Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 18.402
Filter
1.
Pediatr Dent ; 46(3): 192-198, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38822501

ABSTRACT

Purpose: The purposes of this study were to evaluate the effect of silver diammine fluoride (SDF) on the shear bond strength (SBS) of pink opaquer (PO) compared to resin-modified glass ionomer (RMGI) and conventional composite (COMP) on demineralized dentin, and also to investigate the mode of failure (MOF). Methods: Sixty extracted third molars were prepared, demineralized for 14 days, and divided into four groups: (1) COMP; (2) SDF+PO; (3) SDF+RMGI; and (4) SDF+COMP (restoration size: two by two mm). SBS, MOF, modified adhesive remnant index (MARI), and remnant adhesive volume (RAV) were evaluated using an Instron® machine, light microscopy, 3D digital scanner ( 3Shape©), and GeoMagic Wrap© software. Results: There was no significant difference in SBS (MPa) among the COMP mean??standard deviation (2.5±1.59), SDF+COMP (2.28±1.05), SDF+PO (3.31±2.63), and SDF+RMGI groups (3.74±2.34). There was no significant difference in MOF and MARI among the four groups (P>0.05). There was no significant difference in RAV (mm3) among the COMP (0.5±0.33), SDF+COMP (0.39±0.44), SDF+PO (0.42±0.38), and SDF+RMGI groups (0.42±0.38; P>0.05). A significant correlation existed between MOF and RAV (R equals 0.721; P<0.001). MOF, MARI, and RAV did not show any correlations with SBS (P>0.05). Conclusions: Silver diammine fluoride does not affect shear bond strength between carious dentinal surface and tooth color restorative materials. The amount of material left on the interface is not related to the amount of shear force needed to break the restoration.


Subject(s)
Composite Resins , Dental Bonding , Dentin , Fluorides, Topical , Shear Strength , Silver Compounds , Humans , Silver Compounds/chemistry , Dentin/drug effects , Composite Resins/chemistry , Glass Ionomer Cements/chemistry , Quaternary Ammonium Compounds/chemistry , Materials Testing , Dental Restoration, Permanent/methods , Dental Materials/chemistry , Dental Stress Analysis , Tooth Demineralization/prevention & control , In Vitro Techniques , Acrylic Resins/chemistry , Color
2.
Clin Oral Investig ; 28(7): 365, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849637

ABSTRACT

OBJECTIVES: Currently, premixed putty-type bioceramic cements (PPBCs) have become popular materials for root-end fillings. This study investigated three root-end filling techniques using PPBCs and calcium silicate-based sealers including EDTA pretreatment. MATERIALS AND METHODS: Ninety root segments were prepared and standardized with an artificial fin and lateral canal, and assigned to three groups (n = 30). Root-end fillings were placed using BC-RRM Putty alone (Group PA), injection of BC sealer followed by BC-RRM Putty (Lid Technique: Group LT) or BC-RRM Putty with BC sealer coating (Deep putty packing technique: Group DP). Half of each group was pretreated with 17% EDTA. The radiographic images of the specimens were assessed by five graders and push-out bond strength tests were conducted. The data were analyzed with a general linear model including two-way ANOVA and chi-square test at a significance level of 5%. RESULTS: DP approach demonstrated significantly higher bond strength than LT (P < 0.05). However, there was no statistically significant difference in bond strength between PA and either DP or LT. EDTA pretreatment had no significant effect on push-out bond strength. Radiographically, for the main canal, PA and DP scored significantly higher than LT. In the fin, PA scored significantly higher than others (P < 0.05). CONCLUSION: Our study highlights variations in root-end filling techniques. Injecting a bulk of bioceramic sealer before the placement of PPBCs may reduce bond strength and radiopacity. The application of PPBCs alone or in the deep putty technique demonstrates potential for favorable outcomes. EDTA pretreatment did not enhance bond-strength. CLINICAL RELEVANCE: Careful selection and application of bioceramic materials and techniques in root-end fillings may influence the outcome of endodontic root-end surgery. When PPBCs and calcium silicate-based sealers are used together for root-end fillings, sealer followed by deep putty application may offer improved bond strength and radiographic fill compared to the lid technique.


Subject(s)
Calcium Compounds , Materials Testing , Root Canal Filling Materials , Silicates , Root Canal Filling Materials/chemistry , Silicates/chemistry , Calcium Compounds/chemistry , In Vitro Techniques , Humans , Dental Bonding/methods , Ceramics/chemistry , Dental Cements/chemistry , Retrograde Obturation/methods , Edetic Acid/chemistry , Dental Stress Analysis
3.
J Oral Implantol ; 50(3): 220-230, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38839068

ABSTRACT

This study analyzed the stress distributions on zygomatic and dental implants placed in the zygomatic bone, supporting bones, and superstructures under occlusal loads after maxillary reconstruction with obturator prostheses. A total of 12 scenarios of 3-dimensional finite element models were constructed based on computerized tomography scans of a hemimaxillectomy patient. Two obturator prostheses were analyzed for each model. A total force of 600 N was applied from the palatal to buccal bones at an angle of 45°. The maximum and minimum principal stress values for bone and von Mises stress values for dental implants and prostheses were calculated. When zygomatic implants were applied to the defect area, the maximum principal stresses were similar in intensity to the other models; however, the minimum principal stress values were higher than in scenarios without zygomatic implants. In models that used zygomatic implants in the defect area, von Mises stress levels were significantly higher in zygomatic implants than in dental implants. In scenarios where the prosthesis was supported by tissue in the nondefect area, the maximum and minimum principal stress values on cortical bone were higher than in scenarios where implants were applied to defect and nondefect areas. In patients who lack an alveolar crest after maxillectomy, a custom bar-retained prosthesis placed on the dental implant should reduce stress on the zygomatic bone. The stress was higher on zygomatic implants without alveolar crest support than on dental implants.


