Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.450
Filter
1.
Sci Rep ; 14(1): 13262, 2024 06 10.
Article in English | MEDLINE | ID: mdl-38858417

ABSTRACT

The purpose of this study was to evaluate the fatigue survival of 5Y-PSZ zirconia infiltrated with an experimental glass and bonded onto dentin analogues. Disc-shaped specimens of a 5Y-PSZ (Katana UTML Kuraray Noritake) were cemented onto dentin analogs (NEMA G10) and divided into four groups (n = 15): Zctrl Group (control, without infiltration); Zglz Group (Glaze, compression surface); Zinf-comp Group (Experimental Glass, compression surface); Zinf-tens Group (Experimental Glass, tension surface). Surface treatments were varied. Cyclic fatigue loading, oblique transillumination, stereomicroscope examination, and scanning electron microscopy were performed. Fatigue data were analyzed (failure load and number of cycles) using survival analysis (Kaplan-Meier and Log-Rank Mantel-Cox). There was no statistically significant difference in fatigue survival between the Zglz, Zctrl, and Zinf-comp groups. The Zinf-tens group presented a significantly higher failure load when compared to the other groups and exhibited a different failure mode. The experimental glass effectively infiltrated the zirconia, enhancing structural reliability, altering the failure mode, and improving load-bearing capacity over more cycles, particularly in the group where the glass was infiltrated into the tensile surface of the zirconia. Glass infiltration into 5Y-PSZ zirconia significantly enhanced structural reliability and the ability to withstand loads over an increased number of cycles. This approach has the potential to increase the durability of zirconia restorations, reducing the need for replacements and save time and resources, promoting efficiency in clinical practice.


Subject(s)
Dentin , Glass , Materials Testing , Zirconium , Zirconium/chemistry , Glass/chemistry , Dentin/chemistry , Humans , Microscopy, Electron, Scanning , Surface Properties
2.
Biomater Adv ; 161: 213883, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38762928

ABSTRACT

Maintaining the viability of damaged pulp is critical in clinical dentistry. Pulp capping, by placing dental material over the exposed pulp, is a main approach to promote pulp-dentin healing and mineralized tissue formation. The dental materials are desired to impact on intricate physiological mechanisms in the healing process, including early regulation of inflammation, immunity, and cellular events. In this study, we developed an injectable dental pulp-derived decellularized matrix (DPM) hydrogel to modulate macrophage responses and promote dentin repair. The DPM derived from porcine dental pulp has high collagen retention and low DNA content. The DPM was solubilized by pepsin digestion (named p-DPM) and subsequently injected through a 25G needle to form hydrogel facilely at 37 °C. In vitro results demonstrated that the p-DPM induced the M2-polarization of macrophages and the migration, proliferation, and dentin differentiation of human dental pulp stem cells from deciduous teeth (SHEDs). In a mouse subcutaneous injection test, the p-DPM hydrogel was found to facilitate cell recruitment and M2 polarization during the early phase of implantation. Additionally, the acute pulp restoration in rat models proved that injectable p-DPM hydrogel as a pulp-capping agent had excellent efficacy in dentin regeneration. This study demonstrates that the DPM promotes dentin repair by modulating macrophage responses, and has a potential for pulp-capping applications in dental practice.


Subject(s)
Dental Pulp , Dentin , Hydrogels , Macrophages , Dental Pulp/cytology , Dental Pulp/drug effects , Animals , Macrophages/drug effects , Macrophages/metabolism , Humans , Dentin/drug effects , Dentin/chemistry , Hydrogels/chemistry , Mice , Rats , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Swine , Cell Differentiation/drug effects , Regeneration/drug effects , Cell Proliferation/drug effects , Stem Cells/drug effects , Stem Cells/cytology , Wound Healing/drug effects
3.
Int J Biol Macromol ; 270(Pt 1): 132359, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754678

ABSTRACT

The objective of this study was to evaluate the synergistic effect of eggshell-derived nanohydroxyapatite (EnHA) and carboxymethyl chitosan (CMC) in remineralizing artificially induced dentinal lesions. EnHA and CMC were synthesized using simple chemical processes and characterized using FTIR, XRD, HRSEM-EDX, TEM, DLS and TGA/DTA analyses. A total of 64 pre-demineralized coronal dentin specimens were randomly subjected to following treatments (n = 16):artificial saliva (AS), EnHA, CMC, and EnHA-CMC, followed by pH cycling for 7 days. HRSEM-EDX, Vickers-indenter, and micro-Raman analyses were used to assess surface-topography, microhardness, and chemical analysis, respectively. All tested materials demonstrated non-cytotoxicity when assessed on hDPSCs using MTT assay. FTIR, XRD and thermal analyses confirmed the characteristics of both EnHA and CMC. EnHA showed irregular rod-shaped nanoparticles (30-70 nm) with the presence of Ca,P,Na, and Mg ions. Dentin treated with EnHA-CMC exhibited complete tubular occlusion and highest microhardness whereas the AS group revealed the least mineral deposits (p < 0.05). No significant differences were observed between EnHA and CMC groups (p > 0.05). In addition, molecular conformation analysis revealed peak intensities in collagen's polypeptide chains in dentin treated with CMC and EnHA-CMC, whereas other groups showed poor collagen stability. The results highlighted that EnHA-CMC aided in rapid and effective biomineralization, suggesting its potential as a therapeutic solution for treating dentin caries.


