Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Gene ; 923: 148574, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-38768876

ABSTRACT

Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.


Subject(s)
Cordyceps , Temperature , Transcriptome , Cordyceps/genetics , Cordyceps/growth & development , Cordyceps/metabolism , Lipid Metabolism/genetics , Acclimatization , Deoxyadenosines/biosynthesis , Deoxyadenosines/genetics , Fatty Acids/analysis , Fatty Acids/biosynthesis , Gene Expression Profiling , Genes, Fungal/genetics
2.
Mol Cell ; 84(3): 596-610.e6, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215754

ABSTRACT

Although DNA N6-methyl-deoxyadenosine (6mA) is abundant in bacteria and protists, its presence and function in mammalian genomes have been less clear. We present Direct-Read 6mA sequencing (DR-6mA-seq), an antibody-independent method, to measure 6mA at base resolution. DR-6mA-seq employs a unique mutation-based strategy to reveal 6mA sites as misincorporation signatures without any chemical or enzymatic modulation of 6mA. We validated DR-6mA-seq through the successful mapping of the well-characterized G(6mA)TC motif in the E. coli DNA. As expected, when applying DR-6mA-seq to mammalian systems, we found that genomic DNA (gDNA) 6mA abundance is generally low in most mammalian tissues and cells; however, we did observe distinct gDNA 6mA sites in mouse testis and glioblastoma cells. DR-6mA-seq provides an enabling tool to detect 6mA at single-base resolution for a comprehensive understanding of DNA 6mA in eukaryotes.


Subject(s)
DNA Methylation , Escherichia coli , Animals , Mice , Escherichia coli/genetics , Genome/genetics , DNA/metabolism , Eukaryota/genetics , Deoxyadenosines/genetics , Mammals/metabolism
3.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38000655

ABSTRACT

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Subject(s)
Deoxyadenosines , Methionine Adenosyltransferase , Neoplasms , Protein-Arginine N-Methyltransferases , Purine-Nucleoside Phosphorylase , S-Adenosylmethionine , Animals , Humans , Mice , Cell Line, Tumor , Cell Proliferation/drug effects , Deoxyadenosines/antagonists & inhibitors , Deoxyadenosines/genetics , Deoxyadenosines/metabolism , Drug Synergism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Methionine Adenosyltransferase/antagonists & inhibitors , Methionine Adenosyltransferase/genetics , Methionine Adenosyltransferase/metabolism , Neoplasms/genetics , Neoplasms/physiopathology , Neoplasms/therapy , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Protein-Arginine N-Methyltransferases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Purine-Nucleoside Phosphorylase/genetics , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/pharmacology , Pyrrolidines/therapeutic use , S-Adenosylmethionine/metabolism
4.
Sheng Wu Gong Cheng Xue Bao ; 36(7): 1293-1304, 2020 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-32748587

ABSTRACT

Cordycepin as the main active ingredient of Cordyceps militaris, a traditional medicinal fungus in China, has many physiological functions such as anti-cancer, anti-tumor and anti-virus activity. The most potential route for effective cordycepin production has been considered as liquid fermentation of C. militaris though with low productivity at present. Thus, it is urgent to apply both process engineering strategy and metabolic engineering strategy to enhance the productivity of cordycepin. In this review, the effects of medium components (i.e. the carbon/nitrogen source, precursor substances and metal ions) and operation factors (i.e. pH, dissolved oxygen and light) on cordycepin biosynthesis in liquid fermentation system are summarized. Besides, separation of cordycepin, the gene cluster involved and predicted biosynthesis pathways of cordycepin are also discussed, providing possible solutions of finally realizing efficient production of cordycepin.


