Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 796
Filter
1.
Braz Oral Res ; 38: e034, 2024.
Article in English | MEDLINE | ID: mdl-38747821

ABSTRACT

The aim of this study was to investigate the effect of acid challenge on the activation of matrix metalloproteinases (MMPs) in the Dentinoenamel junction of primary and permanent teeth submitted to radiotherapy. For this purpose, a total of 178 dental fragments obtained from molars were used, and randomly divided into 2 groups (primary and permanent teeth) / 4 experimental subgroups (irradiated and non-irradiated, demineralized and non-demineralized). The fragments were exposed to radiation, with a dose fraction of 2 Gy, for 5 consecutive days, until a total dose of 60 Gy was reached, with a total of 30 cycles, for 6 weeks. To determine the activity of MMPs on the dentinoenamel junction (DEJ), in situ zymography assays on 0.6mm dental fragments were performed. To assess whether MMP activity would be impacted by an acidic environment, the fragments were placed in a demineralizing solution (pH of 4.8). The finding was that irradiation activated MMPs in DEJ and these effects were more evident in permanent when compared with primary teeth. When the effect of an acid challenge on MMPs activity was investigated, demineralization was observed not to increase MMPs activity in non-irradiated teeth, but it did increase MMPs activity in irradiated teeth. In conclusion, an acid challenge was found to exacerbate activation of MMPs in DEJ of permanent teeth submitted to irradiation, but not in primary teeth.


Subject(s)
Matrix Metalloproteinases , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/radiation effects , Matrix Metalloproteinases/analysis , Humans , Time Factors , Tooth, Deciduous/radiation effects , Tooth, Deciduous/drug effects , Dentin/radiation effects , Dentin/drug effects , Dentin/enzymology , Dentition, Permanent , Random Allocation , Hydrogen-Ion Concentration , Tooth Demineralization , Statistics, Nonparametric , Analysis of Variance , Reference Values , Enzyme Activation/radiation effects , Enzyme Activation/drug effects
2.
Clin Oral Investig ; 28(6): 324, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761225

ABSTRACT

OBJECTIVES: To assess the growth of a multispecies biofilm on root canal dentin under different radiotherapy regimens. MATERIALS AND METHODS: Sixty-three human root dentin cylinders were distributed into six groups. In three groups, no biofilm was formed (n = 3): NoRT) non-irradiated dentin; RT55) 55 Gy; and RT70) 70 Gy. In the other three groups (n = 18), a 21-day multispecies biofilm (Enterococcus faecalis, Streptococcus mutans, and Candida albicans) was formed in the canal: NoRT + Bio) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. The biofilm was quantified (CFUs/mL). Biofilm microstructure was assessed under SEM. Microbial penetration into dentinal tubules was assessed under CLSM. For the biofilm biomass and dentin microhardness pre- and after biofilm growth assessments, 45 bovine dentin specimens were distributed into three groups (n = 15): NoRT) non-irradiated + biofilm; RT55 + Bio) 55 Gy + biofilm; and RT70 + Bio) 70 Gy + biofilm. RESULTS: Irradiated specimens (70 Gy) had higher quantity of microorganisms than non-irradiated (p = .010). There was gradual increase in biofilm biomass from non-irradiated to 55 Gy and 70 Gy (p < .001). Irradiated specimens had greater reduction in microhardness after biofilm growth. Irradiated dentin led to the growth of a more complex and irregular biofilm. There was microbial penetration into the dentinal tubules, regardless of the radiation regimen. CONCLUSION: Radiotherapy increased the number of microorganisms and biofilm biomass and reduced dentin microhardness. Microbial penetration into dentinal tubules was noticeable. CLINICAL RELEVANCE: Cumulative and potentially irreversible side effects of radiotherapy affect biofilm growth on root dentin. These changes could compromise the success of endodontic treatment in oncological patients undergoing head and neck radiotherapy.


Subject(s)
Biofilms , Candida albicans , Dental Pulp Cavity , Dentin , Enterococcus faecalis , Streptococcus mutans , Biofilms/radiation effects , Dentin/microbiology , Dentin/radiation effects , Humans , Dental Pulp Cavity/microbiology , Dental Pulp Cavity/radiation effects , Candida albicans/radiation effects , Animals , Enterococcus faecalis/radiation effects , Streptococcus mutans/radiation effects , Cattle , Microscopy, Electron, Scanning , Hardness , Microscopy, Confocal , Radiotherapy Dosage
3.
Radiat Environ Biophys ; 63(2): 283-295, 2024 May.
Article in English | MEDLINE | ID: mdl-38625398

ABSTRACT

This study aimed to assess the in vitro effects of re-irradiation on enamel and dentin properties, simulating head and neck cancer radiotherapy retreatment. Forty-five human permanent molars were classified into five groups: non-irradiated; irradiated 60 Gy, and re-irradiated with doses of 30, 40, and 50 Gy. Raman spectroscopy, scanning electron microscopy (SEM), and energy dispersive x-ray spectroscopy (EDS) were employed for analysis. Raman spectroscopy assessed intensity, spectral area, and specific peaks comparatively. Statistical analysis involved Kolmogorov-Smirnov and One-Way ANOVA tests, with Tukey's post-test (significance level set at 5%). Significant changes in irradiated, non-irradiated, and re-irradiated enamel peaks were observed, including phosphate (438 nm), hydroxyapatite (582 nm), phosphate (960 nm), and carbonate (1070 nm) (p < 0.05). Re-irradiation affected the entire tooth (p > 0.05), leading to interprismatic region degradation, enamel prism destruction, and hydroxyapatite crystal damage. Dentin exhibited tubule obliteration, crack formation, and progressive collagen fiber fragmentation. EDX revealed increased oxygen percentage and decreased phosphorus and calcium post-reirradiation. It is concluded that chemical and morphological changes in irradiated permanent teeth were dose-dependent, exacerbated by re-irradiation, causing substantial damage in enamel and dentin.