Subject(s)
Chitosan , Dentin , Durapatite , Egg Shell , Chitosan/analogs & derivatives , Chitosan/chemistry , Chitosan/pharmacology , Durapatite/chemistry , Durapatite/pharmacology , Dentin/chemistry , Dentin/drug effects , Egg Shell/chemistry , Animals , Humans , Tooth Remineralization/methods , Nanoparticles/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/chemistry , Hydrogen-Ion Concentration
4.
ACS Appl Mater Interfaces ; 16(23): 29699-29715, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38815211

ABSTRACT

Resin-bonded restorations are the most important caries treatment method in clinical practice. Thus, improving the durability of dentin bonding remains a pressing issue. As a promising solution, guided tissue remineralization can induce the formation of apatite nanocrystals to repair defects in the dentin bonding interface. In this study, we present an experimental 20 wt % citric acid (CA) dental etching agent that removes the smear layer. After CA-etching, approximately 3.55 wt % residual CA formed a strong bond with collagen fibrils, reducing the interfacial energy between the remineralizing solution and dentin. CA helped achieve almost complete intrafibrillar and extrafibrillar mineralization after 24 h of mineralization. CA also significantly promoted poly(amidoamine)-induced dentin biomimetic mineralization. The elastic modulus and microhardness of remineralized dentin were restored to that of sound dentin. The remineralized interface reduced microleakage and provided a stronger, longer-lasting bond than conventional phosphate acid-etching. The newly developed CA dental etching agents promoted rapid dentin biomimetic mineralization and improved bonding efficacy through interfacial control, representing a new approach with clinical practice implications.


Subject(s)
Citric Acid , Dentin , Citric Acid/chemistry , Dentin/chemistry , Dentin/drug effects , Humans , Acid Etching, Dental , Dental Bonding , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Tooth Remineralization/methods , Biomimetics/methods
5.
Biomed Mater ; 19(4)2024 May 17.
Article in English | MEDLINE | ID: mdl-38756029

ABSTRACT

Hard tissue engineering scaffolds especially 3D printed scaffolds were considered an excellent strategy for craniomaxillofacial hard tissue regeneration, involving crania and facial bones and teeth. Porcine treated dentin matrix (pTDM) as xenogeneic extracellular matrix has the potential to promote the stem cell differentiation and mineralization as it contains plenty of bioactive factors similar with human-derived dentin tissue. However, its application might be impeded by the foreign body response induced by the damage-associated molecular patterns of pTDM, which would cause strong inflammation and hinder the regeneration. Ceria nanoparticles (CNPs) show a great promise at protecting tissue from oxidative stress and influence the macrophages polarization. Using 3D-bioprinting technology, we fabricated a xenogeneic hard tissue scaffold based on pTDM xenogeneic TDM-polycaprolactone (xTDM/PCL) and we modified the scaffolds by CNPs (xTDM/PCL/CNPs). Through series ofin vitroverification, we found xTDM/PCL/CNPs scaffolds held promise at up-regulating the expression of osteogenesis and odontogenesis related genes including collagen type 1, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein-2, osteoprotegerin, alkaline phosphatase (ALP) and DMP1 and inducing macrophages to polarize to M2 phenotype. Regeneration of bone tissues was further evaluated in rats by conducting the models of mandibular and skull bone defects. Thein vivoevaluation showed that xTDM/PCL/CNPs scaffolds could promote the bone tissue regeneration by up-regulating the expression of osteogenic genes involving ALP, RUNX2 and bone sialoprotein 2 and macrophage polarization into M2. Regeneration of teeth evaluated on beagles demonstrated that xTDM/PCL/CNPs scaffolds expedited the calcification inside the scaffolds and helped form periodontal ligament-like tissues surrounding the scaffolds.