Subject(s)
Biotechnology , Cordyceps , Deoxyadenosines , Biotechnology/trends , China , Deoxyadenosines/biosynthesis , Deoxyadenosines/genetics , Fermentation , Metabolic Engineering/trends
5.
Fungal Genet Biol ; 143: 103431, 2020 10.
Article in English | MEDLINE | ID: mdl-32610064

ABSTRACT

Cordyceps genus, such as C. militaris and C. kyushuensis, is a source of a rare traditional Chinese medicine that has been used for the treatment of numerous chronic and malignant diseases. Cordycepin, 3'-deoxyadenosine, is a major active compound found in most Cordyceps. Cordycepin exhibits a variety of biological activities, including anti-tumor, immunomodulation, antioxidant, and anti-aging, among others, which could be applied in health products, medicine, cosmeceutical etc. fields. This review focuses on the synthesis methods for cordycepin. The current methods for cordycepin synthesis involve chemical synthesis, microbial fermentation, in vitro synthesis and biosynthesis; however, some defects are unavoidable and the production is still far from the demand of cordycepin. For the future study of cordycepin synthesis, based on the illumination of cordycepin biosynthesis pathway, genetical engineering of the Cordyceps strain or introducing microbes by virtue of synthetic biology will be the great potential strategies for cordycepin synthesis. This review will aid the future synthesis of the valuable cordycepin.


Subject(s)
Antioxidants/chemistry , Biosynthetic Pathways/genetics , Cordyceps/chemistry , Deoxyadenosines/biosynthesis , Antioxidants/therapeutic use , Deoxyadenosines/genetics , Deoxyadenosines/therapeutic use , Fermentation , Humans , Medicine, Chinese Traditional
6.
Mol Cell ; 78(3): 382-395.e8, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32183942

ABSTRACT

N6-Methyldeoxyadenosine (6mA) has recently been shown to exist and play regulatory roles in eukaryotic genomic DNA (gDNA). However, the biological functions of 6mA in mammals have yet to be adequately explored, largely due to its low abundance in most mammalian genomes. Here, we report that mammalian mitochondrial DNA (mtDNA) is enriched for 6mA. The level of 6mA in HepG2 mtDNA is at least 1,300-fold higher than that in gDNA under normal growth conditions, corresponding to approximately four 6mA modifications on each mtDNA molecule. METTL4, a putative mammalian methyltransferase, can mediate mtDNA 6mA methylation, which contributes to attenuated mtDNA transcription and a reduced mtDNA copy number. Mechanistically, the presence of 6mA could repress DNA binding and bending by mitochondrial transcription factor (TFAM). Under hypoxia, the 6mA level in mtDNA could be further elevated, suggesting regulatory roles for 6mA in mitochondrial stress response. Our study reveals DNA 6mA as a regulatory mark in mammalian mtDNA.


Subject(s)
DNA, Mitochondrial/metabolism , Deoxyadenosines/metabolism , Methyltransferases/metabolism , Animals , DNA Methylation , DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Deoxyadenosines/genetics , Gene Expression Regulation , Hep G2 Cells , Humans , Hypoxia/genetics , Methyltransferases/genetics , Mice, Inbred C57BL , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Chem Res Toxicol ; 33(2): 604-613, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31903755

ABSTRACT

6-Nitrochrysene (6-NC), the most potent carcinogen evaluated by the newborn mouse assay, is metabolically activated by nitroreduction and a combination of ring oxidation and nitroreduction pathways. The nitroreduction pathway yields three major DNA adducts: at the C8 and N2 positions of 2'-deoxyguanosine (dG), N-(dG-8-yl)-6-AC and 5-(dG-N2-yl)-6-AC, and at the C8 position of 2'-deoxyadenosine (dA), N-(dA-8-yl)-6-AC. A nucleotide excision repair assay demonstrated that N-(dA-8-yl)-6-AC is repaired much more slowly than many other bulky DNA adducts, including the other DNA adducts formed by 6-NC. But neither the total synthesis nor evaluation of other biological activities of this dA adduct has ever been reported. Herein, we report a convenient synthesis of the 6-NC-derived dA adduct by employing the Buchwald-Hartwig coupling strategy, which provided a high yield of the protected N-(dA-8-yl)-6-AC. The deprotected nucleoside showed syn conformational preference by NMR spectroscopy. Following DMT protection of the 5'-hydroxyl, N-(dA-8-yl)-6-AC was converted to its 3'-phosphoramidite, which was used to prepare oligonucleotides containing a single N-(dA-8-yl)-6-AC adduct. Circular dichroism spectra of the adducted duplex showed only a slight departure from the B-DNA helix profile of the control duplex. The 15-mer N-(dA-8-yl)-6-AC oligonucleotide was used to construct a single-stranded plasmid vector containing a single adduct, which was replicated in Escherichia coli. Viability of the adducted construct was ∼60% of the control, indicating slower translesion synthesis of the adduct, which increased to nearly 90% upon induction of the SOS functions. Without SOS, the mutation frequency (MF) of the adduct was 5.2%, including 2.9% targeted and 2.3% semi-targeted mutations. With SOS, the targeted MF increased 3-fold to 9.0%, whereas semi-targeted mutation increased only marginally to 3.2%. The major type of targeted mutation was A*→G in both uninduced and SOS-induced cells.


