Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.058
Filter
1.
Biomaterials ; 312: 122760, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39163825

ABSTRACT

Inflammation-resident cells within arthritic sites undergo a metabolic shift towards glycolysis, which greatly aggravates rheumatoid arthritis (RA). Reprogramming glucose metabolism can suppress abnormal proliferation and activation of inflammation-related cells without affecting normal cells, holding potential for RA therapy. Single 2-deoxy-d-glucose (2-DG, glycolysis inhibitor) treatment often cause elevated ROS, which is detrimental to RA remission. The rational combination of glycolysis inhibition with anti-inflammatory intervention might cooperatively achieve favorable RA therapy. To improve drug bioavailability and exert synergetic effect, stable co-encapsulation of drugs in long circulation and timely drug release in inflamed milieu is highly desirable. Herein, we designed a stimulus-responsive hyaluronic acid-triglycerol monostearate polymersomes (HTDD) co-delivering 2-DG and dexamethasone (Dex) to arthritic sites. After intravenous injection, HTDD polymersomes facilitated prolonged circulation and preferential distribution in inflamed sites, where overexpressed matrix metalloproteinases and acidic pH triggered drug release. Results indicated 2-DG can inhibit the excessive cell proliferation and activation, and improve Dex bioavailability by reducing Dex efflux. Dex can suppress inflammatory signaling and prevent 2-DG-induced oxidative stress. Thus, the combinational strategy ultimately mitigated RA by inhibiting glycolysis and hindering inflammatory signaling. Our study demonstrated the great potential in RA therapy by reprogramming glucose metabolism in arthritic sites.


Subject(s)
Arthritis, Rheumatoid , Deoxyglucose , Dexamethasone , Glucose , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Animals , Glucose/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice , Deoxyglucose/pharmacology , Inflammation/drug therapy , Glycolysis/drug effects , Polymers/chemistry , Hyaluronic Acid/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Male , Humans , Cell Proliferation/drug effects
2.
Sci Rep ; 14(1): 20368, 2024 09 02.
Article in English | MEDLINE | ID: mdl-39223206

ABSTRACT

Local inflammatory microenvironment in the early stage of myocardial infarction (MI) severely impaired cardiac recovery post-MI. Macrophages play a pivotal role in this process. A classical glycolytic inhibitor, 2-Deoxy-Glucose (2-DG), has been found to regulate the excessive pro-inflammatory macrophage polarization in the infarcted myocardium. This study investigated the effect of 2-DG-loaded chitosan/gelatin composite patch on the infarct microenvironment post-MI and its impact on cardiac repair. The results showed that the 2-DG patch significantly inhibited the expression of inflammatory cytokines, alleviated reactive oxygen species (ROS) accumulation, repressed the proinflammatory polarization of macrophages, attenuated local inflammatory microenvironment in the ischemic hearts, as well as improved cardiac function, reduced scar size, and promoted angiogenesis post-MI. In terms of mechanism, 2-DG exerts anti-inflammatory effects through inhibiting the NF-κB signaling pathway and reducing the assembly and activation of the NLRP3 inflammasome. These findings suggest that 2-DG composite patch may represent a promising therapeutic strategy for cardiac repair after MI.


Subject(s)
Deoxyglucose , Myocardial Infarction , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/administration & dosage , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Mice , Male , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Signal Transduction/drug effects , Chitosan/pharmacology , Chitosan/chemistry , Gelatin/chemistry , Cytokines/metabolism , Myocardium/metabolism , Myocardium/pathology , Disease Models, Animal , Inflammasomes/metabolism , Inflammasomes/drug effects , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Mice, Inbred C57BL
3.
Sheng Li Xue Bao ; 76(4): 517-525, 2024 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-39192785

ABSTRACT

The aim of this study was to investigate whether the protective effect of 2-deoxyglucose (2-DG) on lung ischemia/reperfusion (I/R) injury is mediated by inhibiting nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3)-mediated pyroptosis in rats. Male Sprague-Dawley rats were randomly divided into control group, 2-DG group, lung I/R injury group (I/R group) and 2-DG+I/R group. 2-DG (0.7 g/kg) was intraperitoneally injected 1 h prior to lung ischemia. The tissue structure was measured under light microscope. Lung injury parameters were detected. The contents of malondialdehyde (MDA), myeloperoxidase (MPO) and lactate were determined by commercially available kits. ELISA was used to detect the levels of IL-1ß and IL-18. Western blot, qRT-PCR and immunofluorescence staining were used to measure the expression changes of glycolysis and pyroptosis related indicators. The results showed that there was no significant difference in the parameters between the control group and the 2-DG group. However, the lung injury parameters, oxidative stress response, lactic acid content, IL-1ß, and IL-18 levels were significantly increased in the I/R group. The protein expression levels of glycolysis and pyroptosis related indicators including hexokinase 2 (HK2), pyruvate kinase 2 (PKM2), NLRP3, Gasdermin superfamily member GSDMD-N, cleaved-Caspase1, cleaved-IL-1ß and cleaved-IL-18, and the gene expression levels of HK2, PKM2 and NLRP3 were markedly up-regulated in the I/R group compared with those in the control group. The expression of HK2 and NLRP3 was also increased detected by immunofluorescence staining. Compared with the I/R group, the 2-DG+I/R group exhibited significantly improved alveolar structure and inflammatory infiltration, reduced lung injury parameters, and decreased expression of glycolysis and pyroptosis related indicators. These results suggest that 2-DG protects against lung I/R injury possibly by inhibiting NLRP3-mediated pyroptosis in rats.