Subject(s)
Cerium , Extracellular Matrix , Nanoparticles , Osteogenesis , Printing, Three-Dimensional , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Swine , Extracellular Matrix/metabolism , Cerium/chemistry , Nanoparticles/chemistry , Rats , Polyesters/chemistry , Dentin/chemistry , Humans , Bone Regeneration/drug effects , Odontogenesis , Cell Differentiation , Regeneration , Macrophages/metabolism , Skull , Rats, Sprague-Dawley
6.
PLoS One ; 19(5): e0302334, 2024.
Article in English | MEDLINE | ID: mdl-38748638

ABSTRACT

Susceptibility to morbidity and mortality is increased in early life, yet proactive measures, such as breastfeeding and weaning practices, can be taken through specific investments from parents and wider society. The extent to which such biosocialcultural investment was achieved within 1st millennium BCE Etruscan society, of whom little written sources are available, is unkown. This research investigates life histories in non-adults and adults from Pontecagnano (southern Italy, 730-580 BCE) in order to track cross-sectional and longitudinal breastfeeding and weaning patterns and to characterize the diet more broadly. Stable carbon and nitrogen isotope analysis of incrementally-sampled deciduous and permanent dentine (n = 15), bulk bone collagen (n = 38), and tooth enamel bioapatite (n = 21) reveal the diet was largely based on C3 staple crops with marginal contributions of animal protein. Millet was found to play a role for maternal diet and trajectories of breastfeeding and feeding for some infants and children at the site. The combination of multiple isotope systems and tissues demonstrates exclusive breastfeeding was pursued until 0.6 years, followed by progressive introduction of proteanocius supplementary foods during weaning that lasted between approximately 0.7 and 2.6 years. The combination of biochemical data with macroscopic skeletal lesions of infantile metabolic diseases and physiological stress markers showed high δ15Ndentine in the months prior to death consistent with the isotopic pattern of opposing covariance.


Subject(s)
Bone and Bones , Carbon Isotopes , Diet , Nitrogen Isotopes , Humans , Italy , Infant , Diet/history , Carbon Isotopes/analysis , Nitrogen Isotopes/analysis , History, Ancient , Bone and Bones/chemistry , Female , Paleopathology , Adult , Weaning , Breast Feeding/history , Stress, Physiological , Dentin/chemistry , Dentin/metabolism , Collagen/metabolism , Collagen/analysis , Child, Preschool , Male , Child
7.
PLoS One ; 19(5): e0304156, 2024.
Article in English | MEDLINE | ID: mdl-38776324

ABSTRACT

Saliva substitutes with enhanced dentin remineralization properties were expected to help manage caries progression in patients with xerostomia. This in vitro study examined the rheological properties and remineralization action of experimental saliva substitutes containing propolis extract and aloe vera extract on demineralized dentin. Four experimental saliva substitutes were formulated with varying concentrations of propolis extract (P) and aloe vera extract (A) were prepared. A commercial saliva substitute (Biotene Oral Rinse) was used as a commercial comparison. The rheological properties and viscosity of these materials were measured using a strain-controlled rheometer (n = 3). The remineralizing actions of saliva substitutes on demineralized dentin after 2 weeks were determined using ATR-FTIR and SEM-EDX (n = 8). The results were expressed as a percentage increase in the mineral-to-matrix ratio. Biotene demonstrated a significantly higher viscosity (13.5 mPa·s) than experimental saliva substitutes (p<0.05). The addition of extracts increased the viscosity of the saliva substitutes from 4.7 mPa·s to 5.2 mPa·s. All formulations showed minimal shear thinning behavior, which was the viscoelastic properties of natural saliva. The formulation containing 5 wt% of propolis exhibited the highest increase in the median mineral-to-matrix ratio (25.48%). The SEM-EDX analysis revealed substantial mineral precipitation in demineralized dentin, especially in formulations with 5 wt% or 2.5 wt% of propolis. The effect of the aloe vera extract was minimal. The addition of propolis and aloe vera extracts increased the viscosity of saliva substitutes. the addition of propolis for 2.5 or 5 wt% to saliva substitutes increased mineral apatite precipitation and tubule occlusion. To conclude, the saliva substitute containing propolis extract demonstrated superior remineralizing actions compared with those containing only aloe vera extract.


Subject(s)
Aloe , Dentin , Plant Extracts , Propolis , Rheology , Saliva, Artificial , Propolis/chemistry , Propolis/pharmacology , Aloe/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Saliva, Artificial/chemistry , Dentin/chemistry , Dentin/drug effects , Humans , Viscosity , Tooth Remineralization/methods , Spectroscopy, Fourier Transform Infrared
8.
Mymensingh Med J ; 33(2): 605-612, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38557547

