water bath technique (0.158 ± 0.10). There was a statistically significant difference found between these three cooling techniques. On comparison of adaptability, the water bath technique, the marginal gap SR Triplex Hot was 0.012 ± 0.02 and DPI Heat Cure was 0.013 ± 0.02. In the quenching technique, the marginal gap SR Triplex Hot was 0.019 ± 0.04 and DPI Heat Cure was 0.016 ± 0.04. In the air technique, the marginal gap SR Triplex Hot was 0.017 ± 0.01 and DPI Heat Cure was 0.019 ± 0.01. CONCLUSION: The present study concluded that among the different cooling methods, the water bath technique had the least linear dimensional change, followed by the air and quenching techniques. When comparing the materials, DPI Heat Cure acrylic resin showed a greater linear dimensional change than SR Triplex Hot heat cure acrylic resin. CLINICAL SIGNIFICANCE: During polymerization, heat-cured acrylic resins experience dimensional changes. Shrinkage and expansion are dimensional changes that occur in heat-cured acrylic resins and have an impact on the occlusal relationship and denture fit. However, the denture base's material qualities and the different temperature variations it experiences during production may have an impact on this. How to cite this article: Kannaiyan K, Rathod A, Bhushan P, et al. Assessment of Adaptability and Linear Dimensional Changes of Two Heat Cure Denture Base Resin with Different Cooling Techniques: An In Vitro Study. J Contemp Dent Pract 2024;25(3):241-244.


Subject(s)
Acrylic Resins , Denture Bases , Hot Temperature , Materials Testing , Acrylic Resins/chemistry , In Vitro Techniques , Cold Temperature , Dental Materials/chemistry
6.
Int J Prosthodont ; 37(7): 285-307, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38819942

ABSTRACT

PURPOSE: The purpose of this systematic review and meta-analysis was to compare the influence of fabrication method (conventional, subtractive, and additive procedures) and manufacturing trinomial (technology, printer, and material combination) on the marginal and internal fit of cobaltchromium (Co-Cr) tooth-supported frameworks. MATERIALS AND METHODS: An electronic systematic review was performed in five data bases: MEDLINE/PubMed, Embase, World of Science, Cochrane, and Scopus. Studies that reported the marginal and internal discrepancies of tooth-supported Co-Cr additive manufacturing (AM) frameworks were included. Two authors independently completed the quality assessment of the studies by applying the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. A third examiner was consulted to resolve lack of consensus. RESULTS: A total of 31 articles were included and classified based on the evaluation method: manufacturing accuracy, the dual- or triple-scan method, stereomicroscope, optical coordinate measurement machine, microCT, profilometer, and silicone replica. Six subgroups were created: 3D Systems, Bego, Concept Laser, EOS, Kulzer, and Sisma. Due to the heterogeneity and limited data available, only the silicone replica group was considered for meta-analysis. The metaanalysis showed a mean marginal discrepancy of 91.09 µm (I2 = 95%, P < .001) in the conventional group, 77.48 µm (I2 = 99%, P < .001) in the milling group, and 82.92 µm (I2 = 98%, P < .001) in the printing group. Additionally, a mean internal discrepancy of 111.29 µm (I2 = 94%, P < .001) was obtained in the conventional casting group, 121.96 µm (I2 = 100%, P < .001) in the milling group, and 121.25 µm (I2 = 99%, P < .001) in the printing group. CONCLUSIONS: Manufacturing method and selective laser melting (SLM) metal manufacturing trinomial did not impact the marginal and internal discrepancies of Co-Cr frameworks for the fabrication of tooth-supported restorations.


Subject(s)
Chromium Alloys , Computer-Aided Design , Humans , Chromium Alloys/chemistry , Dental Marginal Adaptation , Printing, Three-Dimensional , Denture Design , Dental Prosthesis Design , Technology, Dental , Dental Materials/chemistry
7.
Environ Toxicol Pharmacol ; 108: 104462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38710242

ABSTRACT

Nanoparticles (NPs) have become an important part of everyday life, including their application in dentistry. Aside from their undoubted benefits, questions regarding their risk to human health, and/or genome have arisen. However, studies concerning cytogenetic effects are completely absent. A group of women acutely exposed to an aerosol released during dental nanocomposite grinding was sampled before and after the work. Exposure monitoring including nano (PM0.1) and respirable (PM4) fractions was performed. Whole-chromosome painting for autosomes #1, #4, and gonosome X was applied to estimate the pattern of cytogenetic damage including structural and numerical alterations. The results show stable genomic frequency of translocations (FG/100), in contrast to a significant 37.8% (p<0.05) increase of numerical aberrations caused by monosomies (p<0.05), but not trisomies. Monosomies were mostly observed for chromosome X. In conclusion, exposure to nanocomposites in stomatology may lead to an increase in numerical aberrations which can be dangerous for dividing cells.