Subject(s)
Dental Implants , Finite Element Analysis , Maxilla , Palatal Obturators , Zygoma , Humans , Zygoma/surgery , Maxilla/surgery , Imaging, Three-Dimensional , Dental Stress Analysis , Bite Force , Biomechanical Phenomena , Computer Simulation , Stress, Mechanical , Cortical Bone , Tomography, X-Ray Computed , Dental Implantation, Endosseous/methods , Dental Prosthesis, Implant-Supported
4.
J Long Term Eff Med Implants ; 34(4): 33-47, 2024.
Article in English | MEDLINE | ID: mdl-38842231

ABSTRACT

This virtual study was designed to evaluate the stress-deformation of a metal fixed partial dentures (FPDs) pontic under different loads using two different connectors. The STL file was generated for a RPD of two implant-supported restorations. The Co-Cr metal substructure was designed with two types of connector design. The pontic is connected to implant-supported crowns with square and round shape connectors. This study was designed for a cementless-retained implant-supported FPD. Finite element modeling (FEM) is used to assess the stress and deformation of the pontic within a metal substructure as the FEM might provide virtual values that could have laboratory and clinical relevance. The Co-Cr alloy mechanical properties like the Poisson ratio and modulus of elasticity were based on the parameters of the three-dimensional structure additive method. Nonparametric analyses (Mann-Whitney U test) was used. The use of square or round connectors often resulted in non-significant changes in stress, and deformation under either three or each loaded point on the occlusal surface of a pontic (P > 0.05). However, the deformation revealed distinct variations between loads of the three points compared to each loaded point (P ≤ 0.05). According to this study data, the pontic occlusal surface appears to be the same in stress and deformation under different loads depending on whether square or round connectors are used. While at the same connector designs, the pontic occlusal surface deformed significantly at three loaded points than it did at each point.


Subject(s)
Dental Prosthesis, Implant-Supported , Denture, Partial, Fixed , Finite Element Analysis , Humans , Chromium Alloys/chemistry , Denture Design , Dental Stress Analysis , Stress, Mechanical
5.
BMC Oral Health ; 24(1): 657, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840138

ABSTRACT

BACKGROUND: Margin designs and loading conditions can impact the mechanical characteristics and survival of endocrowns. Analyzing the stress distribution of endocrowns with various margin designs and loading conditions can provide evidence for their clinical application. METHODS: Three finite element analysis models were established based on the margin designs: endocrown with a butt-joint type margin (E0), endocrown with a 90° shoulder (E90), and endocrown with a 135° shoulder (E135). The E0 group involved lowering the occlusal surface and preparing the pulp chamber. The E90 group created a 90° shoulder on the margin of model E0, measuring 1.5 mm high and 1 mm wide. The E135 group featured a 135° shoulder. The solids of the models were in fixed contact with each other, and the materials of tooth tissue and restoration were uniform, continuous, isotropic linear elasticity. Nine static loads were applied, with a total load of 225 N, and the maximum von Mises stresses and stress distribution were calculated for teeth and endocrowns with different margin designs. RESULTS: Compared the stresses of different models under the same loading condition. In endocrowns, when the loading points were concentrated on the buccal side, the maximum von Mises stresses were E0 = E90 = E135, and when there was a lingual loading, they were E0 < E90 = E135. In enamel, the maximum von Mises stresses under all loading conditions were E0 > E90 > E135. In dentin, the maximum von Mises stresses of the three models were basically similar except for load2, load5 and load9. Compare the stresses of the same model under different loading conditions. In endocrowns, stresses were higher when lingual loading was present. In enamel and dentin, stresses were higher when loaded obliquely or unevenly. The stresses in the endocrowns were concentrated in the loading area. In enamel, stress concentration occurred at the cementoenamel junction. In particular, E90 and E135 also experienced stress concentration at the shoulder. In dentin, the stresses were mainly concentrated in the upper section of the tooth root. CONCLUSION: Stress distribution is similar among the three margin designs of endocrowns, but the shoulder-type designs, especially the 135° shoulder, exhibit reduced stress concentration.