ABSTRACT

Accomplishment of an ideal root canal treatment is attributed to various essential factors such as proper instrumentation, chemomechanical preparation, obturation and post endodontic restoration. The main aim of this study is to test the null hypothesis that is the moisture condition of root dentin would not affect the bond strength and sealer penetration. This is an in vitro study conducted in Department of Conservative Dentistry and Endodontics, M A Rangoonwala Dental College, Pune, India over a period of two years (from 2021 to 2023). One hundred and twenty single-rooted Premolars with fully formed apices and similar root morphology were obtained and stored in 0.1% thymol solution. The specimens were randomly assigned to 3 broad experimental groups (n=40) according to the drying protocol such as Group A- Paper points (P), Group B- diode laser (L) and Group C- isopropyl alcohol (A). For each drying protocol, the specimens were further assigned to 2 subgroups (n=20) with respect to the sealers used: AH Plus (AH) and Apexit Plus sealers (APx). The effect of drying protocol using paper points, isopropyl alcohol and diode-lasers on the bond strength and tag penetration of two different sealers to the root dentin was evaluated. Maximum overall push-out Bond strength was seen in group AH+L and least in group APx+ L. Inter-site push-out bond Strength was highest in the coronal third followed by the middle and least in the apical third of all the groups. Maximum over all depth of penetration was seen in group AH+L and minimum in group APx+L. AH plus sealer showed better bond strength, sealer penetration and adaptation to the dentinal walls compared to Apexit plus sealer, irrespective of the drying protocol followed. All the drying protocols used did not show statistically significant results in the apical thirds of root canals of all the groups.


Subject(s)
Calcium Hydroxide , Root Canal Filling Materials , Humans , Root Canal Filling Materials/analysis , Root Canal Filling Materials/chemistry , Epoxy Resins/analysis , Epoxy Resins/chemistry , 2-Propanol/analysis , India , Dentin/chemistry
9.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38581962

ABSTRACT

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Subject(s)
Chitosan , Dental Bonding , Humans , Dentin/chemistry , Extracellular Matrix/metabolism , Collagen/metabolism , Hydroxyproline , Dentin-Bonding Agents/chemistry , Water/metabolism , Tensile Strength
10.
Acta Biomater ; 180: 337-357, 2024 May.
Article in English | MEDLINE | ID: mdl-38583749

ABSTRACT

Periodontal regeneration requires the re-attachment of oblique and perpendicular periodontal ligament (PDL) fibres to newly formed cementum and alveolar bone, which has proven elusive with existing approaches. In this study, multiple fibre-guiding biphasic tissue engineered constructs were fabricated by melt electrowriting. The biphasic scaffolds were 95 % porous and consisted of a pore size gradient bone compartment and periodontal compartment made of fibre-guiding channels with micro-architectural features ranging from 100 to 60 µm aimed to direct PDL fibre alignment and attachment. In vitro evaluations over 3 and 7 days demonstrated a marked improvement in collagen fibre orientation (over 60 % fully aligned) for scaffolds with micro-architecture ≤100 µm. The biphasic scaffolds were placed on a dentine slice and implanted ectopically, and this demonstrated that all micro-channels groups facilitated oblique and perpendicular alignment and attachment on the dentine with a mean nuclei angle and mean collagen fibre angle of approximately 60° resembling the native periodontal ligament attachment. A further in vivo testing using a surgically created rodent periodontal model highlighted the 80 µm micro-channel group's effectiveness, showing a significant increase in oblique PDL fibre attachment (72 %) and periodontal regeneration (56 %) when compared to all other groups onto the tooth root compared to control groups. Further to this, immunohistochemistry demonstrated the presence of periostin in the newly formed ligament indicating that functional regeneration occurred These findings suggest that scaffold micro-architectures of 100 µm or below can play a crucial role in directing periodontal tissue regeneration, potentially addressing a critical gap in periodontal therapy. STATEMENT OF SIGNIFICANCE: Periodontal regeneration remains a significant clinical challenge. Essential to restoring dental health and function is the proper attachment of the periodontal ligament, which is functionally oriented, to regenerated bone and cementum. Our research presents an innovative biphasic scaffold, utilizing Melt Electrowriting to systematically guide tissue growth. Distinct from existing methods, our scaffold is highly porous, adaptable, and precisely guides periodontal ligament fibre attachment to the opposing tooth root and alveolar bone interfaces, a critical step for achieving periodontal functional regeneration. Our findings not only bridge a significant gap in biomaterial driven tissue guidance but also promise more predictable outcomes for patients, marking a transformative advancement in the field.