Subject(s)
Deoxyglucose , Lung , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Male , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Rats , Lung/metabolism , Lung/pathology , Deoxyglucose/pharmacology , Interleukin-1beta/metabolism , Interleukin-18/metabolism , Lung Injury/metabolism , Lung Injury/prevention & control , Lung Injury/etiology , Oxidative Stress
4.
Cell Signal ; 123: 111351, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39159908

ABSTRACT

In autosomal dominant polycystic kidney disease (ADPKD) there is cyst growth in the kidneys that leads to chronic kidney disease often requiring dialysis or kidney transplantation. There is enhanced aerobic glycolysis (Warburg effect) in the cyst lining epithelial cells that contributes to cyst growth. The glucose mimetic, 2-Deoxy-d-glucose (2-DG) inhibits glycolysis. The effect of early and late administration of 2-DG on cyst growth and kidney function was determined in Pkd1RC/RC mice, a hypomorphic PKD model orthologous to human disease. Early administration of 2-DG resulted in decreased kidney weight, cyst index, cyst number and cyst size, but no change in kidney function. 2-DG decreased proliferation. a major mediator of cyst growth, of cells lining the cyst. Late administration of 2-DG did not have an effect on cyst growth or kidney function. To determine mechanisms of decreased proliferation, an array of mTOR and autophagy proteins was measured in the kidney. 2-DG suppressed autophagic flux in Pkd1RC/RC kidneys and decreased autophagy proteins, ATG3, ATG5 and ATG12-5. 2-DG had no effect on p-mTOR or p-S6 (mTORC1) and decreased p-AMPK. 2-DG decreased p-4E-BP1, p-c-Myc and p-ERK that are known to promote proliferation and cyst growth in PKD. 2-DG decreased p-AKTS473, a marker of mTORC2. So the role of mTORC2 in cyst growth was determined. Knockout of Rictor (mTORC2) in Pkd1 knockout mice did not change the PKD phenotype. In summary, 2-DG decreases proliferation in cells lining the cyst and decreases cyst growth by decreasing proteins that are known to promote proliferation. In conclusion, the present study reinforces the therapeutic potential of 2-DG for use in patients with ADPKD.


Subject(s)
Cell Proliferation , Deoxyglucose , Disease Models, Animal , Kidney , Polycystic Kidney, Autosomal Dominant , Animals , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/drug therapy , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Mice , Cell Proliferation/drug effects , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , TRPP Cation Channels/metabolism , Autophagy/drug effects , TOR Serine-Threonine Kinases/metabolism
5.
Biomacromolecules ; 25(9): 6164-6180, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39164913

ABSTRACT

Prostate cancer (PC) is the fifth leading cause of cancer-related deaths among men worldwide. Prostate-specific membrane antigen (PSMA), a molecular target of PC, is clinically used for the treatment and diagnosis of PC using radioligand approaches. However, no PSMA-based chemotherapies have yet been approved by the FDA. Here, we present a novel therapeutic approach using PSMA-targeted 2-deoxyglucose-dendrimer (PSMA-2DG-D) for targeted delivery of a potent tyrosine kinase inhibitor, cabozantinib (Cabo), selectively to PC cells. PSMA-2DG-D demonstrates intracellular localization in PSMA (+) PC cells through PSMA-mediated internalization. This PSMA-specific targeting translates to enhanced efficacy of Cabo compared to the free drug when conjugated to PSMA-2DG-D. Furthermore, systemically administered fluorescently labeled PSMA-2DG-D-Cy5 specifically targets PSMA (+) tumors with minimal off-target accumulation in the PC3-PIP tumor xenograft mouse model. This demonstrates that the PSMA-2DG-D platform is a promising new delivery system for potent chemotherapeutics, where systemic side effects are a significant concern.


Subject(s)
Antigens, Surface , Dendrimers , Deoxyglucose , Glutamate Carboxypeptidase II , Prostatic Neoplasms , Pyridines , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Mice , Deoxyglucose/pharmacology , Deoxyglucose/chemistry , Pyridines/chemistry , Pyridines/administration & dosage , Pyridines/pharmacology , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Dendrimers/chemistry , Antigens, Surface/metabolism , Anilides/pharmacology , Anilides/administration & dosage , Anilides/pharmacokinetics , Anilides/chemistry , Nanomedicine/methods , Cell Line, Tumor , Xenograft Model Antitumor Assays , Mice, Nude , Drug Delivery Systems/methods
6.
J Control Release ; 372: 715-727, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38955253