Subject(s)
Dental Stress Analysis , Finite Element Analysis , Stress, Mechanical , Humans , Dental Stress Analysis/methods , Dental Prosthesis Design , Crowns , Biomechanical Phenomena , Dentin
6.
BMC Oral Health ; 24(1): 680, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867181

ABSTRACT

BACKGROUND: To investigate the effect of a 50% ascorbic acid with 50% citric acid solution on the immediate shear bond strength (SBS) of metallic brackets after tooth bleaching. The enamel etching pattern and the required quantity of these combined acids as antioxidants following 35% hydrogen peroxide (HP) bleaching were also determined. METHODS: The stability of the solution at room temperature was assessed at various time intervals. Fifty teeth were randomly divided into five groups: non-bleached (G1), bleached then acid etched (G2), bleached followed by a 10-minute treatment with 10% sodium ascorbate and acid etched (G3), 5-minute treatment with 50% ascorbic acid (G4), and 5-minute treatment with a combination of 50% ascorbic acid and 50% citric acid (G5). Groups G2, G3, G4 and G5 were bleached by 35% HP gel for a total of 32 min. Acid etching in groups G1, G2, and G3 was performed using 37% phosphoric acid (Ormco®, Orange, CA, USA) for 15 s. In all groups, metal brackets were immediately bonded using Transbond™ XT primer and Transbond™ PLUS adhesive, with light curing for 40 s. The SBS was tested with a universal testing machine, and statistical analysis was conducted using one-way ANOVA followed by Tukey's HSD test. The level of significance was set at p < 0.05 for all statistical tests. RESULTS: Stability tests demonstrated that the combined acids remained effective for up to 21 days. Group G5 significantly increased the SBS of bleached teeth to the level of G1 (p < 0.05), while G3 did not achieve the same increase in SBS (p > 0.05). SEM analysis revealed enamel etching patterns similar to those of both control groups (G1 and G2). Kinetic studies at 6 min indicated that the antioxidation in G5 reacted 0.2 mmole lower than in G3 and G4. CONCLUSION: 5-minute application of the combined acids enhanced the SBS of bleached teeth comparable to unbleached teeth. The combined acids remain stable over two weeks, presenting a time-efficient, single-step solution for antioxidant application and enamel etching in orthodontic bracket bonding.


Subject(s)
Ascorbic Acid , Citric Acid , Dental Bonding , Dental Enamel , Orthodontic Brackets , Shear Strength , Tooth Bleaching , Ascorbic Acid/pharmacology , Citric Acid/pharmacology , Citric Acid/chemistry , Tooth Bleaching/methods , Humans , Pilot Projects , Dental Enamel/drug effects , Dental Bonding/methods , Acid Etching, Dental , Antioxidants/pharmacology , Surface Properties , Time Factors , Hydrogen Peroxide/chemistry , Tooth Bleaching Agents/chemistry , Phosphoric Acids , Dental Stress Analysis
7.
Clin Oral Investig ; 28(7): 370, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869624

ABSTRACT

OBJECTIVES: To investigate the effect of multiple firings on color, translucency, and biaxial flexure strength of Virgilite-containing (Li0.5Al0.5Si2.5O6) lithium disilicate glass ceramics of varying thickness. MATERIALS AND METHODS: Sixty discs were prepared from Virgilite-containing lithium disilicate blocks. Discs were divided according to thickness (n = 30) into T0.5 (0.5 mm) and T1.0 (1.0 mm). Each thickness was divided according to the number of firing cycles (n = 10); F1 (Control group): 1 firing cycle; F3: 3 firing cycles, and F5: 5 firing cycles. The discs were tested for color change (ΔE00) and translucency (TP00) using a spectrophotometer. Then, all samples were subjected to biaxial flexure strength testing using a universal testing machine. Data were collected and statistically analyzed (α = 0.5). For chemical analysis, six additional T0.5 discs (2 for each firing cycle) were prepared; for each firing cycle one disc was subjected to X-ray diffraction analysis (XRD) and another disc was subjected to Energy dispersive X-ray spectroscopy (EDX) and Scanning electron microscope (SEM). RESULTS: Repeated firing significantly reduced the translucency of F3 and F5 compared to F1 in T0.5 (p < 0.001), while for T1.0 only F5 showed a significant decrease in TP00 (p < 0.001). For ΔE00, a significant increase was recorded with repeated firings (p < 0.05) while a significant decrease resulted in the biaxial flexure strength regardless of thickness. CONCLUSIONS: Repeated firings had a negative effect on both the optical and mechanical properties of the Virgilite-containing lithium disilicate glass ceramics. CLINICAL RELEVANCE: Repeated firings should be avoided with Virgilite-containing lithium disilicate ceramics to decrease fracture liability and preserve restoration esthetics.


Subject(s)
Ceramics , Dental Porcelain , Flexural Strength , Materials Testing , Surface Properties , X-Ray Diffraction , Ceramics/chemistry , Dental Porcelain/chemistry , Color , Dental Stress Analysis , Spectrophotometry , Microscopy, Electron, Scanning , Hot Temperature
8.
Clin Oral Investig ; 28(7): 371, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869697