Subject(s)
DNA Adducts/genetics , Deoxyadenosines/genetics , Escherichia coli/genetics , Mutagenesis, Site-Directed , Oligodeoxyribonucleotides/genetics , DNA Adducts/chemistry , DNA Adducts/metabolism , Deoxyadenosines/chemistry , Deoxyadenosines/metabolism , Escherichia coli/metabolism , Molecular Structure , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/metabolism
8.
Genomics ; 112(1): 629-636, 2020 01.
Article in English | MEDLINE | ID: mdl-31022437

ABSTRACT

The responsive mechanism of C. militaris TBRC7358 on xylose utilization was investigated by comparative analysis of transcriptomes, growth kinetics and cordycepin productions. The result showed that the culture grown on xylose exhibited high production yield of cordycepin on dry biomass. Comparing xylose to other carbon sources, a set of significantly up-regulated genes in xylose were enriched in pentose and glucuronate interconversion, and cordycepin biosynthesis. After validating up-regulated genes using quantitative real-time PCR, interestingly, putative alternative 3'-AMP-associated metabolic route on cordycepin biosynthesis was identified. Through reporter metabolites analysis of C. militaris, significant metabolites (e.g., AMP, glycine and L-glutamate) were identified guiding involvement of growth and cordycepin production. These findings suggested that there was a cooperative mechanism in transcriptional control of the supplying precursors pool directed towards the cordycepin biosynthesis through main and putative alternative metabolic routes for leverage of cell growth and cordycepin production on xylose of C. militaris strain TBRC7358.


Subject(s)
Cordyceps , Deoxyadenosines/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Fungal , Xylose/metabolism , Cordyceps/genetics , Cordyceps/metabolism , Deoxyadenosines/genetics , Real-Time Polymerase Chain Reaction , Xylose/genetics
9.
Mol Cell Probes ; 46: 101423, 2019 08.
Article in English | MEDLINE | ID: mdl-31323319

ABSTRACT

Polydeoxyadenosine (poly (dA)) has been extensively applied for detecting many drug molecules. Herein, we developed a sensitive method for detecting coralyne and heparin using a modified DNA probe with poly (dA) at one end. In the absence of coralyne, the DNA probe was digested by the Exonuclease I (Exo I), and therefore the SYBR Green I (SG I) emitted an extremely low fluorescent signal. While coralyne specifically binding to poly (dA) with strong propensity could remarkably restrain the disintegration of the DNA probe, through which as a template the second strand of DNA sequence was formed with the introduction of DNA polymerase. Therefore, the fluorescent signal of SG I was intensified to quantify coralyne. Based on this method, heparin can be determined due to its strong affinity towards coralyne. This method showed a linear range from 2 to 500 nM for coralyne with a low detection limit of 0.98 nM, and the linear range of heparin was from 1 to 100 nM when 1.25 nm was the detection limit. The proposed method was also implemented successfully in biological samples and showed a potential application for screening potential therapeutic molecules.