ABSTRACT

Chemo-immunotherapy holds the advantage of specific antitumor effects by activating cytotoxic lymphocyte cells (CTLs) immune response. However, multiple barriers have limited the outcomes partly due to tumor-cell-mediated exhaustion of CTLs in the immunosuppressive tumor microenvironment (iTME). Here, we rationally designed a simple-yet-versatile Ca2+ nanogenerator to modulate iTME for enhancing 2-deoxyglucose (2-DG) mediated chemo-immunotherapy. Briefly, after 2-DG chemotherapy, CaO2 nanoparticles coated with EL4 cell membrane (denoted as CaNP@ECM) could preferentially accumulate in tumor tissue via adhesion between LFA-1 on EL4 cell membrane and ICAM-1 on inflamed endothelial cell in tumor tissues and display a series of benefits for CTLs: i) Increasing glucose availability of CTLs while reducing lactic acid secretion through Ca2+ overloading mediated inhibition of tumor cell glycolysis, as well as relieving hypoxia; ii) Reversing CTLs exhaustion via TGF-ß1 scavenging and PD-L1 blockade through PD-1 and TGF-ß1R on EL4 cell membrane; iii) Boosting tumor immunotherapy via immunologic death (ICD) of tumor cells induced by Ca2+ overloading. We demonstrate that the multi-modal Ca2+ nanogenerator rescues T cells from exhaustion and inhibits tumor growth both in vitro and in vivo. More importantly, the study also facilitate the development of glucose metabolism inhibition-based tumor immunotherapy via Ca2+ overloading.


Subject(s)
Calcium , Deoxyglucose , Immunotherapy , Mice, Inbred C57BL , Nanoparticles , Tumor Microenvironment , Animals , Immunotherapy/methods , Deoxyglucose/pharmacology , Deoxyglucose/administration & dosage , Nanoparticles/administration & dosage , Tumor Microenvironment/drug effects , Cell Line, Tumor , Calcium/metabolism , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/drug effects , Mice , Female , Neoplasms/therapy , Neoplasms/immunology , Neoplasms/drug therapy , Oxides , Humans , Mice, Inbred BALB C , T-Cell Exhaustion , Calcium Compounds
7.
Free Radic Biol Med ; 222: 317-330, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38944213

ABSTRACT

Mitochondrial transporters facilitate the translocation of metabolites between the cytoplasm and mitochondria and are critical for mitochondrial functional integrity. Although many mitochondrial transporters are associated with metabolic diseases, how they regulate mitochondrial function and their metabolic contributions at the cellular level are largely unknown. Here, we show that mitochondrial thiamine pyrophosphate (TPP) transporter SLC25A19 is required for mitochondrial respiration. SLC25A19 deficiency leads to reduced cell viability, increased integrated stress response (ISR), enhanced glycolysis and elevated cell sensitivity to 2-deoxyglucose (2-DG) treatment. Through a series of biochemical assays, we found that the depletion of mitochondrial NADH is the primary cause of the impaired mitochondrial respiration in SLC25A19 deficient cells. We also showed involvement of SLC25A19 in regulating the enzymatic activities of complexes I and III, the tricarboxylic acid (TCA) cycle, malate-aspartate shuttle and amino acid metabolism. Consistently, addition of idebenone, an analog of coenzyme Q10, restores mitochondrial respiration and cell viability in SLC25A19 deficient cells. Together, our findings provide new insight into the functions of SLC25A19 in mitochondrial and cellular physiology, and suggest that restoring mitochondrial respiration could be a novel strategy for treating SLC25A19-associated disorders.


Subject(s)
Homeostasis , Mitochondria , NAD , Humans , A549 Cells , Cell Respiration , Cell Survival , Citric Acid Cycle , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Glycolysis , K562 Cells , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , NAD/metabolism , Ubiquinone/metabolism , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology
8.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891879

ABSTRACT

One aspect of ovarian tumorigenesis which is still poorly understood is the tumor-stroma interaction, which plays a major role in chemoresistance and tumor progression. Cancer-associated fibroblasts (CAFs), the most abundant stromal cell type in the tumor microenvironment, influence tumor growth, metabolism, metastasis, and response to therapy, making them attractive targets for anti-cancer treatment. Unraveling the mechanisms involved in CAFs activation and maintenance is therefore crucial for the improvement of therapy efficacy. Here, we report that CAFs phenoconversion relies on the glucose-dependent inhibition of autophagy. We show that ovarian cancer cell-conditioning medium induces a metabolic reprogramming towards the CAF-phenotype that requires the autophagy-dependent glycolytic shift. In fact, 2-deoxy-D-glucose (2DG) strongly hampers such phenoconversion and, most importantly, induces the phenoreversion of CAFs into quiescent fibroblasts. Moreover, pharmacological inhibition (by proline) or autophagy gene knockdown (by siBECN1 or siATG7) promotes, while autophagy induction (by either 2DG or rapamycin) counteracts, the metabolic rewiring induced by the ovarian cancer cell secretome. Notably, the nutraceutical resveratrol (RV), known to inhibit glucose metabolism and to induce autophagy, promotes the phenoreversion of CAFs into normal fibroblasts even in the presence of ovarian cancer cell-conditioning medium. Overall, our data support the view of testing autophagy inducers for targeting the tumor-promoting stroma as an adjuvant strategy to improve therapy success rates, especially for tumors with a highly desmoplastic stroma, like ovarian cancer.