ABSTRACT

OBJECTIVES: The purpose of this study is to evaluate the bond strength of different computer-aided design / computer-aided manufacturing (CAD/CAM) hybrid ceramic materials following different pretreatments. METHODS: A total of 306 CAD/CAM hybrid material specimens were manufactured, n = 102 for each material (VarseoSmile Crownplus [VSCP] by 3D-printing; Vita Enamic [VE] and Grandio Blocs [GB] by milling). Each material was randomly divided into six groups regarding different pretreatment strategies: control, silane, sandblasting (50 µm aluminum oxide particles), sandblasting + silane, etching (9% hydrofluorics acid), etching + silane. Subsequently, surface roughness (Ra) values, surface free energy (SFE) were measured. Each specimen was bonded with a dual-cured adhesive composite. Half of the specimens were subjected to thermocycling (5000 cycles, 5-55 °C). The shear bond strength (SBS) test was performed. Data were analyzed by using a two-way analysis of variance, independent t-test, and Mann-Whitney-U-test (α = 0.05). RESULTS: Material type (p = 0.001), pretreatment strategy (p < 0.001), and the interaction (p < 0.001) all had significant effects on Ra value. However, only etching on VSCP and VE surface increased SFE value significantly. Regarding SBS value, no significant difference was found among the three materials (p = 0.937), while the pretreatment strategy significantly influenced SBS (p < 0.05). Etching on VSCP specimens showed the lowest mean value among all groups, while sandblasting and silane result in higher SBS for all test materials. CONCLUSIONS: The bond strength of CAD/CAM hybrid ceramic materials for milling and 3D-printing was comparable. Sandblasting and silane coupling were suitable for both millable and printable materials, while hydrofluoric etching should not be recommended for CAD/CAM hybrid ceramic materials. CLINICAL RELEVANCE: Since comparable evidence between 3D-printable and millable CAD/CAM dental hybrid materials is scarce, the present study gives clear guidance for pretreatment planning on different materials.


Subject(s)
Computer-Aided Design , Crowns , Dental Bonding , Dental Stress Analysis , Materials Testing , Shear Strength , Surface Properties , Dental Bonding/methods , Ceramics/chemistry , Silanes/chemistry , Dental Materials/chemistry , Dental Etching/methods , Dental Porcelain/chemistry , In Vitro Techniques , Humans
9.
BMC Oral Health ; 24(1): 676, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858745

ABSTRACT

BACKGROUND: Clinicians often utilize both flowable and packable composites concurrently in bonding fixed retainers. Thus, this study aimed to assess the synergistic effect of these composites in the bonding process. METHODS: This in vitro study divided specimens into three groups: flowable composite (nano-hybrid, Tetric N-Flow, Ivoclar Vivadent), packable composite (nano-hybrid, Tetric N-ceram, Ivoclar Vivadent), and combined use of flowable and packable composite. Shear bond strength (SBS), adhesive remnant index (ARI), and wire pull-out resistance were compared among the groups. Statistical analyses were conducted using ANOVA and Tukey tests to compare study groups. Additionally, Chi-square and Kruskal-Wallis tests were employed to analyze the ARI index among the groups. RESULTS: ANOVA results indicated no statistically significant differences among test groups (P = 0.129) regarding SBS. However, a significant difference existed between flowable and packable composite groups (P = 0.01) regarding ARI scores. Among the study groups, flowable composite exhibited the highest frequencies of ARI scores of 1 and 2, whereas packable composite showed the highest frequency of ARI scores of 0. The combined group had higher frequencies of ARI scores of 0 and 1 compared to the flowable composite. The wire pull-out test revealed that the combined application of flowable and packable composite resulted in significantly lower detachments compared to the packable composite alone (P = 0.008). However, no significant differences were observed in the comparisons between the flowable-packable (P = 0.522) and combined-flowable (P = 0.128) groups. CONCLUSION: The combined use of flowable and packable composites for fixed retainers demonstrated adequate shear bond strength and ideal ARI scores, suggesting it as a suitable adhesive system for bonding orthodontic fixed retainers.


Subject(s)
Composite Resins , Materials Testing , Orthodontic Retainers , Shear Strength , Composite Resins/chemistry , In Vitro Techniques , Dental Bonding/methods , Dental Stress Analysis , Humans
10.
BMC Oral Health ; 24(1): 667, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849778

ABSTRACT

BACKGROUND: This study investigated the effect of carbodiimide (EDC) combined with Clearfil SE self-etch adhesive on the shear bond strength (SBS), crosslinking degree, denaturation temperature, and enzyme activity of dentin in vitro. MATERIALS AND METHODS: Collected human sound third molars were randomly divided into different groups with or without EDC treatment (0.01-1 M). The specimens (n = 16)were stored for 24 h (immediate) or 12 months (aging) before testing the SBS. Fine dentin powder was obtained and treated with the same solutions. Then the crosslinking degree, denaturation temperature (Td), and enzyme activity were tested. Statistical analysis was performed using a one-way analysis of variance (ANOVA) to compare the differences of data between groups (α = 0.05). RESULTS: There was a significant drop in immediate SBS and more adhesive fracture of 1.0 M EDC group, while there were no significant differences among the other groups. SEM showed a homogeneous interface under all treatments. After 12 months of aging, the SBS significantly decreased. Less decreases of SBS in the 0.3 and 0.5 M groups were found. Due to thermal and enzymatical properties consideration, the 0.3 and 0.5 M treatments also showed higher cross-link degree and Td with lower enzyme activity. CONCLUSION: 0.3 and 0.5 M EDC may be favorable for delaying the aging of self-etch bond strength for 12 months. But it is still needed thoroughly study.