Subject(s)
Berberine Alkaloids/isolation & purification , Biosensing Techniques , Exodeoxyribonucleases/genetics , Heparin/isolation & purification , Benzothiazoles , Berberine Alkaloids/chemistry , DNA/chemistry , DNA Probes/chemistry , DNA Probes/genetics , Deoxyadenosines/chemistry , Deoxyadenosines/genetics , Diamines , Exodeoxyribonucleases/chemistry , Heparin/chemistry , Heparin/genetics , Humans , Limit of Detection , Organic Chemicals/chemistry , Quinolines
10.
Biochemistry ; 58(29): 3136-3143, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31274299

ABSTRACT

5'-Methylthioadenosine/S-adenosyl-l-homocysteine (MTA/SAH) nucleosidase (MTAN) is an important enzyme in a number of critical biological processes. Mammals do not express MtaN, making this enzyme an attractive antibacterial drug target. In pathogen Aeromonas hydrophila, two MtnN subfamily genes (MtaN-1 and MtaN-2) play important roles in the periplasm and cytosol, respectively. We previously reported structural and functional analyses of MtaN-1, but little is known regarding MtaN-2 due to the lack of a crystal structure. Here, we determined the crystal structure of cytosolic A. hydrophila MtaN-2 in complex with adenine (ADE), which is a cleavage product of adenosine. AhMtaN-1 and AhMtaN-2 exhibit a high degree of similarity in the α-ß-α sandwich fold of the core structural motif. However, there is a structural difference in the nonconserved extended loop between ß7 and α3 that is associated with the channel depth of the substrate-binding pocket and dimerization. The ADE molecules in the substrate-binding pockets of AhMtaN-1 and AhMtaN-2 are stabilized with π-π stacking by Trp199 and Phe152, respectively, and the hydrophobic residues surrounding the ribose-binding sites differ. A structural comparison of AhMtaN-2 with other MtaN proteins showed that MtnN subfamily proteins exhibit a unique substrate-binding surface and dimerization interface.


Subject(s)
Aeromonas hydrophila/chemistry , Crystallography, X-Ray/methods , Deoxyadenosines/chemistry , N-Glycosyl Hydrolases/chemistry , Thionucleosides/chemistry , Aeromonas hydrophila/genetics , Amino Acid Sequence , Binding Sites/physiology , Deoxyadenosines/genetics , N-Glycosyl Hydrolases/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , Thionucleosides/genetics
11.
Nucleic Acids Res ; 47(9): e54, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30843032

ABSTRACT

Structural analysis of ribosomes in complex with aminoacyl- and/or peptidyl-transfer RNA (tRNA) often suffers from rapid hydrolysis of the ester bond of aminoacyl-tRNAs. To avoid this issue, several methods to introduce an unhydrolyzable amide bond instead of the canonical ester bond have been developed to date. However, the existing methodologies require rather complex steps of synthesis and are often inapplicable to a variety of amino acids including those with noncanonical structures. Here, we report a new method to synthesize 3'-aminoacyl-NH-tRNAs by means of flexizymes-ribozymes capable of charging amino acids onto tRNAs. We show that two types of flexizymes, dFx and eFx, are able to charge various amino acids, including nonproteinogenic ones, onto tRNA or microhelix RNA bearing the 3'-deoxy-3'-amino-adenosine. Due to the versatility of the flexizymes toward any pair of nonproteinogenic amino acids and full-length or fragment tRNAs, this method provides researchers an opportunity to use a wide array of hydrolytically stable 3'-aminoacyl-NH-tRNAs and analogs for various studies.


Subject(s)
RNA, Catalytic/genetics , RNA, Transfer, Amino Acyl/genetics , RNA/genetics , Ribosomes/genetics , Amino Acids/chemistry , Amino Acids/genetics , Catalysis , Deoxyadenosines/chemistry , Deoxyadenosines/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Hydrolysis , Protein Biosynthesis/genetics , RNA/chemistry , RNA, Catalytic/chemistry , RNA, Transfer, Amino Acyl/chemistry , Ribosomes/chemistry
12.
Nucleic Acids Res ; 47(1): 221-236, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30462294