Subject(s)
Autophagy , Cancer-Associated Fibroblasts , Glucose , Ovarian Neoplasms , Humans , Female , Autophagy/drug effects , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Glucose/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects , Resveratrol/pharmacology , Culture Media, Conditioned/pharmacology , Deoxyglucose/pharmacology , Glycolysis/drug effects
9.
Biomed Pharmacother ; 176: 116841, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38834004

ABSTRACT

Metastasis is the leading cause of cancer-related deaths, making the development of novel, more effective therapies imperative to alleviate patient suffering. Metabolic switching is a hallmark of cancer cells that facilitates metastasis. Cancer cells obtain most of their energy and intermediate metabolites, which are required to proliferate and metastasize, through aerobic glycolysis. Previous work from our laboratory has shown that Caveolin-1 (CAV1) expression in cancer cells promotes glycolysis and metastasis. Here, we sought to determine if limiting glycolysis reduced CAV1-enhanced metastasis and to identify the mechanism(s) involved. We evaluated the effects of the glycolysis inhibitor 2-deoxy-D-glucose (2-DG) in metastatic melanoma and breast cancer cell lines expressing or not CAV1. Non-cytotoxic concentrations of 2-DG (1 mM) inhibited the migration of B16-F10 melanoma and MDA-MB-231 breast cancer cells. CAV1-mediated activation of Src/Akt signaling was required for CAV1-enhanced migration and was blocked in the presence of 2-DG. Moreover, inhibition of Akt reduced CAV1-enhanced lung metastasis of B16-F10 cells. Collectively, these findings highlight the importance of CAV1-induced metabolic reprogramming for metastasis and point towards possible therapeutic approaches to prevent metastatic disease by inhibiting glycolysis and Src/Akt signaling.


Subject(s)
Caveolin 1 , Cell Movement , Deoxyglucose , Glycolysis , Proto-Oncogene Proteins c-akt , Signal Transduction , src-Family Kinases , Caveolin 1/metabolism , Glycolysis/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Animals , Signal Transduction/drug effects , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Humans , Cell Line, Tumor , Mice , Cell Movement/drug effects , Deoxyglucose/pharmacology , Female , Neoplasm Metastasis , Melanoma, Experimental/pathology , Melanoma, Experimental/metabolism , Melanoma, Experimental/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Lung Neoplasms/secondary , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/drug therapy , Mice, Inbred C57BL
10.
Theranostics ; 14(8): 3221-3245, 2024.
Article in English | MEDLINE | ID: mdl-38855177

ABSTRACT

The availability of non-invasive drug delivery systems capable of efficiently transporting bioactive molecules across the blood-brain barrier to specific cells at the injury site in the brain is currently limited. Delivering drugs to neurons presents an even more formidable challenge due to their lower numbers and less phagocytic nature compared to other brain cells. Additionally, the diverse types of neurons, each performing specific functions, necessitate precise targeting of those implicated in the disease. Moreover, the complex synthetic design of drug delivery systems often hinders their clinical translation. The production of nanomaterials at an industrial scale with high reproducibility and purity is particularly challenging. However, overcoming this challenge is possible by designing nanomaterials through a straightforward, facile, and easily reproducible synthetic process. Methods: In this study, we have developed a third-generation 2-deoxy-glucose functionalized mixed layer dendrimer (2DG-D) utilizing biocompatible and cost-effective materials via a highly facile convergent approach, employing copper-catalyzed click chemistry. We further evaluated the systemic neuronal targeting and biodistribution of 2DG-D, and brain delivery of a neuroprotective agent pioglitazone (Pio) in a pediatric traumatic brain injury (TBI) model. Results: The 2DG-D exhibits favorable characteristics including high water solubility, biocompatibility, biological stability, nanoscale size, and a substantial number of end groups suitable for drug conjugation. Upon systemic administration in a pediatric mouse model of traumatic brain injury (TBI), the 2DG-D localizes in neurons at the injured brain site, clears rapidly from off-target locations, effectively delivers Pio, ameliorates neuroinflammation, and improves behavioral outcomes. Conclusions: The promising in vivo results coupled with a convenient synthetic approach for the construction of 2DG-D makes it a potential nanoplatform for addressing brain diseases.


Subject(s)
Dendrimers , Deoxyglucose , Drug Delivery Systems , Neurons , Animals , Dendrimers/chemistry , Neurons/drug effects , Neurons/metabolism , Drug Delivery Systems/methods , Deoxyglucose/pharmacology , Deoxyglucose/pharmacokinetics , Neuroprotective Agents/pharmacokinetics , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/pharmacology , Mice , Pioglitazone/pharmacology , Pioglitazone/administration & dosage , Pioglitazone/pharmacokinetics , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Brain/metabolism , Brain/drug effects , Brain Diseases/drug therapy , Humans , Disease Models, Animal , Tissue Distribution , Male
11.
Acta Biomater ; 184: 368-382, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38908417