Subject(s)
Periodontal Ligament , Tissue Scaffolds , Tissue Scaffolds/chemistry , Periodontal Ligament/physiology , Animals , Tissue Engineering/methods , Male , Humans , Dentin/chemistry , Regeneration
11.
Int J Biol Macromol ; 268(Pt 1): 131676, 2024 May.
Article in English | MEDLINE | ID: mdl-38641271

ABSTRACT

The development of new biocompatible and eco-friendly materials is essential for the future of dental practice, especially for the management of dental caries. In this study, a novel and simple method was applied for the green synthesis of silver nanoparticles (AgNPs) from the aqueous extract of Camellia sinensis (WT) and functionalized with chitosan (CHS) and NaF. The effects of WT_AgNPs application on demineralized dentin were evaluated for potential dental applications. The WT_AgNPs showed molecular groups related to organic compounds, potentially acting as reducing and capping agents. All AgNPs presented spherical shapes with crystal sizes of approximately 20 nm. Forty human molars were assigned to control: sound (SD) and demineralised dentine (DD), and experimental groups: WT_AgNPs, WT_AgNPs_NaF, and WT_AgNPs_CHS. Then, the NPs were applied to DD to evaluate the chemical, crystallographic, and microstructural characteristics of treated-dentine. In addition, a three-point bending test was employed to assess mechanical response. The application of WT_AgNPs indicated a higher mineralisation degree and crystallites sizes of hydroxyapatite than the DD group. SEM images showed that WT_AgNPs presented different degrees of aggregation and distribution patterns. The dentine flexural strength was significantly increased in all WT_AgNPs. The application of WT_AgNPs demonstrated remineralising and strengthening potential on demineralised dentine.


Subject(s)
Camellia sinensis , Chitosan , Fluorides , Green Chemistry Technology , Metal Nanoparticles , Silver , Chitosan/chemistry , Silver/chemistry , Metal Nanoparticles/chemistry , Camellia sinensis/chemistry , Green Chemistry Technology/methods , Fluorides/chemistry , Humans , Dentin/chemistry , Plant Extracts/chemistry
12.
Radiat Environ Biophys ; 63(2): 283-295, 2024 May.
Article in English | MEDLINE | ID: mdl-38625398

ABSTRACT

This study aimed to assess the in vitro effects of re-irradiation on enamel and dentin properties, simulating head and neck cancer radiotherapy retreatment. Forty-five human permanent molars were classified into five groups: non-irradiated; irradiated 60 Gy, and re-irradiated with doses of 30, 40, and 50 Gy. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were employed for analysis. Raman spectroscopy assessed intensity, spectral area, and specific peaks comparatively. Statistical analysis involved Kolmogorov-Smirnov and One-Way ANOVA tests, with Tukey's post-test (significance level set at 5%). Significant changes in irradiated, non-irradiated, and re-irradiated enamel peaks were observed, including phosphate (438 nm), hydroxyapatite (582 nm), phosphate (960 nm), and carbonate (1070 nm) (p < 0.05). Re-irradiation affected the entire tooth (p > 0.05), leading to interprismatic region degradation, enamel prism destruction, and hydroxyapatite crystal damage. Dentin exhibited tubule obliteration, crack formation, and progressive collagen fiber fragmentation. EDX revealed increased oxygen percentage and decreased phosphorus and calcium post-reirradiation. It is concluded that chemical and morphological changes in irradiated permanent teeth were dose-dependent, exacerbated by re-irradiation, causing substantial damage in enamel and dentin.


Subject(s)
Dental Enamel , Dentin , Humans , Dental Enamel/radiation effects , Dental Enamel/chemistry , Dentin/radiation effects , Dentin/chemistry , Spectrum Analysis, Raman , Tooth/radiation effects , Molar/radiation effects
13.
Acta Biomater ; 179: 1-12, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38561073

ABSTRACT

Vertebrate mineralized tissues, present in bones, teeth and scales, have complex 3D hierarchical structures. As more of these tissues are characterized in 3D using mainly FIB SEM at a resolution that reveals the mineralized collagen fibrils and their organization into collagen fibril bundles, highly complex and diverse structures are being revealed. In this perspective we propose an approach to analyzing these tissues based on the presence of modular structures: material textures, pore shapes and sizes, as well as extents of mineralization. This modular approach is complimentary to the widely used hierarchical approach for describing these mineralized tissues. We present a series of case studies that show how some of the same structural modules can be found in different mineralized tissues, including in bone, dentin and scales. The organizations in 3D of the various structural modules in different tissues may differ. This approach facilitates the framing of basic questions such as: are the spatial relations between modular structures the same or similar in different mineralized tissues? Do tissues with similar sets of modules carry out similar functions or can similar functions be carried out using a different set of modular structures? Do mineralized tissues with similar sets of modules have a common developmental or evolutionary pathway? STATEMENT OF SIGNIFICANCE: 3D organization studies of diverse vertebrate mineralized tissues are revealing detailed, but often confusing details about the material textures, the arrangements of pores and differences in the extent of mineralization within a tissue. The widely used hierarchical scheme for describing such organizations does not adequately provide a basis for comparing these tissues, or addressing issues such as structural components thought to be characteristic of bone, being present in dermal tissues and so on. The classification scheme we present is based on identifying structural components within a tissue that can then be systematically compared to other vertebrate mineralized tissues. We anticipate that this classification approach will provide insights into structure-function relations, as well as the evolution of these tissues.