ABSTRACT

8-Oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) is one of the major DNA modifications and a potent pre-mutagenic lesion prone to mispair with 2'-deoxyadenosine (dA). Several thousand residues of 8-oxodG are constitutively generated in the genome of mammalian cells, but their genomic distribution has not yet been fully characterized. Here, by using OxiDIP-Seq, a highly sensitive methodology that uses immuno-precipitation with efficient anti-8-oxodG antibodies combined with high-throughput sequencing, we report the genome-wide distribution of 8-oxodG in human non-tumorigenic epithelial breast cells (MCF10A), and mouse embryonic fibroblasts (MEFs). OxiDIP-Seq revealed sites of 8-oxodG accumulation overlapping with γH2AX ChIP-Seq signals within the gene body of transcribed long genes, particularly at the DNA replication origins contained therein. We propose that the presence of persistent single-stranded DNA, as a consequence of transcription-replication clashes at these sites, determines local vulnerability to DNA oxidation and/or its slow repair. This oxidatively-generated damage, likely in combination with other kinds of lesion, might contribute to the formation of DNA double strand breaks and activation of DNA damage response.


Subject(s)
DNA Damage/genetics , DNA Replication/genetics , Deoxyguanosine/analogs & derivatives , Histones/genetics , 8-Hydroxy-2'-Deoxyguanosine , Animals , Cell Line, Tumor , Chromosome Mapping , DNA/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Deoxyadenosines/genetics , Deoxyguanosine/genetics , Fibroblasts/metabolism , Genome/genetics , Humans , Mice , Oxidation-Reduction , Replication Origin/genetics
13.
Microbiol Res ; 218: 12-21, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30454654

ABSTRACT

Cordyceps kyushuensis is the only species of cordyceps growing on the larvae of Clanis bilineata Walker, and has been demonstrated that there are lots of pharmacological components including cordycepin. Cordycepin shows lots of pharmacological action but it could be converted to 3'-deoxyinosine by adenosine deaminase in vivo, which weakens the efficiency of cordycepin. That pentostatin, which has been reported to inhibit adenosine deaminase, combining cordycepin could enhance the efficiency of cordycepin in vivo. During transcriptome and proteomics analysis of Cordyceps kyushuensis, a single gene cluster including four genes we named ck1-ck4 which can synthesis both cordycepin and pentostatin has been identified using BLAST. Meanwhile, KEGG, KOG, GO analysis and differentially expressed genes were analyzed in transcriptome and proteomics. This study first sequenced transcriptome and proteomics of C. kyushuensis, and demonstrated that there is a single gene cluster related to biosynthesis of cordycepin and pentostatin, which can be employed to improve the yield of cordycepin and find more functional proteins.


Subject(s)
Cordyceps/genetics , Cordyceps/metabolism , Deoxyadenosines/biosynthesis , Pentostatin/biosynthesis , Adenosine Deaminase Inhibitors , Animals , Deoxyadenosines/genetics , Gene Expression Profiling , Moths/microbiology , Multigene Family/genetics , Proteomics , Transcriptome/genetics
14.
Nucleic Acids Res ; 46(22): 11659-11670, 2018 12 14.
Article in English | MEDLINE | ID: mdl-30412255

ABSTRACT

N6-methyldeoxyadenosine (6mA) is a well-characterized DNA modification in prokaryotes but reports on its presence and function in mammals have been controversial. To address this issue, we established the capacity of 6mA-Crosslinking-Exonuclease-sequencing (6mACE-seq) to detect genome-wide 6mA at single-nucleotide-resolution, demonstrating this by accurately mapping 6mA in synthesized DNA and bacterial genomes. Using 6mACE-seq, we generated a human-genome-wide 6mA map that accurately reproduced known 6mA enrichment at active retrotransposons and revealed mitochondrial chromosome-wide 6mA clusters asymmetrically enriched on the heavy-strand. We identified a novel putative 6mA-binding protein in single-stranded DNA-binding protein 1 (SSBP1), a mitochondrial DNA (mtDNA) replication factor known to coat the heavy-strand, linking 6mA with the regulation of mtDNA replication. Finally, we characterized AlkB homologue 1 (ALKBH1) as a mitochondrial protein with 6mA demethylase activity and showed that its loss decreases mitochondrial oxidative phosphorylation. Our results show that 6mA clusters play a previously unappreciated role in regulating human mitochondrial function, despite 6mA being an uncommon DNA modification in the human genome.