Subject(s)
Dental Enamel , Dentin , Humans , Dental Enamel/radiation effects , Dental Enamel/chemistry , Dentin/radiation effects , Dentin/chemistry , Spectrum Analysis, Raman , Tooth/radiation effects , Molar/radiation effects
4.
Photobiomodul Photomed Laser Surg ; 42(5): 350-355, 2024 May.
Article in English | MEDLINE | ID: mdl-38588575

ABSTRACT

Objective: Assessment of different remineralizing pretreatment casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), proanthocyanidin (PA), carbon dioxide laser (CO2), eggshell solution (ES) on the shear bond strength (SBS) of resin composite bonded to remineralized carious-affected dentin (CAD). Materials and methods: Eighty human molars were collected with occlusal caries that extended about halfway into the dentin. Using a water-cooled, low-speed cutting saw, a flat, mid-coronal dentin surface was exposed. CAD was differentiated from healthy dentin. Based on the remineralizing agent used on the CAD surface, the teeth were arbitrarily allocated into five groups (n = 10). Group 1: no remineralizing agent, Group 2: CPP-ACP, Group 3: 6.5% PA solution, Group 4: CO2 laser, and Group 5: ES solution. All samples were bonded to composite and light cured and thermocycled. SBS and failure mode analysis were performed using universal testing and stereomicroscope 40 × . Using SPSS, SBS, and failure mode data were analyzed using analysis of variance and Tukey's honesty significant difference (HSD) test Results: Group 3 (6.5% PA solution; 15.59 ± 1.44 MPa) samples established the maximum bond integrity. Nevertheless, Group 1 (No remineralizing agent; 11.19 ± 1.21 MPa) exhibited the minimum outcome of bond strength. Intergroup comparison analysis showed that Group 1 (No remineralizing agent), Group 2 (CPP-ACP), and Group 4 (CO2 laser) established comparable values of bond strength (p > 0.05). Likewise, Group 3 (6.5% PA solution) and Group 5 (EA solution) also revealed equivalent bond integrity (p > 0.05). Conclusions: PA and ES are considered potential remineralizing agents used for caries-affected dentin surfaces in improving bond integrity to composite resin. However, further studies are advocated to extrapolate the findings of this study.


Subject(s)
Caseins , Dental Caries , Lasers, Gas , Proanthocyanidins , Tooth Remineralization , Humans , Proanthocyanidins/pharmacology , Tooth Remineralization/methods , Lasers, Gas/therapeutic use , Dental Caries/therapy , Dentin/radiation effects , Composite Resins/chemistry , Dental Bonding , Shear Strength , In Vitro Techniques , Dental Restoration, Permanent , Molar
5.
Oper Dent ; 49(3): 300-310, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38632862

ABSTRACT

OBJECTIVES: The depth of cure using blue-light photocuring units (BL) is limited by tooth structure and qualities of the restorative material through which the activating wavelength must pass. Recent developments incorporate an infrared (IR) activated upconversion (UC) fluorescence of a lining agent filled with nanocrystals of NaYF4 and doped with YB+3 and Tm+3 that emit both blue and violet light locally at the interface of the liner and restorative resin. The purpose of this study was to evaluate the BL and 975 nm infrared (IR) light power transmission through dental tissues and restorative materials. METHODS AND MATERIALS: Power transmissions of the IR laser (975 nm) and a monowave blue-only light-curing unit (Bluephase 16i) through dental tissues (enamel, dentin, and enamel/dentin junction, or DEJ), eight (8) various dental resin composites, and eight (8) dental ceramics, each at four thicknesses (1, 2, 3 and 4 mm) were evaluated (n=5) using a thermopile sensor (PM10, Coherent Inc) connected to a laser power meter (Fieldmate, Coherent Inc). Power transmission values of each light source and restorative material were subjected to analysis of variance and Tukey test at a pre-set alpha of 0.05. RESULTS: A linear correlation (r=0.9884) between the supplied current and emitted IR power of the laser diode was found, showing no statistical power reduction with increased distances (collimated beam). For tooth tissues, the highest power transmissions for both light sources were observed using 1.0 mm enamel while the lowest values were found for 2.0 mm dentin and an association of 2.0 mm DEJ and 1.0 mm dentin. The only group where IR demonstrated significantly higher transmission when compared to BL was 1.0 mm enamel. For all resin composites and dental ceramics, increased thickness resulted in a reduction of IR power transmission (except for EverX Posterior fiber-reinforced composite and e.max HT ceramic). IR resulted in higher transmission through all resin composites, except for Tetric EvoCeram White. The highest BL transmission was observed for SDR Flow, at all thicknesses. Higher IR/BL ratios were observed for EverX Posterior, Herculite Ultra, and Lava Ultimate, while the lowest ratio was observed for Tetric EvoCeram White. Reduced translucency shades within the same material resulted in lower power ratio values, especially for BL transmission. Higher IR/BL ratios were observed for e.Max LT, VitaVM7 Base Dentin, and e.max CAD HT, while the lowest values were found for VitaVM7 Enamel and Paradigm C. CONCLUSION: IR power transmission through enamel was higher when compared to blue light, while no difference was observed for dentin. The power transmission of IR was higher than BL for resin composites, except for a high value and low chroma shade. Fiber-reinforced resin composite demonstrated the highest IR/BL power transmission ratio. A greater IR/BL ratio was observed for lower translucency ceramics when compared to high translucency.