Subject(s)
Nanocomposites , Occupational Exposure , Humans , Female , Nanocomposites/toxicity , Nanocomposites/chemistry , Middle Aged , Occupational Exposure/adverse effects , Chromosome Aberrations , Adult , Dental Materials/toxicity , Chromosome Painting
8.
J Breath Res ; 18(3)2024 05 23.
Article in English | MEDLINE | ID: mdl-38744271

ABSTRACT

Despite the widespread use of dental restorative materials, little information exists in the literature regarding their potential impact on bad breath. This in vitro study aims to fill this gap by investigating the influence of different restorative materials on the release of hydrogen sulfide (H2S). Thirteen diverse dental restorative materials, including composites, flowable composites, glass ionomer restorative materials, high-copper amalgam, and CAD-CAM blocks, were examined. Cellulose Sponge models were used as negative and positive control. All samples were prepared with a diameter of 5 mm and a height of 2 mm. Except for the negative control group, all samples were embedded into Allium cepa L., and the emitted H2S was measured using the Wintact W8802 hydrogen sulfide monitor. Surface roughness's effect on emission was explored by roughening the surfaces of CAD-CAM material samples, and gas emission was measured again. The data were statistically analyzed using the Kruskal-Wallis test and DSCF pairwise comparison tests. Fiber-reinforced flowable composite (EverX Flow), amalgam (Nova 70-caps), and certain composite materials (IPS Empress Direct, Tetric Evoceram, Admira Fusion X-tra) released higher H2S concentrations compared to the negative control. The H2S release period lasted longer in the same materials mentioned above, along with G-aenial Universal Injectable. Indirectly used materials, such as GC Cerasmart, Vita Enamic, and Vita YZ HT, demonstrated significantly lower emissions compared to other direct restoratives. Importantly, the surface roughness of indirect materials did not significantly affect peak H2S concentrations or release times. The study reveals variations in H2S release among restorative materials, suggesting potential advantages of indirect restorative materials in reducing H2S-induced halitosis. This comprehensive understanding of the relationship between restorative materials and halitosis can empower both dental professionals and patients to make well-informed treatment choices. Notably, there is evidence supporting the enhanced performance of indirect restorative materials for individuals affected by halitosis.


Subject(s)
Dental Materials , Halitosis , Hydrogen Sulfide , Humans , Halitosis/therapy , Hydrogen Sulfide/analysis , Dental Materials/chemistry , In Vitro Techniques , Dental Restoration, Permanent/methods , Composite Resins/chemistry , Materials Testing , Dental Amalgam/chemistry , Surface Properties
9.
BMC Oral Health ; 24(1): 641, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816807

ABSTRACT

BACKGROUND: Different processing techniques are employed to obtain poly (methyl methacrylate) (PMMA) with consistent surface quality in terms of topography and tribological function. The purpose of this research is to evaluate its influence on the surface height distribution. METHODS: In this research, samples of conventional and CAD/CAM acrylic resins were prepared. The following surface roughness parameters were extracted from the profilometric readings: arithmetic mean roughness (Pa), skewness (Psk) and kurtosis (Pku). Profilometric profiles were additionally obtained. RESULTS: The average roughness (Pa) with the conventional technique was significantly higher compared to CAD/CAM (t = 4.595; P < 0.001). Heat-cured resins presented the highest mean Pa (F = 6.975; P = 0.06). Heat-cured and milled resins show lower coefficient variation (CV) values, indicating more consistent surface finishing. The surface profiles revealed distinct characteristics in terms of skewness and kurtosis. CONCLUSIONS: The surface processing method, chemical composition and resin type significantly influence the surface finishing of the resin. The CAD/CAM resins exhibited superior results in terms of surface arithmetic mean roughness (Pa). However, heat-cured resin revealed to present the better surface consistency.