Subject(s)
DNA, Mitochondrial/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Deoxyadenosines/genetics , Genome, Mitochondrial , Mitochondrial Proteins/genetics , AlkB Homolog 1, Histone H2a Dioxygenase/genetics , AlkB Homolog 1, Histone H2a Dioxygenase/metabolism , Bacteriophage lambda/genetics , Bacteriophage lambda/metabolism , Base Sequence , Chromosome Mapping , DNA/metabolism , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , Deoxyadenosines/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Exodeoxyribonucleases , HEK293 Cells , Humans , Mitochondrial Proteins/metabolism , Oxidative Phosphorylation , Salmonella typhimurium/genetics , Salmonella typhimurium/metabolism , Sequence Analysis, DNA , Viral Proteins/chemistry , Viral Proteins/metabolism
15.
Proc Natl Acad Sci U S A ; 115(26): 6846-6851, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891696

ABSTRACT

Staphylococcus aureus colonizes large segments of the human population and causes invasive infections due to its ability to escape phagocytic clearance. During infection, staphylococcal nuclease and adenosine synthase A convert neutrophil extracellular traps to deoxyadenosine (dAdo), which kills phagocytes. The mechanism whereby staphylococcal dAdo intoxicates phagocytes is not known. Here we used CRISPR-Cas9 mutagenesis to show that phagocyte intoxication involves uptake of dAdo via the human equilibrative nucleoside transporter 1, dAdo conversion to dAMP by deoxycytidine kinase and adenosine kinase, and signaling via subsequent dATP formation to activate caspase-3-induced cell death. Disruption of this signaling cascade confers resistance to dAdo-induced intoxication of phagocytes and may provide therapeutic opportunities for the treatment of infections caused by antibiotic-resistant S. aureus strains.


Subject(s)
Caspase 3/metabolism , Deoxyadenosines/metabolism , Extracellular Traps/metabolism , Neutrophils/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Caspase 3/genetics , Cell Death/genetics , Deoxyadenosines/genetics , Extracellular Traps/genetics , Extracellular Traps/microbiology , Humans , Neutrophils/microbiology , Neutrophils/pathology , Staphylococcal Infections/genetics , Staphylococcal Infections/pathology , Staphylococcus aureus/genetics
16.
Nat Neurosci ; 21(2): 195-206, 2018 02.
Article in English | MEDLINE | ID: mdl-29335608

ABSTRACT

Internal N6-methyladenosine (m6A) modification is widespread in messenger RNAs (mRNAs) and is catalyzed by heterodimers of methyltransferase-like protein 3 (Mettl3) and Mettl14. To understand the role of m6A in development, we deleted Mettl14 in embryonic neural stem cells (NSCs) in a mouse model. Phenotypically, NSCs lacking Mettl14 displayed markedly decreased proliferation and premature differentiation, suggesting that m6A modification enhances NSC self-renewal. Decreases in the NSC pool led to a decreased number of late-born neurons during cortical neurogenesis. Mechanistically, we discovered a genome-wide increase in specific histone modifications in Mettl14 knockout versus control NSCs. These changes correlated with altered gene expression and observed cellular phenotypes, suggesting functional significance of altered histone modifications in knockout cells. Finally, we found that m6A regulates histone modification in part by destabilizing transcripts that encode histone-modifying enzymes. Our results suggest an essential role for m6A in development and reveal m6A-regulated histone modifications as a previously unknown mechanism of gene regulation in mammalian cells.