Subject(s)
Composite Resins , Curing Lights, Dental , Dental Materials , Infrared Rays , Composite Resins/chemistry , Humans , Dental Materials/chemistry , Dental Restoration, Permanent/methods , Ceramics , Materials Testing , Dentin/radiation effects , Dental Enamel/radiation effects
6.
Clin Oral Investig ; 28(3): 202, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453707

ABSTRACT

OBJECTIVES: To evaluate the effects of Nd:YAG laser irradiation on the microstructures of dentin surfaces and the long-term bond strength of dentin under simulated pulpal pressure. MATERIALS AND METHODS: Under simulated pulp pressure, 30 freshly extracted caries-free third molars were cut into 2-mm-thick dentin samples and then divided into five groups: the control and laser groups (93.3 J/cm2; 124.4 J/cm2; 155.5 J/cm2; 186.6 J/cm2). Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and Vickers hardness were used to analyze the surface morphology, composition, and mechanical properties of the dentin before and after laser irradiation. Another 80 caries-free third molars were removed and treated as described above, and the resin was bonded to the dentin surface with Single Bond Universal (SBU) adhesive in self-etch mode to make stick specimens. Microtensile bond strength (µTBS), confocal laser scanning microscopy (CLSM), and interfacial silver nanoleakage tests before and after 10,000 times thermocycling were then performed to analyze the bonding properties and interfacial durability of each group. RESULTS: SEM observations revealed that the surfaces of all laser group specimens were rough with open dentin tubules. Laser irradiation altered the surface composition of dentin while removing some collagen fibers but did not affect its surface hardness or crystallographic characteristics. Furthermore, laser irradiation with an energy density of 124.4 J/cm2 significantly promoted the immediate and aging bond strengths and reduced nanoleakage compared to those of the control group. CONCLUSIONS: Under simulated pulp pressure, Nd:YAG laser pretreatment altered the chemical composition of dentin and improved the immediate and long-term bond strength. CLINICAL RELEVANCE: This study investigated the optimal parameters for Nd:YAG laser pretreatment of dentin, which has potential as a clinical method to strengthen bonding.


Subject(s)
Dental Bonding , Dental Caries , Lasers, Solid-State , Humans , Dentin/radiation effects , Lasers, Solid-State/therapeutic use , Dental Cements , Dental Pulp , Microscopy, Electron, Scanning , Tensile Strength , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry
7.
Sci Rep ; 13(1): 20156, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978230

ABSTRACT

We investigated the effect of femtosecond (fs) laser ablation of enamel and dentin for different pulse wavelengths: infrared (1030 nm), green (515 nm), and ultra-violet (343 nm) and for different pulse separations to determine the optimal irradiation conditions for the precise removal of dental hard tissues with the absence of structural and compositional damage. The ablation rates and efficiencies were established for all three laser wavelengths for both enamel and dentin at room temperature without using any irrigation or cooling system, and the surfaces were assessed with optical and scanning electron microscopy, optical profilometry, and Raman spectroscopy. We demonstrated that 515 nm fs irradiation provides the highest rate and efficiency for ablation, followed by infrared. Finally, we explored the temperature variations inside the dental pulp during the laser procedures for all three wavelengths and showed that the maximum increase at the optimum conditions for both infrared and green irradiations was 5.5 °C, within the acceptable limit of temperature increase during conventional dental treatments. Ultra-violet irradiation significantly increased the internal temperature of the teeth, well above the acceptable limit, and caused severe damage to tooth structures. Thus, ultra-violet is not a compatible laser wavelength for femtosecond teeth ablation.


Subject(s)
Dentin , Laser Therapy , Dentin/radiation effects , Lasers , Laser Therapy/methods , Temperature , Dental Enamel
8.
Lasers Med Sci ; 38(1): 255, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932490

ABSTRACT

PURPOSE: This systematic review provides an overview of the main chemical and morphological alterations generated on dentin by different high-power lasers' irradiation. METHODS: The review was registered in PROSPERO (CRD42023394164) and PRISMA guidelines were followed. The search strategy was conducted on MEDLINE (PubMed), Embase (Elsevier), and Web of Science (Clarivate) databases. The eligibility criteria were established according to the PICOS strategy, focusing on in vitro and ex vivo studies that assessed the chemical and morphological changes in dentin using five high-power lasers: Nd:YAG (1064 nm), Er:YAG (2940 nm), Er, Cr:YSGG (2780 nm), diode (980 nm), and CO2 (10,600 nm). Publication range was from 2010 to 2022. Data was summarized in tables and risk of bias was assessed by QUIN tool. RESULTS: The search resulted in 2255 matches and 57 studies composed the sample. The methods most used to assess the outcomes were scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and Raman. The studies presented "medium" and "low" risk of bias. The laser prevalently identified was the Er:YAG laser, associated with dentin ablation, absence of smear layer, and exposed tubules. The Nd:YAG laser generated vitreous surface and thermal damage, such as carbonization and cracks. The other lasers caused an irregular surface and no adverse thermal effects. Regarding the chemical structure, only the Er,Cr:YSGG laser caused collagen matrix reduction. The effects found were more intense with higher dosimetry. CONCLUSION: Evidence available indicates that the irradiation of dentin with high-power lasers are related to morphological outcomes favorable to adhesive restorative procedures, with minimal changes in collagen matrix and mineral content. However, those observations should be carried carefully by clinicians and more clinical trials regarding the association of high-power laser irradiation and restorative procedure longevity are needed.