Subject(s)
Acrylic Resins , Computer-Aided Design , Materials Testing , Polymethyl Methacrylate , Surface Properties , Acrylic Resins/chemistry , Polymethyl Methacrylate/chemistry , Dental Materials/chemistry , Humans , Hot Temperature
10.
Clin Exp Dent Res ; 10(3): e856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818850

ABSTRACT

OBJECTIVES: This study aimed to compare the flexural strength of monolithic zirconia with different thicknesses and two sintering techniques. MATERIALS AND METHODS: This in vitro, experimental study was conducted on 28 monolithic zirconia discs with 10 mm diameter and 0.5 (n = 14) and 1.2 mm (n = 14) thickness. Each group was divided into two subgroups (n = 7) for fast (60 min) and conventional (120 min) sintering at 1450°C. After sintering, the specimens were thermocycled and their flexural strength was measured by piston-on-3-balls technique in a universal testing machine (0.5 mm/min, 1.2 mm pin diameter). Data were analyzed by the Weibull test, one-way analysis of variance, and Tukey's test (α = .05). RESULTS: The flexural strength of specimens with 1.2 mm thickness was significantly higher than that of specimens with 0.5 mm thickness (p < .05). The flexural strength of 1.2 mm/120-min group was slightly, but not significantly, higher than that of 1.2 mm/60-min group (p > .05). The flexural strength of 0.5 mm/120-min group was slightly, but not significantly, higher than that of 0.5 mm/60-min group (p > .05). CONCLUSION: The increase in thickness of monolithic zirconia increases its flexural strength; however, increasing the sintering time appears to have no significant effect on the flexural strength of monolithic zirconia.


Subject(s)
Dental Materials , Flexural Strength , Materials Testing , Zirconium , Zirconium/chemistry , Dental Materials/chemistry , Dental Stress Analysis , Surface Properties , Hot Temperature , In Vitro Techniques
11.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791097

ABSTRACT

The field of dental materials is rapidly evolving, and this Special Issue of the International Journal of Molecular Sciences offers a comprehensive examination of the latest advancements in process design and development strategies [...].


Subject(s)
Dental Materials , Dental Materials/therapeutic use , Humans
12.
Dent Mater J ; 43(3): 446-452, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692905

ABSTRACT

This study evaluates the wear resistance of dental paste-like bulk-fill composites compared to conventional paste-like composite resins using an intraoral scanner and 3-D analyzing software. Six different dental composite materials, including five bulk-fill composites and one conventional composite, were tested alongside natural human enamel as a control group. A computer-controlled chewing simulator for wear testing. A one-way ANOVA test was used to identify any significant differences between the means of the tested dental composite materials α=0.05. The results showed variability among bulk-fill composites, with some demonstrating wear resistance similar to conventional composites (p<0.05). Human enamel displayed the lowest wear values, but some bulk-fill composites matched this resistance(p>0.05). Significant variability was observed among bulk-fill composites but the results were comparable to those of conventional composites. The enamel control group demonstrated the lowest wear values, with some bulk-fill composites showing similar wear resistance. This study provides valuable information about the wear resistance of contemporary bulk-fill composite materials, commonly used in current clinical practice, contributing to enhancing clinical procedures.


Subject(s)
Composite Resins , Dental Enamel , Dental Restoration Wear , Materials Testing , Surface Properties , Composite Resins/chemistry , Humans , In Vitro Techniques , Imaging, Three-Dimensional , Dental Materials/chemistry
13.
Dent Mater J ; 43(3): 453-459, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692907

ABSTRACT

To evaluate the degree of conversion (DC), surface hardness (SH), and flexural strength (FS) of resin-based core build-up materials. Core build-up materials used were: MultiCore Flow (MCF); Activa (ACT); Core-X Flow (CXF); and everX flow (EVX), and DC, SH and FS were measured. An increase of DC was identified for all materials post-cure, except for EVX. The DC change percentage ranged from 5%-33%, and EVX was displayed the greatest DC rate. All materials displayed an SH increase after 30 days and the greatest increase was observed in ACT. At 1 h, the SH of EVX and CXF was different from the other materials. At 30 days, MCF displayed the greatest SH. All materials displayed an increase in their FS after 30 days except for EVX, and ranging 3%-36% were noticed. Differences observed between materials, thus clinician should be acquainted mechanical properties of these materials to ensure the success of the restorations.