Subject(s)
Calcification, Physiologic , Vertebrates , Animals , Bone and Bones , Tooth/chemistry , Humans , Dentin/chemistry , Animal Scales/chemistry
14.
Sci Rep ; 14(1): 6315, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491076

ABSTRACT

The aim was to investigate the influence of endodontic irrigation solutions and protocols on the micro-tensile bond strength (µTBS) to dentin using an etch-and-rinse (ER) or self-etch (SE) adhesive approach. Eighty extracted human molars were ground to dentin. After pretreating for 27 min (21 min-3 min-3 min) with five different endodontic irrigation protocols (Group 1: NaOCl-EDTA-NaOCl; Group 2: NaOCl-NaOCl-EDTA; Group 3: NaOCl-NaCl-NaOCl; Group 4: Dual Rinse-Dual Rinse-Dual Rinse; Group 5: NaCl-NaCl-NaCl), an ER (Optibond FL, Kerr) or a SE (Clearfil SE Bond, Kuraray) adhesive system was applied. After light-curing, composite build-ups were made and cut into dentin-composite sticks. µTBS and failure modes were analyzed. Nonparametric statistical analyses (α = 0.05) were performed for comparison of the five groups within each type of adhesive as well as between the two adhesive systems used. The use of an ER instead of a SE adhesive system resulted in significantly higher µTBS for all irrigation protocols except for group 1 (NaOCl-EDTA-NaOCl) and 2 (NaOCl-NaOCl-EDTA). A statistical difference between the five different endodontic irrigation protocols was only found within the SE adhesive group, where group 1 (NaOCl-EDTA-NaOCl) achieved highest values. The use of an ER adhesive system cancels out the effect of the endodontic irrigation solution. The highest µTBS was achieved when using a NaOCl-EDTA-NaOCl-irrigation protocol in combination with Clearfil SE Bond, which shows that the selection of the endodontic irrigation should match the corresponding SE adhesive system.


Subject(s)
Sodium Chloride , Sodium Hypochlorite , Humans , Edetic Acid/pharmacology , Edetic Acid/chemistry , Sodium Hypochlorite/pharmacology , Sodium Hypochlorite/chemistry , Sodium Chloride/pharmacology , Dentin/chemistry , Dentin-Bonding Agents/chemistry , Materials Testing , Tensile Strength
15.
Sci Rep ; 14(1): 7087, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38528204

ABSTRACT

To evaluate the efficiency and effectiveness of three minimally invasive (MI) techniques in removing deep dentin carious lesions. Forty extracted carious molars were treated by conventional rotary excavation (control), chemomechanical caries removal agent (Brix 3000), ultrasonic abrasion (WOODPECKER, GUILIN, China); and Er, Cr: YSGG laser ablation (BIOLASE San Clemente, CA, USA). The assessments include; the excavation time, DIAGNOdent pen, Raman spectroscopy, Vickers microhardness, and scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM-EDX). The rotary method recorded the shortest excavation time (p < 0.001), Brix 3000 gel was the slowest. DIAGNOdent pen values ranged between 14 and 18 in the remaining dentin and laser-ablated surfaces recorded the lowest reading (p < 0.001). The Ca:P ratios of the remaining dentin were close to sound dentin after all excavation methods; however, it was higher in the ultrasonic technique (p < 0.05). The bur-excavated dentin showed higher phosphate and lower matrix contents with higher tissue hardness that was comparable to sound dentin indicating the non-selectiveness of this technique in removing the potentially repairable dentin tissue. In contrast, the MI techniques exhibited lower phosphate and higher organic contents associated with lower microhardness in the deeper dentin layers. This was associated with smooth residual dentin without smearing and patent dentinal tubules. This study supports the efficiency of using MI methods in caries removal as conservative alternatives to rotary excavation, providing a promising strategy for the clinical dental practice.