Subject(s)
Carbodiimides , Resin Cements , Shear Strength , Humans , Carbodiimides/chemistry , Resin Cements/chemistry , Materials Testing , Dentin , Microscopy, Electron, Scanning , Dentin-Bonding Agents/chemistry , Dental Stress Analysis , Cross-Linking Reagents/chemistry , Dental Bonding/methods , In Vitro Techniques , Acid Etching, Dental/methods , Molar, Third , Temperature , Time Factors , Surface Properties
11.
BMC Oral Health ; 24(1): 670, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851731

ABSTRACT

OBJECTIVE: To investigate the fracture resistance and failure modalities of anterior endocrown restorations fabricated employing diverse ceramic materials, and bonded using various cementation methodologies. MATERIALS AND METHODS: Forty maxillary central incisors were divided into two main groups based on the ceramic materials used; GroupI (Zir): zirconia endocrwons (Zolid HT+, Ceramill, Amanngirrbach) and GroupII (E-Max): e-max endocrowns (IPS e.max CAD, Ivoclar Vivadent). Both groups were further split into two subgroups depending on the cementation protocols; subgroup IA "ZirMDP": endocowns cemented with MDP primer + MDP resin cement, subgroup IB (ZirNon-MDP): cemented with MDP primer + non-MDP resin cement, subgroup IIA (E-maxMDP): cemented with MDP primer + MDP resin cement, subgroup IIB (E-maxNon-MDP): cemented with MDP primer + non-MDP resin cement. (n = 10/subgroup). Endocrowns were manufactured using CAD/ CAM. Teeth were subjected to 10,000 thermal cycles. The fracture test was performed at 45o with a palatal force direction until the fracture occurred. Test results were recorded in Newton. The failure mode was examined using a stereomicroscope. A One-way ANOVA test was utilized to compare different groups regarding fracture strength values. Tukey`s Post Hoc was utilized for multiple comparisons. RESULTS: The comparative analysis of fracture strength across the diverse groups yielded non-significant differences, as indicated by a p-value exceeding 0.05. Nonetheless, an observable trend emerged regarding the mode of failure. Specifically, a statistically significant prevalence was noted in fractures localized within the endocrown/tooth complex below the cementoenamel junction (CEJ) across all groups, except for Group IIB, "E-max Non-MDP," where fractures within the endocrown/tooth complex occurred above the CEJ. CONCLUSIONS: Combining an MDP-based primer with an MDP-based resin cement did not result in a significant effect on the anterior endocrown fracture strength. CLINICAL RELEVANCE: Regardless of the presence of the MDP monomer in its composition, adhesive resin cement achieved highly successful fracture strength when used with MDP-based ceramic primers. Additionally, ceramic materials exhibiting elastic moduli surpassing those of dentin are discouraged due to their propensity to induce catastrophic fractures within the tooth structure.


Subject(s)
Cementation , Dental Stress Analysis , Incisor , Humans , Cementation/methods , In Vitro Techniques , Resin Cements/chemistry , Zirconium/chemistry , Materials Testing , Crowns , Dental Restoration Failure , Ceramics/chemistry , Dental Materials/chemistry , Computer-Aided Design , Dental Porcelain/chemistry
12.
BMC Oral Health ; 24(1): 538, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715004

ABSTRACT

BACKGROUND: The introduction of auxiliaries such as composite attachment has improved the force delivery of clear aligner (CA) therapy. However, the placement of the attachment may give rise to a flash, defined as excess resin around the attachment which may affect CA force delivery. This in vitro study aims to determine the differences in the force generated by the attachment in the presence or absence of flash in CA. MATERIALS AND METHODS: Tristar Trubalance aligner sheets were used to fabricate the CAs. Thirty-four resin models were 3D printed and 17 each, were bonded with ellipsoidal or rectangular attachments on maxillary right central incisors. Fuji Prescale pressure film was used to measure the force generated by the attachment of CA. The images of colour density produced on the films were processed using a calibrated pressure mapping system utilising image processing techniques and topographical force mapping to quantify the force. The force measurement process was repeated after the flash was removed from the attachment using tungsten-carbide bur on a slow-speed handpiece. RESULTS: The intraclass correlation coefficient showed excellent reliability (ICC = 0.96, 95% CI = 0.92-0.98). The average mean force exerted by ellipsoidal attachments with flash was 8.05 ± 0.16 N, while 8.11 ± 0.18 N was without flash. As for rectangular attachments, the average mean force with flash was 8.48 ± 0.27 N, while 8.53 ± 0.13 N was without flash. Paired t-test revealed no statistically significant difference in the mean force exerted by CA in the presence or absence of flash for both ellipsoidal (p = 0.07) and rectangular attachments (p = 0.41). Rectangular attachments generated statistically significantly (p < 0.001) higher mean force than ellipsoidal attachments for flash and without flash. CONCLUSION: Although rectangular attachment generated a significantly higher force than ellipsoidal attachment, the force generated by both attachments in the presence or absence of flash is similar (p > 0.05).