Subject(s)
Composite Resins , Flexural Strength , Hardness , Materials Testing , Surface Properties , Composite Resins/chemistry , Dental Materials/chemistry , Dental Stress Analysis , Polymerization , Glass/chemistry
14.
Clin Exp Dent Res ; 10(3): e884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798053

ABSTRACT

OBJECTIVES: This study compared the effects of glazing versus polishing on mechanical, optical, and surface properties of zirconia ceramics with different translucencies. MATERIALS AND METHODS: In this in vitro study, 120 bar-shaped specimens (25 × 4 × 1.2 mm) were fabricated from three different types of zirconia with different translucencies (n = 40, DD Bio ZW, ZX2, and Cube X2). After sintering, each zirconia group was randomly divided into five subgroups of control (glazing), glazing + bur abrasion, glazing + bur abrasion + polishing with EVE Diacera® kit, glazing + bur abrasion + reglazing, and glazing + bur abrasion + polishing with EVE Diacera® kit + reglazing. The specimens underwent surface roughness, hardness, flexural strength, and translucency tests, as well as X-ray diffraction (XRD) and scanning electron microscopy (SEM) for assessment of surface topography. Data were analyzed by one-way analysis of variance, Tukey test, and Pearson test (α = .05). RESULTS: Flexural strength, surface hardness, and translucency were significantly correlated with zirconia type. ZW zirconia had significantly higher flexural strength and surface hardness and significantly lower translucency than Cube X2 and ZX2 (p < .001). Surface roughness had no significant correlation with zirconia type (p = .274). Polishing created the smoothest, and bur abrasion created the roughest surface (p < .001). Flexural strength and hardness in most experimental groups were significantly lower than in the control group (p < .001). Translucency was not significantly different in bur abrasion and polishing groups, compared with the control group; however, reglazing significantly increased the translucency (p < .001). SEM micrographs confirmed the surface roughness results. XRD showed monoclinic phase only in reglazed groups. CONCLUSION: Of different surface treatments, polishing improved the surface properties and caused the smallest change in mechanical properties of zirconia with different translucencies.


Subject(s)
Ceramics , Dental Polishing , Materials Testing , Microscopy, Electron, Scanning , Surface Properties , Zirconium , Zirconium/chemistry , Dental Polishing/methods , Ceramics/chemistry , Hardness , Dental Materials/chemistry , Flexural Strength , X-Ray Diffraction , In Vitro Techniques
15.
Clin Exp Dent Res ; 10(3): e880, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38798134

ABSTRACT

OBJECTIVE: To study the feasibility of using poly methyl methacrylate (PMMA) filament and fused deposition modeling (FDM) to manufacture denture bases via the development of a study that considers both conventional and additive-based manufacturing techniques. MATERIALS AND METHODS: Five sample groups were compared: heat and cold cured acrylic resins, CAD/CAM milled PMMA, 3D-printed PMMA (via FDM), and 3D-printed methacrylate resin (via stereolithography, SLA). All groups were subjected to mechanical testing (flexural strength, impact strength, and hardness), water sorption and solubility tests, a tooth bonding test, microbiological assessment, and accuracy of fit measurements. The performance of sample groups was referred to ISO 20795-1 and ISO/TS 19736. The data was analyzed using one-way ANOVA. RESULTS: Samples manufactured using FDM performed within ISO specifications for mechanical testing, water sorption, and solubility tests. However, the FDM group failed to achieve the ISO requirements for the tooth bonding test. FDM samples presented a rough surface finish which could ultimately encourage an undesirable high level of microbial adhesion. For accuracy of fit, FDM samples showed a lower degree of accuracy than existing materials. CONCLUSIONS: Although FDM samples were a cost-effective option and were able to be quickly manufactured in a reproducible manner, the results demonstrated that current recommended testing regimes for conventionally manufactured denture-based polymers are not directly applicable to additive-manufactured denture base polymers. Therefore, new standards should be developed to ensure the correct implementation of additive manufacturing techniques within denture-based fabrication workflow.


Subject(s)
Acrylic Resins , Computer-Aided Design , Denture Bases , Materials Testing , Polymethyl Methacrylate , Printing, Three-Dimensional , Denture Bases/microbiology , Polymethyl Methacrylate/chemistry , Acrylic Resins/chemistry , Denture Design , Humans , Feasibility Studies , Dental Materials/chemistry , Dental Bonding/methods , Surface Properties , Stereolithography , Flexural Strength , Hardness , Solubility
16.
Oper Dent ; 49(3): 245-246, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38807320
17.
J Clin Pediatr Dent ; 48(3): 107-119, 2024 May.
Article in English | MEDLINE | ID: mdl-38755989