ABSTRACT

Starvation therapy aims to "starve" tumor cells by cutting off their nutritional supply. However, due to the complex and varied energy metabolism of tumors, targeting a single nutrient supply often fails to yield significant therapeutic benefits. This study proposes a tumor energy cocktail therapy that combines metformin, an oxidative phosphorylation inhibitor, with 2-deoxy-d-glucose (2-DG), a glycolysis inhibitor, to target tumor cells. To minimize the dosage of both drugs, we have developed a drug delivery strategy that prepared metformin as a nanoderivative, denoted as MA-dots. These MA-dots not only preserve the antitumor properties of metformin but also serve as a targeted delivery platform for 2-DG, ensuring its direct reach to the tumor site. Upon reaching the acidic tumor environment, the composite disintegrates, releasing 2-DG to inhibit glycolysis by targeting hexokinase 2 (HK2), the key enzyme in glycolysis, while MA-dots inhibit mitochondrial OXPHOS. This dual action significantly reduces ATP production in tumor cells, leading to apoptosis. In human lung tumor cells, the half-maximal inhibitory concentration (IC50) of 2-DG@MA-dots was significantly lower than that of either metformin or 2-DG alone, showing a nearly 100-fold and 30-fold reduction in IC50 values to 11.78 µg mL-1, from 1159 µg mL-1 and 351.20 µg mL-1, respectively. In studies with A549 tumor-bearing mice, the combination of low-dose 2-DG and metformin did not impede tumor growth, whereas 2-DG@MA-dots markedly decreased tumor volume, with the mean final tumor volume in the combination treatment group being approximately 89 times greater than that in the 2-DG@MA-dot group. STATEMENT OF SIGNIFICANCE: Metformin is a promising antitumor agent capable of modulating mitochondrial oxidative phosphorylation to inhibit cancer growth. However, its antitumor efficacy is limited when used alone due to compensatory energy mechanisms. Hence, we introduced glycolysis inhibitor 2-deoxy-d-glucose (2-DG) to inhibit an alternative tumor energy pathway. In our study, we developed a drug delivery strategy using metformin-derived nanomedicine (MA-dots) to load 2-DG. This approach enables the co-delivery of both drugs and their synergistic effect at the tumor site, disrupting both energy pathways and introducing an innovative "energy cocktail therapy".


Subject(s)
Deoxyglucose , Metformin , Humans , Deoxyglucose/pharmacology , Metformin/pharmacology , Metformin/therapeutic use , Animals , Mice , Mice, Nude , Energy Metabolism/drug effects , Glycolysis/drug effects , Mice, Inbred BALB C , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Hexokinase/metabolism , Cell Line, Tumor , Apoptosis/drug effects , Oxidative Phosphorylation/drug effects , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
12.
Nat Commun ; 15(1): 4665, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821965

ABSTRACT

Minimally invasive thermal therapy is a successful alternative treatment to surgery in solid tumors with high complete ablation rates, however, tumor recurrence remains a concern. Central memory CD8+ T cells (TCM) play important roles in protection from chronic infection and cancer. Here we find, by single-cell RNA analysis of human breast cancer samples, that although the memory phenotype of peripheral CD8+ T cells increases slightly after microwave ablation (MWA), the metabolism of peripheral CD8+ T cells remains unfavorable for memory phenotype. In mouse models, glycolysis inhibition by 2-deoxy-D-glucose (2DG) in combination with MWA results in long-term anti-tumor effect via enhancing differentiation of tumor-specific CD44hiCD62L+CD8+ TCM cells. Enhancement of CD8+ TCM cell differentiation determined by Stat-1, is dependent on the tumor-draining lymph nodes (TDLN) but takes place in peripheral blood, with metabolic remodeling of CD8+ T cells lasting the entire course of the the combination therapy. Importantly, in-vitro glycolysis inhibition in peripheral CD8+ T cells of patients with breast or liver tumors having been treated with MWA thrice leads to their differentiation into CD8+ TCM cells. Our work thus offers a potential strategy to avoid tumor recurrence following MWA therapy and lays down the proof-of-principle for future clinical trials.


Subject(s)
Breast Neoplasms , CD8-Positive T-Lymphocytes , Cell Differentiation , Glycolysis , Immunologic Memory , Microwaves , Glycolysis/drug effects , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Cell Differentiation/drug effects , Mice , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Microwaves/therapeutic use , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Cell Line, Tumor , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Memory T Cells/immunology , Memory T Cells/metabolism
13.
Biomed Pharmacother ; 175: 116776, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38788546

ABSTRACT

Choroidal neovascularization (CNV), characterized as a prominent feature of wet age-related macular degeneration (AMD), is a primary contributor to visual impairment and severe vision loss globally, while the prevailing treatments are often unsatisfactory. The development of conventional treatment strategies has largely been based on the understanding that the angiogenic switch of endothelial cells is dictated by angiogenic growth factors alone. Even though treatments targeting vascular endothelial growth factor (VEGF), like Ranibizumab, are widely administered, more than half of the patients still exhibit inadequate or null responses, emphasizing the imperative need for solutions to this problem. Here, aiming to explore therapeutic strategies from a novel perspective of endothelial cell metabolism, a biocompatible nanomedicine delivery system is constructed by loading RGD peptide-modified liposomes with 2-deoxy-D-glucose (RGD@LP-2-DG). RGD@LP-2-DG displayed good targeting performance towards endothelial cells and excellent in vitro and in vivo inhibitory effects on neovascularization were demonstrated. Moreover, our mechanistic studies revealed that 2-DG interfered with N-glycosylation, leading to the inhibition of vascular endothelial growth factor receptor 2 (VEGFR2) and its downstream signaling. Notably, the remarkable inhibitory effect on neovascularization and biocompatibility of RGD@LP-2-DG render it a highly promising and clinically translatable therapeutic candidate for the treatment of wet AMD and other angiogenic diseases, particularly in patients who are unresponsive to currently available treatments.