Subject(s)
Dentin , Lasers, Solid-State , Dentin/radiation effects , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission , Collagen
9.
Lasers Med Sci ; 38(1): 242, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37878132

ABSTRACT

The aim of this study is to assess the influence of various Er:YAG laser energies on dentin surface micromorphology and dentine-resin shear bond strength (SBS). Eighty dentin specimens were prepared and divided randomly into ten groups: control group (CG), phosphoric acid-etched group (AG), four laser-conditioned groups treated with various pulse energies of 40, 60, 80, and 100 mJ (L40, L60, L80, L100), and four laser-conditioned acid-etched groups (LA40, LA60, LA80, LA100). Two specimens from each group underwent scanning electron microscopy examination, while the remaining six were subjected to the dentin-resin SBS test. Statistical analyses included Welch's analysis of variance (ANOVA), followed by post hoc Tamhane's T2 multiple comparisons test, Pearson's correlation, and Fisher's exact test. Pulse energies of 60, 80, and 100 mJ fully exposed the dentin tubule orifices, although 100 mJ lead to microcracks. Laser-conditioned surfaces exhibited smaller tubule diameters compared to acid-etched surfaces, and tubule diameters positively correlated with dentin-resin SBS. Laser-conditioned groups showed lower SBS values, while laser-conditioned acid-etched groups demonstrated higher SBS values. No significant relationship was observed between dentin surface roughness and SBS. The range of laser energies used for dentin conditioning had limited effects on SBS or failure modes. Laser conditioning with energies ranging from 40 to 100 mJ effectively removes the smear layer from the dentin surface. However, to enhance dentin-resin bond strength, further acid etching of the laser-conditioned surface is necessary.


Subject(s)
Dentin , Lasers, Solid-State , Analysis of Variance , Dentin/radiation effects , Microscopy, Electron, Scanning , Shear Strength
10.
Lasers Med Sci ; 38(1): 146, 2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37353598

ABSTRACT

Fiber post bonding failure remains an issue during crown restoration procedures. This experiment examines the bonding effect of combined Er:YAG laser treatment on both root canal and fiber post. Sixty extracted mandibular first premolars were randomly selected and divided into 6 groups (n = 10 per group): G1 (control group): root canal with 2.5% NaClO treatment, no treatment of fiber post; G2: root canal with 2.5% NaClO treatment and fiber post with airborne-particle abrasion; G3: root canal with Er:YAG laser treatment and fiber post with airborne-particle abrasion; G4: root canal with Er:YAG laser treatment, no treatment of fiber post; G5: root canal with 2.5% NaClO treatment, fiber post with Er:YAG laser irradiation; G6: combined Er:YAG laser irradiation of both root canal and fiber post. An Er:YAG laser with a wavelength of 2940 nm was used to treat the fiber post (4.5 W, 450 mJ, 10 Hz for 60 s at 100-µs pulse duration with 100% water cooling) and the root canal (1.5 W, 150 mJ, 10 Hz for 60 s at 100-µs pulse duration with 100% water cooling). When the root canal was treated with the laser, the fiber tip was inserted into the root canal to make a spiral reciprocating motion. Bond strength was analyzed by a micro push-out test. Data were analyzed using both the Tukey test and two-way ANOVA (α = 0.05). Failure modes were observed and counted through a stereo microscope. The root canal and fiber post surface analysis was performed using SEM. The bond strength of G3 and G6 were significantly enhanced compared to those of the other groups (p < 0.05). The SEM analysis showed that the smear layers of groups with root canals subjected to Er:YAG laser irradiation were significantly reduced compared to those of the control group (G1). In groups with fiber posts treated with Er:YAG laser irradiation, the surfaces of the fiber posts exhibited greater surface roughness and a certain degree of epoxy matrix removal. Through the combined Er:YAG laser irradiation of both root canal and fiber post, the bond strength between them was significantly enhanced, which was superior to the individual treatment of either fiber posts or root canal.


Subject(s)
Dental Bonding , Lasers, Solid-State , Post and Core Technique , Lasers, Solid-State/therapeutic use , Dental Pulp Cavity , Root Canal Therapy , Epoxy Resins , Dentin/radiation effects
11.
Lasers Med Sci ; 38(1): 103, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37069368

ABSTRACT

The aim of this study was the evaluation of the in vitro efficacy of a carbon dioxide (CO2) laser, a tetracalcium phosphate/dicalcium phosphate anhydrate (TP/DP) desensitizer and the combination of the desensitizer and additional CO2 laser irradiation as a treatment modality for cervical dentin hypersensitivity. A total of 48 dental specimens, prepared from extracted human premolars and molars, were divided into four groups: a control group, a TP/DP desensitizer paste group, a CO2 laser (10.600-nm wavelength) group, and a paste and laser group. The specimens were coated with nail varnish except in the marked area and were then immersed in 2% methylene blue dye for 1 h. The specimens were then washed, dried, and cut longitudinally. Thereafter, photos of 40 dentin specimens were taken and evaluated. The area of penetration was assessed and reported as percentage of the dentin surface area. Additionally eight dental specimens were examined with the aid of a scanning electron microscope and evaluated. Significant differences in the penetration depth were found for all experimental groups compared to the control group. The lowest penetration area was detected in the paste-laser group (16.5%), followed by the laser (23.7%), the paste (48.5%), and the control group (86.2%). The combined treatment of the CO2 laser and a TP/DP desensitizer was efficient in sealing the dentinal surface and could be a treatment option for cervical dentin hypersensitivity.