Subject(s)
Cell Self Renewal/genetics , Deoxyadenosines/genetics , Gene Expression Regulation, Developmental/physiology , Histones/metabolism , Neural Stem Cells/physiology , RNA, Messenger/metabolism , Animals , Animals, Newborn , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Self Renewal/physiology , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Dactinomycin/pharmacology , Deoxyadenosines/metabolism , Embryo, Mammalian , Female , Fibronectins/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Developmental/genetics , Male , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurogenesis/drug effects , Neurogenesis/genetics , Neurogenesis/physiology , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Protein Synthesis Inhibitors/pharmacology
17.
Free Radic Res ; 51(5): 470-482, 2017 May.
Article in English | MEDLINE | ID: mdl-28463089

ABSTRACT

5',8-Cyclo-2'-deoxyadenosine (cdA) and 5',8-cyclo-2'-deoxyguanosine (cdG) in their two diastereomeric forms, 5'S and 5'R, are tandem lesions produced by the attack of hydroxyl radicals to the purine moieties of DNA. Their formation has been found to challenge the cells' repair machinery, initiating the nucleotide excision repair (NER) for restoring the genome integrity. The involvement of oxidatively induced DNA damage in carcinogenesis and the reduced capacity of some cancer cell lines to repair oxidised DNA base lesions, intrigued us to investigate the implication of these lesions in breast cancer, the most frequently occurring cancer in women. Using liquid chromatography tandem mass spectrometry (LC-MS/MS), we measured the levels of diastereomeric cdA's and cdG's in estrogen receptor-alpha positive (ER-α) MCF-7 and triple negative MDA-MB-231 breast cancer cell lines before and after exposure to two different conditions: ionising radiations and hydrogen peroxide, followed by an interval period to allow DNA repair. An increase at the measured levels of all four lesions, i.e. 5'S-cdA, 5'R-cdA, 5'S-cdG and 5'R-cdG, was observed either after γ-irradiation (5 Gy dose) or hydrogen peroxide treatment (300 µM) compared to the untreated cells (control), independently from the length of the interval period for repair. For comparison reasons, we also measured the levels of 8-oxo-2'-deoxyadenosine (8-oxo-dA), a well-known oxidatively induced DNA damage lesion and base excision repair (BER) substrate. The collected data indicate that MCF-7 and MDA-MB-231 breast cancer cells are highly susceptible to radiation-induced DNA damage, being mainly defective in the repair of these lesions.


Subject(s)
DNA Damage , Epithelial Cells/metabolism , Oxidative Stress , Breast Neoplasms , Deoxyadenosines/genetics , Deoxyadenosines/metabolism , Female , Humans , MCF-7 Cells , Mammary Glands, Human/pathology , Reactive Oxygen Species/metabolism
18.
Gene ; 626: 132-139, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28512059

ABSTRACT

The first genome-scale metabolic network of Cordyceps militaris (iWV1170) was constructed representing its whole metabolisms, which consisted of 894 metabolites and 1,267 metabolic reactions across five compartments, including the plasma membrane, cytoplasm, mitochondria, peroxisome and extracellular space. The iWV1170 could be exploited to explain its phenotypes of growth ability, cordycepin and other metabolites production on various substrates. A high number of genes encoding extracellular enzymes for degradation of complex carbohydrates, lipids and proteins were existed in C. militaris genome. By comparative genome-scale analysis, the adenine metabolic pathway towards putative cordycepin biosynthesis was reconstructed, indicating their evolutionary relationships across eleven species of entomopathogenic fungi. The overall metabolic routes involved in the putative cordycepin biosynthesis were also identified in C. militaris, including central carbon metabolism, amino acid metabolism (glycine, l-glutamine and l-aspartate) and nucleotide metabolism (adenosine and adenine). Interestingly, a lack of the sequence coding for ribonucleotide reductase inhibitor was observed in C. militaris that might contribute to its over-production of cordycepin.