Subject(s)
Choroidal Neovascularization , Deoxyglucose , Liposomes , Nanomedicine , Oligopeptides , Vascular Endothelial Growth Factor Receptor-2 , Wet Macular Degeneration , Oligopeptides/chemistry , Animals , Humans , Nanomedicine/methods , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/pathology , Choroidal Neovascularization/metabolism , Wet Macular Degeneration/drug therapy , Wet Macular Degeneration/metabolism , Deoxyglucose/pharmacology , Deoxyglucose/administration & dosage , Vascular Endothelial Growth Factor Receptor-2/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Mice , Mice, Inbred C57BL , Endothelial Cells/drug effects , Endothelial Cells/metabolism
14.
Sci Rep ; 14(1): 12143, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802677

ABSTRACT

Microglia are natural immune cells in the central nervous system, and the activation of microglia is accompanied by a reprogramming of glucose metabolism. In our study, we investigated the role of long non-coding RNA taurine-upregulated gene 1 (TUG1) in regulating microglial glucose metabolism reprogramming and activation. BV2 cells were treated with Lipopolysaccharides (LPS)/Interferon-γ (IFN-γ) to establish a microglial activation model. The glycolysis inhibitor 2-Deoxy-D-glucose (2-DG) was used as a control. The expression levels of TUG1 mRNA and proinflammatory cytokines such as Interleukin-1ß (IL-1ß), Interleukin -6, and Tumor Necrosis Factor-α mRNA and anti-inflammatory cytokines such as IL-4, Arginase 1(Arg1), CD206, and Ym1 were detected by RT-qPCR. TUG1 was silenced using TUG1 siRNA and knocked out using CRISPR/Cas9. The mRNA and protein expression levels of key enzymes involved in glucose metabolism, such as Hexokinase2, Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Lactate dehydrogenase, Glucose 6 phosphate dehydrogenase, and Pyruvate dehydrogenase (PDH), were determined by RT-qPCR and Western blotting. The glycolytic rate of microglial cells was measured using Seahorse. Differential metabolites were determined by metabolomics, and pathway enrichment was performed using these differential metabolites. Our findings revealed that the expression of TUG1 was elevated in proinflammatory-activated microglia and positively correlated with the levels of inflammatory factors. The expression of anti-inflammatory cytokines such as IL-4, Arg1, CD206, and Ym1 were decreased when induced with LPS/IFN-γ. However, this decrease was reversed by the treatment with 2-DG. Silencing of GAPDH led to an increase in the expression of TUG1 and inflammatory factors. TUG1 knockout (TUG1KO) inhibited the expression of glycolytic key enzymes and promoted the expression of oxidative phosphorylation key enzymes, shifting the metabolic profile of activated microglia from glycolysis to oxidative phosphorylation. Additionally, TUG1KO reduced the accumulation of metabolites, facilitating the restoration of the tricarboxylic acid cycle and enhancing oxidative phosphorylation in microglia. Furthermore, the downregulation of TUG1 was found to reduce the expression of both proinflammatory and anti-inflammatory cytokines under normal conditions. Interestingly, when induced with LPS/IFN-γ, TUG1 downregulation showed a potentially beneficial effect on microglia in terms of inflammation. Downregulation of TUG1 expression inhibits glycolysis and facilitates the shift of microglial glucose metabolism from glycolysis to oxidative phosphorylation, promoting their transformation towards an anti-inflammatory phenotype and exerting anti-inflammatory effects in BV2.


Subject(s)
Glucose , Glycolysis , Lipopolysaccharides , Microglia , RNA, Long Noncoding , Microglia/metabolism , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Glucose/metabolism , Mice , Lipopolysaccharides/pharmacology , Cytokines/metabolism , Inflammation/metabolism , Inflammation/genetics , Interferon-gamma/metabolism , beta-N-Acetylhexosaminidases/metabolism , beta-N-Acetylhexosaminidases/genetics , Cell Line , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/genetics , Deoxyglucose/pharmacology , Interleukin-4/metabolism , Interleukin-1beta/metabolism , Metabolic Reprogramming , Arginase , Hexokinase , Lectins
15.
J Food Sci ; 89(6): 3455-3468, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700315