Subject(s)
Dentin Sensitivity , Dentin , Humans , Dentin/radiation effects , Dentin Sensitivity/drug therapy , Dentin Sensitivity/radiotherapy , Carbon Dioxide/pharmacology , Microscopy, Electron, Scanning , Lasers
12.
Radiat Environ Biophys ; 62(2): 261-268, 2023 05.
Article in English | MEDLINE | ID: mdl-36933029

ABSTRACT

The aims of the study were to analyze the effects of therapeutic radiation on human root dentin samples from the aspect of possible alterations in crystallinity, micro-morphology, and composition. Fifty-six root dentin specimens were divided into seven groups (0, 10, 20, 30, 40, 50, and 60 Gy). Scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analyses were performed on pulpal surfaces of root dentin after being irradiated by 6MV photon energy. Mineral compositions, Ca/P, P/N, Ca/N ratios, and hydroxyapatite pikes were calculated. Some deuteriations on the dentin surface were observed in SEM images after 30 Gy and subsequent doses. One-way ANOVA revealed that there was no significant alteration in weight percentages of C, O, Mg, Ca, P, and N between groups. Radiation did not influence stoichiometric Ca/P, Ca/N, and P/N molar ratios. XRD analysis did not show a remarkable decline in hydroxyapatite pikes by the increasing doses. Radiotherapy changes the micromorphology of circumpulpal dentin but does not affect elemental composition and crystallinity.


Subject(s)
Dentin , Minerals , Humans , Dentin/chemistry , Dentin/radiation effects , Hydroxyapatites/analysis
13.
Photodiagnosis Photodyn Ther ; 42: 103313, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36736549

ABSTRACT

AIMS: The present study aimed to investigate the bond integrity and disinfection efficacy of Methylene blue(MB) alone, MB-PDT (Photodynamic therapy), MB@ carbon nanoparticles (CP)-PDT, and Cr, Cr: YSGG (ECL) against lactobacilli in Caries-affected dentin (CAD) MATERIAL AND METHODS: Methods consisted of Shear bond strength (SBS), Scanning electron microscopy (SEM), energy dispersive X-ray (EDX), methods of disinfection, and failure analysis. CAD samples were prepared and biofilm formed on the specimens randomly allocated into five groups based on disinfection. Group 1: CHX; Group 2: MB; Group 3: MB-PDT: group 4: MB@CP-PDT and group 5: ECL. After disinfection Colony forming units were measured and specimens were restored and positioned under a universal testing machine (UTM). Failure analysis was performed using a stereomicroscope. The difference in survival rate was assessed using the Kruskal-Walis test. Mean and standard deviation for bond values after different methods of disinfection was evaluated using analysis of variance (ANOVA) and Post Hoc Tukey. The significance level was p<0.05 RESULTS: Morphological analysis revealed that CPs under SEM are flat discs with edged irregular shapes. EDX analyses show a spike indicating carbon particles by more than 95%. MB@CP-PDT displayed the highest reduction in lactobacillus levels in comparison to the other disinfection methods. The highest SBS was exhibited by the CAD sample disinfected with ECL. The lowest SBS values in CAD specimens after cavity cleansing with MB alone. The predominant failure type in CAD disinfected with MB alone, ECL CHX, MB-PDT, and MB@CP-PDT was adhesive. CONCLUSION: The use of MB@CP-PDT showed high antibacterial potency against lactobacillus but demonstrated bond values similar to CHX. Use of Er, Cr: YSGG showed considerable effectiveness against lactobacillus along with the highest bond values.


Subject(s)
Dentin , Disinfection , Lasers, Solid-State , Dentin/chemistry , Dentin/microbiology , Dentin/radiation effects , Disinfection/methods , Materials Testing , Nanoparticles , Photochemotherapy/methods , Photosensitizing Agents , Biofilms/radiation effects , Humans
14.
J Mech Behav Biomed Mater ; 140: 105692, 2023 04.
Article in English | MEDLINE | ID: mdl-36753849

ABSTRACT

OBJECTIVES: To examine the micro tensile bond strength (µTBS) and the resin-dentin interface on a laser-irradiated dentin surface using two different irradiation methods, with or without additional low-energy irradiation. METHODS: The flat bovine dentin surface was divided into three groups: i). control group (C group, no irradiation), ii) 80 mJ/pulse Er: YAG laser group (80 group), iii) 80 + 30 mJ/pulse Er: YAG laser group (80 + 30 group, with an additional 30 mJ/pulse). After the roughness of the dentin surface was recorded, Clearfil SE Bond 2 or Clearfil Universal Bond Quick (Kuraray Noritake Dental Inc., Tokyo, Japan) was applied. After the µTBS testing, the failure mode was observed. The bonded interface was assessed using Rhodamine-dye incorporated adhesives and observed by optical coherence tomography. RESULTS: The dentin surface showed opened dentinal tubules without a smear layer after irradiation. For both adhesives, the µTBS was significantly higher in 80 + 30 group than in the 80 group (p < 0.05). In the 80 group, the thickness of the adhesive layer was not uniform, and the dentin surface was occasionally in direct contact with the composite resin. The failure mode images showed that most of the fractures in the 80 group were at the sub-surface of irradiated dentin. The adhesive layers of the 80 + 30 groups were homogeneous. CONCLUSIONS: The dentin surface was rough and irregular by 80 mJ irradiation, which might result in an inadequate resin-dentin interface and the weak µTBS. The bonded integrity was mitigated by additional irradiation.