Subject(s)
Tooth Movement Techniques , Humans , In Vitro Techniques , Tooth Movement Techniques/instrumentation , Dental Stress Analysis , Orthodontic Appliance Design , Composite Resins/chemistry , Printing, Three-Dimensional
13.
Clin Oral Investig ; 28(6): 305, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722356

ABSTRACT

OBJECTIVE: To evaluate the ability of the water glass treatment to penetrate zirconia and improve the bond strength of resin cement. MATERIAL AND METHODS: Water glass was applied to zirconia specimens, which were then sintered. The specimens were divided into water-glass-treated and untreated zirconia (control) groups. The surface properties of the water-glass-treated specimens were evaluated using surface roughness and electron probe micro-analyser (EPMA) analysis. A resin cement was used to evaluate the tensile bond strength, with2 and without a silane-containing primer. After 24 h in water storage at 37 °C and thermal cycling, the bond strengths were statistically evaluated with t-test, and the fracture surfaces were observed using SEM. RESULTS: The water glass treatment slightly increased the surface roughness of the zirconia specimens, and the EPMA analysis detected the water glass penetration to be 50 µm below the zirconia surface. The application of primer improved the tensile bond strength in all groups. After 24 h, the water-glass-treated zirconia exhibited a tensile strength of 24.8 ± 5.5 MPa, which was significantly higher than that of the control zirconia (17.6 ± 3.5 MPa) (p < 0.05). After thermal cycling, the water-glass-treated zirconia showed significantly higher tensile strength than the control zirconia. The fracture surface morphology was mainly an adhesive pattern, whereas resin cement residue was occasionally detected on the water-glass-treated zirconia surfaces. CONCLUSION: The water glass treatment resulted in the formation of a stable silica phase on the zirconia surface. This process enabled silane coupling to the zirconia and improved the adhesion of the resin cement.


Subject(s)
Dental Bonding , Glass , Materials Testing , Resin Cements , Silanes , Surface Properties , Tensile Strength , Water , Zirconium , Zirconium/chemistry , Resin Cements/chemistry , Silanes/chemistry , Water/chemistry , Dental Bonding/methods , Glass/chemistry , Microscopy, Electron, Scanning , Dental Stress Analysis
14.
J Contemp Dent Pract ; 25(3): 231-235, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690695

ABSTRACT

AIM: This study aimed to compare the bond strength of AH Plus sealer to root canal dentin when used with or without various antibiotics including amoxicillin, clindamycin, and triple antibiotic mixture (TAM). MATERIALS AND METHODS: A total of 80 single-rooted extracted human teeth were instrumented and obturated with gutta-percha and four different sealer-antibiotic combinations (n = 20). Group I: AH Plus without any antibiotics, Group II: AH Plus with amoxicillin, Group III: AH Plus with clindamycin, and Group IV: AH Plus with TAM. After seven days, the roots were sectioned perpendicular to their long axis and 1 mm thick slices were obtained from the midroots. The specimens were subjected to a push-out bond strength test and failure modes were also evaluated. Data was analyzed using Kruskal-Wallis and Dunn's post hoc tests. RESULTS: Group IV had significantly higher bond strength compared to other groups (p ≤ 0.05). No significant differences were found between other groups. While the sealer-antibiotic groups predominantly showed cohesive failure modes, the control group displayed both cohesive and mixed failure modes. CONCLUSION: Within the limitations of this study, the addition of TAM increased the push-out bond strength of AH Plus. CLINICAL SIGNIFICANCE: Amoxicillin, clindamycin, or TAM can be added to AH Plus for increased antibacterial efficacy without concern about their effects on the bond strength of the sealer. How to cite this article: Adl A, Shojaei NS, Ranjbar N. The Effect of Adding Various Antibiotics on the Push-out Bond Strength of a Resin-based Sealer: An In Vitro Study. J Contemp Dent Pract 2024;25(3):231-235.


Subject(s)
Amoxicillin , Anti-Bacterial Agents , Dental Bonding , Epoxy Resins , Root Canal Filling Materials , Humans , Root Canal Filling Materials/chemistry , In Vitro Techniques , Clindamycin , Materials Testing , Dental Stress Analysis , Root Canal Obturation/methods
15.
J Contemp Dent Pract ; 25(3): 245-249, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690698