ABSTRACT

Excessive accumulation of advanced glycation end products (AGEs) in the body is associated with diabetes and its complications. In this study, we aimed to explore the potential and mechanism of coffee leaf extract (CLE) in inhibiting the generation of AGEs and their precursors in an in vitro glycation model using bovine serum albumin and glucose (BSA-Glu) for the first time. High-performance liquid chromatography analysis revealed that CLE prepared with ultrasound pretreatment (CLE-U) contained higher levels of trigonelline, mangiferin, 3,5-dicaffeoylquinic acid, and γ-aminobutyric acid than CLE without ultrasound pretreatment (CLE-NU). The concentrations of these components, along with caffeine and rutin, were dramatically decreased when CLE-U or CLE-NU was incubated with BSA-Glu reaction mixture. Both CLE-U and CLE-NU exhibited a dose-dependent inhibition of fluorescent AGEs, carboxymethyllysine, fructosamine, 5-hydroxymethylfurfural, 3-deoxyglucosone, glyoxal, as well as protein oxidation products. Notably, CLE-U exhibited a higher inhibitory capacity compared to CLE-NU. CLE-U effectively quenched fluorescence intensity and increased the α-helix structure of the BSA-Glu complex. Molecular docking results suggested that the key bioactive compounds present in CLE-U interacted with the arginine residues of BSA, thereby preventing its glycation. Overall, this research sheds light on the possible application of CLE as a functional ingredient in combating diabetes by inhibiting the generation of AGEs.


Subject(s)
Glycation End Products, Advanced , Plant Extracts , Plant Leaves , Serum Albumin, Bovine , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Leaves/chemistry , Serum Albumin, Bovine/chemistry , Coffea/chemistry , Alkaloids/pharmacology , Furaldehyde/analogs & derivatives , Furaldehyde/pharmacology , Fructosamine , Chromatography, High Pressure Liquid , Glyoxal , Glucose/metabolism , Molecular Docking Simulation , Glycosylation/drug effects , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Rutin/pharmacology , Lysine/analogs & derivatives , Caffeine/pharmacology , Deoxyglucose/analogs & derivatives , Deoxyglucose/pharmacology , Xanthones
16.
Mol Cell Endocrinol ; 589: 112232, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38604549

ABSTRACT

BACKGROUND: The central nucleus of the amygdala (CeA) is part of the dopaminergic reward system and controls energy balance. Recently, a cluster of neurons was identified as responsive to the orexigenic effect of ghrelin and fasting. However, the signaling pathway by which ghrelin and fasting induce feeding is unknown. AMP-activated protein kinase (AMPK) is a cellular energy sensor, and its Thr172 phosphorylation (AMPKThr172) in the mediobasal hypothalamus regulates food intake. However, whether the expression and activation of AMPK in CeA could be one of the intracellular signaling activated in response to ghrelin and fasting eliciting food intake is unknown. AIM: To evaluate the activation of AMPK into CeA in response to ghrelin, fasting, and 2-deoxy-D-glucose (2DG) and whether feeding accompanied these changes. In addition, to investigate whether the inhibition of AMPK into CeA could decrease food intake. METHODS: On a chow diet, eight-week-old Wistar male rats were stereotaxically implanted with a cannula in the CeA to inject several modulators of AMPKα1/2Thr172 phosphorylation, and we performed physiological and molecular assays. KEY FINDINGS: Fasting increased, and refeeding reduced AMPKThr172 in the CeA. Intra-CeA glucose injection decreased feeding, whereas injection of 2DG, a glucoprivation inductor, in the CeA, increased food intake and blood glucose, despite faint increases in AMPKThr172. Intra-CeA ghrelin injection increased food intake and AMPKThr172. To further confirm the role of AMPK in the CeA, chronic injection of Melanotan II (MTII) in CeA reduced body mass and food intake over seven days together with a slight decrease in AMPKThr172. SIGNIFICANCE: Our findings identified that AMPK might be part of the signaling machinery in the CeA, which responds to nutrients and hormones contributing to feeding control. The results can contribute to understanding the pathophysiological mechanisms of altered feeding behavior/consumption, such as binge eating of caloric-dense, palatable food.


Subject(s)
AMP-Activated Protein Kinases , Central Amygdaloid Nucleus , Eating , Fasting , Ghrelin , Rats, Wistar , Animals , Male , Ghrelin/metabolism , Ghrelin/pharmacology , AMP-Activated Protein Kinases/metabolism , Phosphorylation/drug effects , Central Amygdaloid Nucleus/metabolism , Eating/drug effects , Eating/physiology , Rats , Signal Transduction/drug effects , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Feeding Behavior/drug effects , Glucose/metabolism
17.
Dev Cell ; 59(12): 1523-1537.e6, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38636516

ABSTRACT

Patterning and growth are fundamental features of embryonic development that must be tightly coordinated. To understand how metabolism impacts early mesoderm development, we used mouse embryonic stem-cell-derived gastruloids, that co-expressed glucose transporters with the mesodermal marker T/Bra. We found that the glucose mimic, 2-deoxy-D-glucose (2-DG), blocked T/Bra expression and abolished axial elongation in gastruloids. However, glucose removal did not phenocopy 2-DG treatment despite a decline in glycolytic intermediates. As 2-DG can also act as a competitive inhibitor of mannose in protein glycosylation, we added mannose together with 2-DG and found that it could rescue the mesoderm specification both in vivo and in vitro. We further showed that blocking production and intracellular recycling of mannose abrogated mesoderm specification. Proteomics analysis demonstrated that mannose reversed glycosylation of the Wnt pathway regulator, secreted frizzled receptor Frzb. Our study showed how mannose controls mesoderm specification in mouse gastruloids.