ABSTRACT

This research study aimed to investigate the impact of probiotic mouthwash and kefir on the surface characteristics, specifically surface roughness and microhardness, of different restorative materials, as well as permanent and deciduous tooth enamels. Thirty disc-shaped specimens were prepared from composite resin (G-ænial Posterior (GP)), polyacid-modified composite resin (compomer) (Dyract-XP (DXP)), and resin-modified glass ionomer cement (Ionoseal (IS)). Additionally, thirty specimens of enamel were obtained from permanent teeth (PT) and thirty from deciduous teeth (DT) by embedding buccal and lingual sections, acquired through vertical sectioning of 15 permanent and 15 deciduous human tooth crowns in the mesiodistal orientation within acrylic resin blocks. The specimens were then categorized into three distinct groups and immersed for 14 days in one of the following solutions: distilled water, kefir or probiotic mouthwash. The mean surface roughness values of all specimens were assessed using an atomic force microscope, while the mean surface microhardness was measured using a Vickers hardness measuring instrument. The results revealed a statistically significant difference in mean surface roughness among the various restorative materials (p < 0.001). Among the restorative materials, the IS material exhibited notably higher mean surface roughness values than other restorative materials and tooth enamel, while no significant differences were observed between the PT and DT groups. Importantly, the main effect of the solutions under investigation was not statistically significant (p = 0.208). No significant difference was found between the surface roughness values of specimens subjected to the different solutions. When evaluating the effects of materials and solutions on microhardness, the main effects of material and solution variables and the influence of material-solution interactions were statistically significant (p < 0.001). Taken together, these results indicate that consistent use of kefir or probiotic mouthwashes may impact the surface properties of various restorative materials and tooth enamel.


Subject(s)
Composite Resins , Dental Enamel , Dental Restoration, Permanent , Glass Ionomer Cements , Hardness , Probiotics , Surface Properties , Humans , Dental Enamel/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Dental Restoration, Permanent/methods , Compomers/chemistry , Tooth, Deciduous , Mouthwashes/chemistry , Mouthwashes/pharmacology , Materials Testing , Dental Materials/chemistry
19.
Clin Oral Investig ; 28(6): 316, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38750289

ABSTRACT

OBJECTIVE: This study aimed to evaluate the fracture strength of teeth restored using fiber-reinforced direct restorative materials after endodontic treatment with a conservative mesio-occlusal access cavity design. MATERIALS AND METHODS: A total of 100 extracted intact mandibular first molars were selected and distributed into a positive control group where teeth left intact and the following four test groups comprised of teeth with conservative mesio-occlusal access cavities that had undergone root canal treatment (n = 20/group): access cavity without restoration (negative control), bulk-fill resin composite with horizontal glass fiber post reinforcement, fiber-reinforced composite with bulk-fill resin and bulk-fill resin composite. Following thermocycling (10,000 cycles), fracture resistance was measured using a universal testing machine. Statistical analyses (one-way analysis of variance and the Tamhane test) were performed, and statistical significance was set at p < 0.05. RESULTS: Groups with minimally invasive access cavities had lower fracture strength than intact teeth, regardless of the restoration material (p < 0.05). Fiber-reinforced composite groups demonstrated higher fracture strength than bulk-fill resin composite alone (p < 0.05). Fracture types varied among groups, with restorable fractures predominant in the fiber-reinforced composite groups. CONCLUSION: This study suggests that using fiber-reinforced composite materials, especially in combination with bulk-fill resin composites, can effectively enhance the fracture strength of endodontically treated teeth with conservative access cavities. However, using only bulk-fill resin composite is not recommended based on the fracture strength results. CLINICAL SIGNIFICANCE: When teeth that undergo endodontic treatment are restored using a conservative access cavity design and fiber-reinforced composite materials, especially in combination with bulk-fill resin composites, the fracture strength of the teeth can be effectively increased.


Subject(s)
Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Molar , Tooth Fractures , Tooth, Nonvital , Composite Resins/chemistry , Humans , Tooth, Nonvital/therapy , Tooth Fractures/therapy , Dental Restoration, Permanent/methods , In Vitro Techniques , Mandible , Materials Testing , Glass/chemistry , Post and Core Technique , Dental Cavity Preparation/methods , Dental Materials/chemistry , Root Canal Therapy/methods
20.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38771025

ABSTRACT

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Subject(s)
Composite Resins , Dental Bonding , Materials Testing , Methacrylates , Resin Cements , Tensile Strength , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Composite Resins/chemistry , Methacrylates/chemistry , Dental Cements/chemistry , Ceramics/chemistry , Dental Stress Analysis , Humans , Time Factors , Water/chemistry , Temperature , Dental Porcelain/chemistry , Surface Properties , Dental Materials/chemistry , Glass Ionomer Cements
SELECTION OF CITATIONS
SEARCH DETAIL
...