ABSTRACT

AIM: The aim of the study is to determine the difference in the shear bond strengths to dentin among dental composite (Filtek Z350®, 3M), compomer (Dyract Flow®, Dentsply) and Giomer (Beautifil®, Shofu) with 3MTM Single BondTM Universal Adhesive (SBU) (7th generation, self-etch, single solution adhesive) and AdperTM Single Bond 2 Adhesive (ASB) (5th generation, total-etch, two solution adhesive). MATERIALS AND METHODS: Sixty extracted human permanent teeth were collected, cleansed of debris, and placed in distilled water. The samples were segregated into two groups depicting the two bonding agents-AdperTM (ASB) and 3MTM Single Bond Universal (SBU) and sub-grouped into three groups depicting the three restorative materials (Composite, Giomer, and Compomer) used. Groups were respresented as follows: Group I-ASB + Composite; Group II-ASB + Giomer; Group III-ASB + Compomer; Group IV-SBU + Giomer; Group V-SBU + Compomer; Group VI-SBU + Composite. After applying the bonding agent as per the manufacturer's instructions, following which the restorative material was placed. A Universal Testing Machine (Instron 3366, UK) was employed to estimate the shear bond strength of the individual restorative material and shear bond strengths were calculated. RESULTS: Composite bonded with SBU (group VI) displayed the greatest shear strength (11.16 ± 4.22 MPa). Moreover, Giomers and flowable compomers displayed better bond strengths with ASB compared with their SBU-bonded counterparts. CONCLUSION: These results mark the importance of careful material selection in clinical practice and the bonding agent used to achieve optimal bond strength and enhance the clinical longevity and durability of dental restorations. CLINICAL SIGNIFICANCE: From a clinical perspective, to avoid a compressive or a shear failure, it would be preferrable to use a direct composite restorative material with SBU (Single bond universal adhesive, 7th generation) to achieve maximum bond strength. How to cite this article: Kuchibhotla N, Sathyamoorthy H, Balakrishnan S, et al. Effect of Bonding Agents on the Shear Bond Strength of Tooth-colored Restorative Materials to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):245-249.


Subject(s)
Compomers , Composite Resins , Dental Bonding , Dental Stress Analysis , Dentin-Bonding Agents , Dentin , Shear Strength , Composite Resins/chemistry , Humans , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , In Vitro Techniques , Compomers/chemistry , Bisphenol A-Glycidyl Methacrylate , Dental Restoration, Permanent/methods , Materials Testing , Glass Ionomer Cements/chemistry , Dental Materials/chemistry , Acrylic Resins/chemistry
16.
J Contemp Dent Pract ; 25(3): 226-230, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38690694

ABSTRACT

AIM: To assess the effectiveness of various surface treatments and adhesives on the bond strength of zirconia-based ceramic to dentin. MATERIALS AND METHODS: Eighty samples of zirconia were subjected to the four-surface treatment protocols (sandblasting, 48% hydrofluoric acid (HF), 48% hydrofluoric acid + 70% nitric acid (HNO3) and no treatment (control) following which the samples from each group were subdivided into two subgroups (n = 10) based on the resin cement employed for cementation (RelyX U200 and G-Cem Linkforce). The bonded specimens were subjected to shear stress to measure the bond strength using Universal testing machine. To test the difference in bond strength among the eight study groups, the Kruskal-Wallis ANOVA test was applied and for comparison between cements in each group, Mann-Whitney U test was applied. RESULTS: The highest bond strength values were observed for 48% HF group cemented with G-Cem Linkforce resin cement (16.220 ± 1.574) and lowest for control group-RelyX (4.954 ± 0.972). G-Cem cement showed higher bond strength than RelyX for all surface treatments except 48% HF + 70% nitric acid. CONCLUSION: It can be inferred that 48% HF can etch zirconia and generate a porous structure that proves to be beneficial for bonding. CLINICAL SIGNIFICANCE: The increasing demand for esthetics has led to the replacement of metal-ceramic materials with zirconia-based ceramics. However, the chemical inertness of zirconia to various conventional surface treating agents has continuously challenged researchers to discover a new surface treatment protocol that could enhance the bond strength of zirconia. How to cite this article: Yenamandra MS, Joseph A, Singh P, et al. Effect of Various Surface Treatments of Zirconia on its Adhesive Properties to Dentin: An In Vitro Study. J Contemp Dent Pract 2024;25(3):226-230.


Subject(s)
Dental Bonding , Dentin , Materials Testing , Resin Cements , Surface Properties , Zirconium , Resin Cements/chemistry , Dental Bonding/methods , In Vitro Techniques , Humans , Dental Stress Analysis , Shear Strength , Hydrofluoric Acid/chemistry , Nitric Acid/chemistry , Ceramics/chemistry
17.
Clin Oral Investig ; 28(6): 345, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809289

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effect of restorations made with a glass-hybrid restorative system (GHRS), a high-viscosity glass ionomer restorative material (HVGIC), a high-viscosity bulk-fill composite resin (HVB), a flowable bulk-fill composite resin (FB), and a nanohybrid composite resin (NH), which are commonly preferred in clinical applications on the fracture resistance of teeth in-vitro. MATERIALS AND METHODS: One hundred intact human premolar teeth were included in the study. The teeth were randomly divided into ten groups (n = 10). No treatment was applied to the teeth in Control group. Class II cavities were prepared on the mesial surfaces of the remaining ninety teeth in other groups. For restoration of the teeth, a GHRS, a HVGIC, a HVB, a FB, and a NH were used. Additionally, in four groups, teeth were restored using NH, GHRS, and HVGIC with open and closed-sandwich techniques. After 24 h, fracture resistance testing was performed. One-way ANOVA and Tukey HDS tests were used for statistical analysis of the data. RESULTS: The fracture resistance values of Control group were statistically significantly higher than those of GHRS, HVGIC, FB, NH, HVGIC-CS, GHRS-OS, and HVGIC-OS groups(p < 0.05). There was no statistically significant difference observed between the fracture resistance values of Control, HVB, and GHRS-CS groups (p > 0.05). CONCLUSION: It can be concluded that the use of HVB and the application of GHRS with a closed-sandwich technique may have a positive effect on the fracture resistance of teeth in the restoration of wide Class II cavities. CLINICAL RELEVANCE: The use of high-viscosity bulk-fill composite resin and the application of glass-hybrid restorative system with the closed-sandwich technique in the restoration of teeth with wide Class II cavities could increase the fracture resistance of the teeth.