Subject(s)
Cordyceps/genetics , Genome, Fungal , Metabolic Networks and Pathways , Cordyceps/metabolism , Cordyceps/pathogenicity , Deoxyadenosines/biosynthesis , Deoxyadenosines/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Ribonucleotide Reductases/genetics , Ribonucleotide Reductases/metabolism , Virulence/genetics
19.
Sci Rep ; 6: 22375, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26979577

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in the developed world. Oxidative damage to mitochondrial DNA (mtDNA) in the retinal pigment epithelium (RPE) may play a key role in AMD. Measurement of oxidative DNA lesions such as 8-oxo-2'-deoxyguanosine (8-oxo-dG) and 8-oxo-2'-deoxyadenosine (8-oxo-dA) in diseased RPE could provide important insights into the mechanism of AMD development. We have developed a liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry method for simultaneous analysis of 8-oxo-dG and 8-oxo-dA in human retinal DNA. The developed method was applied to the analysis of retinal DNA from 5 donors with AMD and 5 control donors without AMD. In mtDNA, the levels of 8-oxo-dG in controls and AMD donors averaged 170 and 188, and 8-oxo-dA averaged 11 and 17 adducts per 10(6) bases, respectively. In nuclear DNA, the levels of 8-oxo-dG in controls and AMD donors averaged 0.54 and 0.96, and 8-oxo-dA averaged 0.04 and 0.05 adducts per 10(6) bases, respectively. This highly sensitive method allows for the measurement of both adducts in very small amounts of DNA and can be used in future studies investigating the pathophysiological role of 8-oxo-dG and 8-oxo-dA in AMD and other oxidative damage-related diseases in humans.


Subject(s)
Chromatography, Liquid/methods , Deoxyadenosines/analysis , Deoxyguanosine/analogs & derivatives , Retinal Pigment Epithelium/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , 8-Hydroxy-2'-Deoxyguanosine , DNA Damage , DNA, Mitochondrial/genetics , Deoxyadenosines/chemistry , Deoxyadenosines/genetics , Deoxyguanosine/analysis , Deoxyguanosine/chemistry , Deoxyguanosine/genetics , Humans , Macular Degeneration/diagnosis , Macular Degeneration/genetics , Molecular Structure , Nanotechnology/methods , Reproducibility of Results , Retinal Pigment Epithelium/pathology , Sensitivity and Specificity
20.
Appl Biochem Biotechnol ; 179(4): 633-49, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26922724

ABSTRACT

Hirsutella sinensis is considered as the only correct anamorph of Ophiocordyceps sinensis. To improve cordycepin and cordycepic acid production in H. sinensis, the biosynthetic pathways of cordycepin and cordycepic acid were predicted, and verified by cloning and expressing genes involved in these pathways, respectively. Then, 5'-nucleotidase participating in biosynthetic pathway of cordycepin, hexokinase, and glucose phosphate isomerase involved in biosynthetic pathway of cordycepic acid, were demonstrated playing important roles in the corresponding biosynthetic pathway by real-time PCR, accompanying with significantly up-regulated 15.03-, 5.27-, and 3.94-fold, respectively. Moreover, the metabolic regulation of H. sinensis was performed. As expected, cordycepin production reached 1.09 mg/g when additional substrate of 5'-nucleotidase was 4 mg/mL, resulting in an increase of 201.1 % compared with the control. In the same way, cordycepic acid production reached 26.6 and 23.4 % by adding substrate of hexokinase or glucose phosphate isomerase, leading to a rise of 77.3 and 55.1 %, respectively. To date, this is the first time to improve cordycepin and cordycepic acid production through metabolic regulation based on biosynthetic pathway analysis, and metabolic regulation is proved as a simple and effective way to enhance the output of cordycepin and cordycepic acid in submerged cultivation of H. sinensis.


Subject(s)
Biosynthetic Pathways/genetics , Deoxyadenosines/biosynthesis , Hypocreales/metabolism , 5'-Nucleotidase/genetics , 5'-Nucleotidase/metabolism , Cloning, Molecular , Deoxyadenosines/genetics , Deoxyadenosines/isolation & purification , Gene Expression Regulation, Fungal/genetics , Glucose-6-Phosphate Isomerase/genetics , Glucose-6-Phosphate Isomerase/metabolism , Hexokinase/genetics , Hexokinase/metabolism , Hypocreales/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...