Subject(s)
Dental Bonding , Lasers, Solid-State , Animals , Cattle , Dentin/radiation effects , Composite Resins/chemistry , Resin Cements/chemistry , Adhesives , Tensile Strength , Dentin-Bonding Agents , Microscopy, Electron, Scanning
15.
Lasers Med Sci ; 38(1): 32, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36595096

ABSTRACT

At present, lasers are increasingly used in the oral clinical field, and research and applications in dental hard tissue treatment are also increasing. The effect of laser etching dentin on the bonding strength of composite resin reported in the literature is still inconclusive. The purpose of this review was to evaluate whether laser etching can improve the immediate and long-term bonding strength of dentin and investigate the effect of different types of adhesives on the bonding strength of dentin. Two reviewers performed a literature search up from January 2012 to November 2021 in four databases: MEDLINE (PubMed), Web of Science, EMBASE, and the Cochrane Library. A total of 25 studies were included in the meta-analysis. The Cochrane Collaboration Bias Risk Assessment tool was used to evaluate the quality of the included literature, and an analysis was carried out using Review Manager Software version 5.3. The aging bond strength of dentin after erbium (Er): yttrium aluminum garnet (YAG) laser treatment was significantly lower than that of dentin in the bur group (P < 0.00001). At the same time, the bond strength of dentin immediately and aging after (Er), chromium-doped (Cr): yttrium scandium gallium garnet (YSGG) laser treatment was lower than that of dentin in the bur group (P < 0.05). There was no significant difference in the immediate and aging bonding strength among samples in the Er: YAG laser, Er, Cr: YSGG laser, and blank control groups (no laser or bur). The aging bond strength of samples after neodymium-doped (Nd): YAG laser treatment was higher than that of samples in the blank control group (P < 0.05); in addition, the performance of self-etching adhesive was slightly better than that of acid etching adhesive. Regardless of the applied surface treatment and the adhesive employed, dentin after aging showed significant bond degradation (P < 0.05). There was high heterogeneity of bond strength between different groups, and the small number of studies and the contradictory results may be the main reasons for this outcome.


Subject(s)
Dental Bonding , Lasers, Solid-State , Lasers, Solid-State/therapeutic use , Adhesives , Erbium , Neodymium , Scandium/analysis , Yttrium/analysis , Dentin/radiation effects
16.
Lasers Med Sci ; 38(1): 41, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36652020

ABSTRACT

This study was aimed to evaluate the effects of Er:YAG and Er,Cr:YSGG laser irradiation and adhesive systems on the microtensile bond strength of Fusio Liquid Dentin (FLD) which is a self-adhering composite (SAC). Twenty-four freshly extracted human molar teeth were collected, and the enamel was removed from the occlusal surface to obtain a flat dentin surface. Twenty-four teeth were randomly divided into eight groups: Group 1: only Fusio Liquid Dentin (FLD) (Petron Clinical, Orange, California, USA) was applied to the dentin surface; Group 2: 37% Phosphoricacid (i-GEL, Medicinos Linija UAB, Lithuania) + FLD; Group 3: Single Bond Universal (SBU) (3 M ESPE, Germany) + FLD; Group 4: Adper Easy One (AEO) (3 M ESPE, Germany) + FLD; Group 5: Er:YAG laser + AEO + FLD; Group 6: Er:YAG laser + SBU + FLD; Group 7: Er,Cr:YSGG laser + AEO + FLD; and Group 8: Er,Cr:YSGG laser + SBU + FLD. After thermocycling, 1 × 1 mm2 sticks were used for the µTBS test (n = 10). Two sticks per group were used for SEM analysis. Fractured sample surfaces were evaluated using a stereomicroscope. Group 8 showed the highest µTBS value (13.70 MPa), whereas Group 1 showed the lowest µTBS value (5.60 MPa). There were no significant differences between Groups 2, 3, and 4 (P = 0.324), but Groups 5-8 showed statistically significant results that were higher than Groups 1-4 (P = 0.012). Adhesive failure mode was predominant followed by mixed failure. The evaluation of bonding of the FLD to dentin showed that the combined use of Er:YAG and Er,Cr:YSGG lasers with SBU and AEO on dentin surfaces improved the dentinal bond strength of the FLD.


Subject(s)
Dental Bonding , Lasers, Solid-State , Humans , Lasers, Solid-State/therapeutic use , Adhesives , Dentin/radiation effects , Tensile Strength
17.
São Paulo; s.n; 2023. 75 p. ilus, tab.
Thesis in Portuguese | LILACS, Inca | ID: biblio-1434399