Subject(s)
Bicuspid , Composite Resins , Dental Restoration, Permanent , Dental Stress Analysis , Glass Ionomer Cements , Materials Testing , Tooth Fractures , Composite Resins/chemistry , Humans , In Vitro Techniques , Dental Restoration, Permanent/methods , Glass Ionomer Cements/chemistry , Tooth Fractures/prevention & control , Viscosity , Surface Properties , Dental Cavity Preparation/methods , Acrylic Resins/chemistry
18.
Clin Exp Dent Res ; 10(3): e856, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38818850

ABSTRACT

OBJECTIVES: This study aimed to compare the flexural strength of monolithic zirconia with different thicknesses and two sintering techniques. MATERIALS AND METHODS: This in vitro, experimental study was conducted on 28 monolithic zirconia discs with 10 mm diameter and 0.5 (n = 14) and 1.2 mm (n = 14) thickness. Each group was divided into two subgroups (n = 7) for fast (60 min) and conventional (120 min) sintering at 1450°C. After sintering, the specimens were thermocycled and their flexural strength was measured by piston-on-3-balls technique in a universal testing machine (0.5 mm/min, 1.2 mm pin diameter). Data were analyzed by the Weibull test, one-way analysis of variance, and Tukey's test (α = .05). RESULTS: The flexural strength of specimens with 1.2 mm thickness was significantly higher than that of specimens with 0.5 mm thickness (p < .05). The flexural strength of 1.2 mm/120-min group was slightly, but not significantly, higher than that of 1.2 mm/60-min group (p > .05). The flexural strength of 0.5 mm/120-min group was slightly, but not significantly, higher than that of 0.5 mm/60-min group (p > .05). CONCLUSION: The increase in thickness of monolithic zirconia increases its flexural strength; however, increasing the sintering time appears to have no significant effect on the flexural strength of monolithic zirconia.


Subject(s)
Dental Materials , Flexural Strength , Materials Testing , Zirconium , Zirconium/chemistry , Dental Materials/chemistry , Dental Stress Analysis , Surface Properties , Hot Temperature , In Vitro Techniques
19.
Dent Mater J ; 43(3): 469-476, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719583

ABSTRACT

This study investigates the effects of dentin's drying time, roughness, and curing modes of resin cement on bond strength. Forty human teeth were divided into eight groups based on three experimental factors: dentin's roughness by 240-or 600-grit SiC paper (coarse or fine), dentin wetness with air-drying time (5-s or 10-s), and Single Bond Universal adhesive's curing mode by co-curing with RelyX Ultimate cement or light-curing separately (co-curing or light-curing). The micro-tensile bond strength of fifteen resin-dentin stikcs per groups was measured. Failure mode and adhesive layers were observed using stereoscopic and confocal laser scanning microscopy, respectively. The curing mode of the adhesive layer affected the bond strength of the dentin-resin cement (p<0.05). In particular, the light-curing mode exhibited a significantly higher bond strength than the co-curing one (p<0.05). The bond strength between the resin cement and dentin was improved in the 5-s drying groups than in the 10-s drying groups.


Subject(s)
Dental Bonding , Dentin-Bonding Agents , Dentin , Materials Testing , Resin Cements , Surface Properties , Tensile Strength , Humans , Resin Cements/chemistry , Dental Bonding/methods , Dentin-Bonding Agents/chemistry , Microscopy, Confocal , Bisphenol A-Glycidyl Methacrylate/chemistry , Dental Stress Analysis , Light-Curing of Dental Adhesives , Time Factors
20.
Dent Mater J ; 43(3): 460-468, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38719584

ABSTRACT

This study investigated residual stresses in glass crowns cemented with resin cements. Glass caps were cemented to cylindrical cores using a conventional resin composite cement, a self-adhesive resin cement, or a methyl methacrylate (MMA)-based cement in dual-cure or self-cure mode. The cemented caps were stored in 37°C water for 28 days, and stresses on the cap surface were repeatedly measured. The water sorption, water solubility, and elastic modulus of the cements were also measured. Polymerization of the cements initially generated compressive stresses on the surfaces. Dual-curing or a greater modulus yielded greater initial stress. The stresses gradually decreased over time and lingered on the surfaces at 28 days with all the cements. Greater sorption tended to lead to greater stress reduction; however, the MMA-based cement exhibited less stress reduction despite exhibiting the greatest sorption. The use of a resin composite cement or dual-curing is recommended to reinforce crown restorations.


Subject(s)
Crowns , Glass , Materials Testing , Polymerization , Resin Cements , Water , Resin Cements/chemistry , Water/chemistry , Glass/chemistry , Dental Stress Analysis , Elastic Modulus , Stress, Mechanical , Composite Resins/chemistry , Surface Properties , Methylmethacrylate/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...