Subject(s)
Dental Caries , Lasers, Solid-State , Humans , Dentin/chemistry , Dental Caries Susceptibility , Hardness , Phosphates/analysis , Dental Caries/surgery , Dental Caries/pathology
16.
Forensic Sci Int ; 358: 111987, 2024 May.
Article in English | MEDLINE | ID: mdl-38547582

ABSTRACT

Teeth are considered unique as fingerprints for identification purposes. Their structure and resilience mean they can remain for thousands and millions of years withstanding extreme conditions, including burning. During burning, bones undergo carbonization at approximately 400°C and calcination at approximately 700°C. This study aimed to investigate the effects of carbonization and calcination on dental tissue. It involved nondestructive analyses of 58 extracted human teeth before and after burning, using x-ray diffraction, micro-CT, and high-resolution confocal microscopy. The results revealed that during carbonization, dentin volume decreased in two thirds of the sample, accompanied by crack formation and significant reduction in hydroxyapatite crystal size (p<0.001). During calcination, dentin volume decreased in all teeth, along with a significant deepening of the cracks (p<0.001), while enamel crystal size increased slightly. Initial changes in teeth occurred at lower temperatures than had once been assumed, as indicated by the cracks during carbonization, and there was up to a 36% decrease in dentin volume during calcination, which should be considered when measuring burnt teeth. The results of this research provide new insight into understanding dental tissue response to burning. Thus, dental remains may contribute to the knowledge needed to reconstruct anthropological and forensic scenarios involving burning.


Subject(s)
Dental Enamel , Dentin , Fires , Microscopy, Confocal , X-Ray Diffraction , X-Ray Microtomography , Humans , Dentin/chemistry , Dental Enamel/chemistry , Durapatite/analysis , Forensic Dentistry/methods , Tooth/chemistry
17.
Dent Mater ; 40(5): 777-788, 2024 May.
Article in English | MEDLINE | ID: mdl-38458917

ABSTRACT

OBJECTIVE: To evaluate the effects of an ammonia-based and a water-based silver-containing solutions on bonding performance and matrix-metalloproteinases (MMPs) activity of a universal adhesive to dentin after 1 year of artificial aging. METHODS: Mid-coronal dentin surfaces of 60 sound human molars were exposed and the following groups were formed according to the surface pre-treatment and etching mode of the universal adhesive (Zipbond Universal, SDI) (n = 10): G1) Zipbond in the self-etch mode (ZSE); G2) Riva Star (SDI) applied before ZSE; G3) Riva Star Aqua (SDI) applied before ZSE; G4) Zipbond in the etch-and-rinse mode (ZER); G5) Riva Star applied before ZER; G6) Riva Star Aqua applied before ZER. The specimens were sectioned and subjected to microtensile bond strength (µTBS) test at baseline (T0) and after 12 months (T12) of artificial storage. Scanning electron microscope (SEM) and energy dispersive spectroscopy analysis (EDS) were also conducted. Three additional molars per group were processed for the in situ zymography analysis at T0 and T12. Data were statistically analyzed (p < 0.05). RESULTS: Dentin pre-treatments and aging decreased bonding values, regardless of the etching mode (p < 0.05). No differences in µTBS were observed between the two silver-containing solutions, both at T0 and T12. Riva Star Aqua and etching significantly increased the MMPs activity, independent of the storage period (p < 0.05). SIGNIFICANCE: Dentin surface pre-treatment with silver-containing solutions negatively affects the bonding performances of resin composite restorations placed with a universal adhesive. However, the ammonia-based product Riva Star might show better stability in the long term, due to lower activation of MMPs.


Subject(s)
Ammonia , Dental Bonding , Dentin-Bonding Agents , Materials Testing , Microscopy, Electron, Scanning , Silver , Surface Properties , Tensile Strength , Water , Humans , Water/chemistry , Dentin-Bonding Agents/chemistry , Silver/chemistry , Ammonia/chemistry , Dentin/chemistry , In Vitro Techniques , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/chemistry , Resin Cements/chemistry , Molar , Acid Etching, Dental , Spectrometry, X-Ray Emission , Dental Stress Analysis
18.
Micron ; 179: 103608, 2024 04.
Article in English | MEDLINE | ID: mdl-38354449

ABSTRACT

Research on the structure and chemical composition of dental tissues allows for the optimisation of materials used in the treatment and care of teeth. Understanding pathological processes occurring in dental tissues and their reactions to various substances, including dental materials, are crucial for the development of new dental technologies. The aim of the study was to check the similarities in the chemical and morphological structure of enamel and dentine powders in various groups of permanent teeth, as well as differential chemical analysis for both grinded tissues tested. The extracted non-carious and non-pathological human permanent teeth were divided into four groups: incisors, canines, premolars and molars. Each tooth was sectioned to thick slices. Enamel and dentine were mechanically separated and ground in an agate mortar and pestle. FT-Raman and FTIR spectroscopy methods were used for the analysis of biological tissues. SEM method was applied to visualise hard dental tissues structures present on the surface and within the particles. The morphological structures were the same within the analysed tissues and did not depend on the analysed group of teeth. A comparison of the mineral-to-organic ratios of enamel and dentine in each tooth group showed that the bands related to PO43- were clearly higher in content for enamel than for dentine. Higher absorbance measured at the region of 2800-3700 cm-1 and at 1500-1800 cm-1 for dentine as compared to enamel samples were indicative of a higher content of organic structures. The highest contribution of phosphates was in canine enamel samples.The studies showed that the carbonate-to-phosphate ratio was higher for dentine (0.20 - 0.48) compared to the values obtained for enamel (0.13 - 0.22), however, minor differences were found in each group of enamel or dentine samples. The lack of significant differences between the enamel and dentine powders of incisors, canines, premolars and molars may prove that each extracted tooth, regardless of the tooth group, is an excellent substrate for their substitution.