ABSTRACT

Introdução: Padrões atípicos de cárie dentária em pacientes submetidos a radioterapia para o tratamento do câncer de cabeça e pescoço podem estar associados aos efeitos da radiação sobre as glândulas salivares e tecidos dentários duros. Somados, podem contribuir para a cárie relacionada a radiação. Embora haja evidências sobre alterações sofridas pelos tecidos dentários duros após radioterapia, não há consenso na literatura sobre a gravidade destas alterações. Objetivo: avaliar a microestrutura, composição química e microdureza do esmalte e da dentina de dentes permanentes submetidos a doses terapêuticas de radioterapia in vitro. Material e métodos: estudo experimental, qualitativo, quantitativo e semiquantitativo. Foram obtidos fragmentos coronários de 24 terceiros molares. Constituiuse 2 grupos: NIR (controle): formado por fragmentos de dentes não irradiados e IVT (irradiado): formado por fragmentos de dentes irradiados in vitro (2 Gy/dia 5 vezes por semana, totalizando 70 Gy). Os fragmentos foram submetidos a análise da microdureza (n=24), Espectroscopia de Infravermelho com Transformada de Fourier (FTIR) (n=24), análise morfológica através de Microscopia Eletrônica de Varredura (MEV) (n=19) e análise de elementos químicos por Espectroscopia de Dispersão de Energia de Raio X (EDX) (n=19). As análises foram feitas antes e após a irradiação. Os dados foram testados para distribuição normal (teste de Shapiro-Wilk, α = 0,05) e igualdade de variâncias (teste de Levene, α = 0,05), seguido de testes estatísticos paramétricos. Para a comparação das variáveis quantitativas foi aplicado o teste T de Student. Um valor de p <0,05 (5%) foi considerado estatisticamente significativo. Resultados: em relação as propriedades mecânicas observamos redução significativa da microdureza do esmalte e dentina após irradiação (p<0,001). A análise da composição química por FTIR mostrou que no esmalte não houve alteração da razão matriz/mineral (M:M) no grupo irradiado (p<0,821), mas houve redução significativa do teor relativo de carbonato (RCC) após irradiação (p<0,039). Na dentina observamos redução significativa da razão matriz/mineral (M:M) e carbonato/mineral (C:M) no grupo irradiado (p<0,001), enquanto a razão amida I/amida III, não sofreu alteração significativa após irradiação (p<0,536). Na análise de EDX realizadas no esmalte, não observamos variação no conteúdo de cálcio e fósforo após radiação, mas a razão Ca/P mostrou-se significantemente mais elevada no grupo irradiado (p<0,001). Na dentina, não houve alteração do teor de cálcio e fósforo, assim como da razão Ca/P após irradiação (p<0,267). A análise morfológica através de MEV pós irradiação, mostrou que no esmalte a maioria das amostras apresentaram uma alteração das características microestruturais com a presença de microporosidades, perda de padrões regulares das áreas prismáticas e interprismáticas e presença de áreas amorfas. Na dentina observamos manutenção do padrão de dentina peritubular e intertubular, com a presença de túbulos dentinários desobliterados e com a rede de fibras colágenas mais evidente grupo irradiado. Conclusão: as doses terapêuticas de radioterapia provocaram redução da microdureza, alterações na microestrutura e composição química do esmalte e da dentina. Assim, inferimos que doses terapêuticas de radiação exercem um impacto negativo sobre as propriedades mecânicas, químicas e micro-morfológicas dos tecidos dentários duros aumentando a vulnerabilidade destes tecidos à cárie relacionada a radiação.


INTRODUCTION: Atypical patterns of dental caries in patients undergoing radiotherapy to treat head and neck cancer may be associated with the effects of radiation on salivary glands and dental hard tissues. Together, they can contribute to radiation-related caries. Although there is evidence of changes in hard dental tissues after radiotherapy, there is no agreement in the literature on the severity of these changes. PURPOSE: This study aims to evaluate the microstructure, chemical composition, and microhardness of enamel and dentin in permanent teeth subject to therapeutic doses of in vitro radiotherapy. MATERIAL AND METHODS: This is an experimental, qualitative, quantitative, and semi-quantitative study. Coronary fragments were obtained from 24 third molars. Two groups were created: NIR (control), including fragments of non-irradiated teeth, and IVT (irradiated), including fragments of in vitro irradiated teeth (2Gy/day five times a week, totaling 70Gy). The fragments underwent microhardness analysis (n =24), Fourier-transform Infrared Spectroscopy (FTIR) (n=24), morphological analysis by Scanning Electron Microscope (SEM) (n=19), and analysis of chemical elements by Energy-dispersive X-Ray Spectroscopy (EDX) (n=19). The analyses were performed before and after irradiation. Data were tested for normal distribution (ShapiroWilk test, α = 0.05) and equality of variances (Levene test, α = 0.05), followed by parametric statistical tests. The Student's T test was applied to compare the quantitative variables. A pvalue < 0.05 (5%) was considered statistically significant. RESULTS: Concerning the mechanical properties, we observed a significant reduction in enamel and dentin microhardness after irradiation (p<0.001). The analysis of the chemical composition by FTIR showed no change in the mineral/matrix ratio (M:M) in enamel in the irradiated group (p<0.821), but there was a significant reduction in the relative carbonate content (RCC) after irradiation (p<0.039). In dentin, we observed a significant reduction in the mineral/matrix ratio (M:M) and carbonate/mineral ratio (C:M) in the irradiated group (p<0.001). In contrast, the amide I/amide III ratio showed no significant change after irradiation (p<0.536). In the EDX analysis performed on enamel, we did not observe any calcium and phosphorus content variation after radiation. However, the Ca/P ratio was significantly higher in the irradiated group (p<0.001). In dentin, there was no change either in calcium and phosphorus contents or in the Ca/P ratio after irradiation (p<0.267). The morphological analysis through SEM after irradiation showed that there is a loss in the characteristics of the enamel surface of most fragments, with the presence of microporosities, loss of regular patterns of the prismatic and interprismatic areas, and the presence of amorphous areas. In dentin, we observed maintenance of the peritubular and intertubular dentin patterns, with the presence of unobliterated dentinal tubules and with the most evident network of collagen fibers in the irradiated group. CONCLUSION: Therapeutic doses of radiotherapy caused a reduction in microhardness and changes in the microstructure and chemical composition of enamel and dentin. Thus, we conclude that therapeutic doses of radiation have a negative impact on the mechanical, chemical, and micromorphological properties of hard dental tissues, increasing the vulnerability of these tissues to radiation-related caries


Subject(s)
Humans , Male , Female , Radiotherapy/adverse effects , Dental Enamel/radiation effects , Dentin/radiation effects , Head and Neck Neoplasms
18.
Int J Mol Sci ; 23(24)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36555621

ABSTRACT

A simple, area-specific coating technique for fluoridated apatite (FAp) on teeth would be useful in dental applications. Recently, we achieved area-specific FAp coating on a human dentin substrate within 30 min by a laser-assisted biomimetic (LAB) process; pulsed Nd:YAG laser irradiation in a fluoride-containing supersaturated calcium phosphate solution (FCP solution). The LAB-processed, FAp-coated dentin substrate exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. In the present study, we refined the LAB process with a combination of a dental diode laser and a clinically approved light-absorbing molecule, indocyanine green (ICG). A micron-thick FAp layer was successfully formed on the dentin surface within only 3 min by the refined LAB process, i.e., dental diode laser irradiation in the FCP solution following ICG treatment. The ICG layer precoated on the dentin substrate played a crucial role in inducing rapid pseudo-biomineralization (FAp layer formation) on the dentin surface by absorbing laser light at the solid-liquid interface. In the refined LAB process, the precoated ICG layer was eliminated and replaced with the newly formed FAp layer composed of vertically oriented pillar-like nanocrystals. Cross-sectional ultrastructural analysis revealed a smooth interface between the FAp layer and the dentin substrate. The refined LAB process has potential as a tool for the tooth surface functionalization and hence, is worth further process refinement and in vitro and in vivo studies.


Subject(s)
Apatites , Lasers, Solid-State , Humans , Dentin/radiation effects , Biomineralization , Cross-Sectional Studies , Microscopy, Electron, Scanning
19.
Lasers Med Sci ; 37(8): 3285-3290, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35951123

ABSTRACT

OBJECTIVE: The study aimed to evaluate the bond strength of universal adhesives to dentin after Er,Cr:YSGG laser irradiation with nanosecond-domain and microsecond-domain pulses. METHODS: Eighty extracted caries-free, sound human molars were divided into eight groups. The enamel was removed until the dentin occlusal flat dentin surface was exposed. Etch-and-rinse followed by adhesive was applied to group 1, and a self-etch adhesive was applied to group 2. Er,Cr:YSGG laser (3 mJ, 100 Hz, 100 ns), (3 mJ, 100 Hz, 150 µs), and (20 mJ, 100 Hz, 150 µs) were applied to groups 3-4, 5-6, and 7-8, respectively. The laser preparation was followed by self-etch adhesives or adhesives treatment. When the composite resin had been built up on the samples, the shear bond strength was tested, and the data were statistically analyzed using analysis of variance (ANOVA). RESULTS: Groups prepared with nanosecond-pulse laser showed significantly higher bond strength values than the microsecond-pulse laser groups and self-etch mode group, and the SEM photographs also showed more dentinal tubules and no damage in the ablation area. The shear bond strength of long pulse laser ablated was comparable to that of self-etching system when it was combined with a self-etch adhesive at low energy, but higher energy laser degraded shear bond strength. CONCLUSIONS: The pulse width of Er,Cr:YSGG laser affects the bond strength, nanosecond pulses of laser irradiation without water cooling can enhance bond strength, but microsecond pulses of laser cannot enhance bond strength.


Subject(s)
Dental Bonding , Laser Therapy , Lasers, Solid-State , Adhesives , Composite Resins/chemistry , Dentin/radiation effects , Humans , Lasers, Solid-State/therapeutic use , Shear Strength , Water
20.
Photobiomodul Photomed Laser Surg ; 40(7): 507-515, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35867122

ABSTRACT

Objective: The purpose of this study is to investigate the crystal structure of bacteria-contaminated bovine dentin after Er:YAG laser irradiation at various energy densities from macroscale, microscale, and nanoscale. Background: Er:YAG laser can change the morphology and chemical components of dentin. Few preliminary researchers investigate the laser effect on crystal in dentin tissue. Methods: Twenty dentin specimens from bovine incisors were cocultured with S. mutans (UA 159) and divided into four groups with diverse Er:YAG laser irradiation energy (0, 6.37, 12.73, 19.11 J/cm2). The ultrastructure of dentin before and after laser irradiation was investigated with nanoanalytical electron microscopy. X-ray diffraction provided the information of lattice parameters in dentin. The morphology of dentin was observed by scanning electron microscopy. High-resolution transmission electron microscope images and selected-area electron diffraction patterns were obtained for characterizing crystal domain size, structure, and microenvironment of dentin. Results: The combination of these methods disclosed that there exist mineralized, demineralized, and remineralized dentin in the bacteria-invaded dentin and can be feasibly recognized using morphological features. Laser treatments influence hydroxyapatite (HAp) crystals in dentin tissue in different ways: needle HAp in mineralized dentin tissue keeps intact with laser irradiation of no higher than 19.11 J/cm2; laser irradiation improves the crystallinity of lamella HAp by domain growth and rearranges its growth orientations. Conclusions: We report an unprecedented presence of remineralization zone consisting of lamella HAp crystals with distinct high-index planes. These findings have broad implications on the role of laser operation in driving biomineralization and shed new insights into a possible relationship between laser irradiation and remineralization.


Subject(s)
Dentin , Lasers, Solid-State , Animals , Bacteria , Cattle , Dentin/radiation effects , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...