Subject(s)
Dentin , Molar , Humans , Dentin/chemistry , Dental Enamel
19.
Dent Mater ; 40(4): 593-607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365457

ABSTRACT

OBJECTIVES: A calcium phosphate extracted from fish bones (CaP-N) was evaluated for enamel remineralization and dentinal tubules occlusion. METHODS: CaP-N was characterized by assessing morphology by SEM, crystallinity by PXRD, and composition by ICP-OES. CaP-N morphology, crystallinity, ion release, and pH changes over time in neutral and acidic solutions were studied. CaP-N was then tested to assess remineralization and dentinal tubules occlusion on demineralized human enamel and dentin specimens (n = 6). Synthetic calcium phosphate in form of stoichiometric hydroxyapatite nanoparticles (CaP-S) and tap water were positive and negative controls, respectively. After treatment (brush every 12 h for 5d and storage in Dulbecco's modified PBS), specimens' morphology and surface composition were assessed (by SEM-EDS), while the viscoelastic behavior was evaluated with microindentation and DMA. RESULTS: CaP-N consisted of rounded microparticles (200 nm - 1 µm) composed of 33 wt% hydroxyapatite and 67 wt% ß-tricalcium phosphate. In acidic solution, CaP-N released calcium and phosphate ions thanks to the preferential ß-tricalcium phosphate phase dissolution. Enamel remineralization was induced by CaP-N comparably to CaP-S, while CaP-N exhibited a superior dentinal tubule occlusion than CaP-S, forming mineral plugs and depositing new nanoparticles onto demineralized collagen. This behavior was attributed to its bigger particle size and increased solubility. DMA depth profiling and SEM showed an excellent interaction between the newly formed mineralized structures and the pristine tissue, particularly at the exposed collagen fibrils. SIGNIFICANCE: CaP-N demonstrated very good remineralizing and occlusive activity in vitro, comparable to CaP-S, thus could be a promising circular economy alternative therapeutic agent for dentistry.


Subject(s)
Dentin , Hydroxyapatites , Tooth Remineralization , Animals , Humans , Dentin/chemistry , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Dental Enamel , Calcium/analysis , Durapatite/pharmacology , Durapatite/chemistry , Collagen
20.
Dent Mater ; 40(4): e12-e23, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38368137

ABSTRACT

OBJECTIVE: this study evaluated dentin microtensile bond strength (µTBS) and failure modes (at 24 h and one year), bonding interface regarding hybridization, surface morphology regarding demineralization, in situ metalloproteinase (MMP) activity, and antibacterial effect of three dentin etchants compared to 35% phosphoric acid (PA). MATERIALS AND METHODS: The Adper Single Bond 2 adhesive (3 M Oral Care) was applied on moist dentin etched with PA (control) or on air-dried dentin etched with 3% aluminum nitrate + 2% oxalic acid (AN), 6.8% ferric oxalate + 10% citric acid (FO), or 10% citric acid (CA). The µTBS test used 40 human teeth (n = 10). Failure modes and surface morphology were analyzed by scanning electron microscopy (n = 3), while bonding interface morphology and MMP activity were evaluated by laser scanning confocal microscopy (n = 3). Antibacterial activity was evaluated against S. Mutans biofilm by means of viable cells count (CFU/mL). RESULTS: PA presented the highest bond strengths regardless of aging time. PA, AN, and CA showed stable bond strengths after one year of storage. Adhesive and mixed failures were predominant in all groups. Thin hybrid layers with short resin tags were observed for the experimental etchants. The AN-based etchant was able to inhibit MMP activity. All tested etchants presented antibacterial activity against S. Mutans biofilm. SIGNIFICANCE: This study suggests different dentin etchants capable of inhibiting MMP activity while also acting as cavity disinfectants.


Subject(s)
Composite Resins , Dental Bonding , Ferric Compounds , Humans , Composite Resins/chemistry , Dentin-Bonding Agents/pharmacology , Dentin-Bonding Agents/chemistry , Resin Cements/pharmacology , Resin Cements/chemistry , Microscopy, Electron, Scanning , Dentin/chemistry , Citric Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Tensile Strength , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...