Subject(s)
Mannose , Mesoderm , Animals , Mesoderm/metabolism , Mice , Mannose/metabolism , Glycosylation , Deoxyglucose/metabolism , Deoxyglucose/pharmacology , Wnt Signaling Pathway/drug effects , Gastrula/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Gene Expression Regulation, Developmental/drug effects , Cell Differentiation/drug effects , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Frizzled Receptors/metabolism , Frizzled Receptors/genetics
18.
PLoS One ; 19(3): e0299595, 2024.
Article in English | MEDLINE | ID: mdl-38451972

ABSTRACT

OBJECTIVE: Glycolytic inhibition via 2-deoxy-D-glucose (2DG) has potential therapeutic benefits for a range of diseases, including cancer, epilepsy, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA), and COVID-19, but the systemic effects of 2DG on gene function across different tissues are unclear. METHODS: This study analyzed the transcriptional profiles of nine tissues from C57BL/6J mice treated with 2DG to understand how it modulates pathways systemically. Principal component analysis (PCA), weighted gene co-network analysis (WGCNA), analysis of variance, and pathway analysis were all performed to identify modules altered by 2DG treatment. RESULTS: PCA revealed that samples clustered predominantly by tissue, suggesting that 2DG affects each tissue uniquely. Unsupervised clustering and WGCNA revealed six distinct tissue-specific modules significantly affected by 2DG, each with unique key pathways and genes. 2DG predominantly affected mitochondrial metabolism in the heart, while in the small intestine, it affected immunological pathways. CONCLUSIONS: These findings suggest that 2DG has a systemic impact that varies across organs, potentially affecting multiple pathways and functions. The study provides insights into the potential therapeutic benefits of 2DG across different diseases and highlights the importance of understanding its systemic effects for future research and clinical applications.


Subject(s)
Deoxyglucose , Epilepsy , Mice , Animals , Deoxyglucose/pharmacology , Deoxyglucose/metabolism , Mice, Inbred C57BL , Glucose/metabolism , Gene Expression Profiling
19.
Am J Transplant ; 24(8): 1382-1394, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38522826

ABSTRACT

Neutrophils exacerbate pulmonary ischemia-reperfusion injury (IRI) resulting in poor short and long-term outcomes for lung transplant recipients. Glycolysis powers neutrophil activation, but it remains unclear if neutrophil-specific targeting of this pathway will inhibit IRI. Lipid nanoparticles containing the glycolysis flux inhibitor 2-deoxyglucose (2-DG) were conjugated to neutrophil-specific Ly6G antibodies (NP-Ly6G[2-DG]). Intravenously administered NP-Ly6G(2-DG) to mice exhibited high specificity for circulating neutrophils. NP-Ly6G(2-DG)-treated neutrophils were unable to adapt to hypoglycemic conditions of the lung airspace environment as evident by the loss of demand-induced glycolysis, reductions in glycogen and ATP content, and an increased vulnerability to apoptosis. NP-Ly6G(2-DG) treatment inhibited pulmonary IRI following hilar occlusion and orthotopic lung transplantation. IRI protection was associated with less airspace neutrophil extracellular trap generation, reduced intragraft neutrophilia, and enhanced alveolar macrophage efferocytotic clearance of neutrophils. Collectively, our data show that pharmacologically targeting glycolysis in neutrophils inhibits their activation and survival leading to reduced pulmonary IRI.


Subject(s)
Glycolysis , Lung Transplantation , Mice, Inbred C57BL , Nanoparticles , Neutrophils , Reperfusion Injury , Animals , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Mice , Glycolysis/drug effects , Neutrophils/metabolism , Neutrophils/drug effects , Nanoparticles/chemistry , Male , Lung Transplantation/adverse effects , Deoxyglucose/pharmacology , Apoptosis/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects
20.
Sci Bull (Beijing) ; 69(9): 1263-1274, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38418300

ABSTRACT

Metabolic reprogramming is a mechanism by which cancer cells alter their metabolic patterns to promote cell proliferation and growth, thereby enabling their resistance to external stress. 2-Deoxy-D-glucose (2DG) can eliminate their energy source by inhibiting glucose glycolysis, leading to cancer cell death through starvation. However, a compensatory increase in mitochondrial metabolism inhibits its efficacy. Herein, we propose a synergistic approach that combines photodynamic therapy (PDT) with starvation therapy to address this challenge. To monitor the nanodrugs and determine the optimal triggering time for precise tumor therapy, a multifunctional nano-platform comprising lanthanide-doped nanoparticle (LnNP) cores was constructed and combined with mesoporous silicon shells loaded with 2DG and photosensitizer chlorin e6 (Ce6) in the mesopore channels. Under 980 nm near-infrared light excitation, the downshifted 1550 nm fluorescence signal in the second near-infrared (NIR-II, 1000-1700 nm) window from the LnNPs was used to monitor the accumulation of nanomaterials in tumors. Furthermore, upconverted 650 nm light excited the Ce6 to generate singlet oxygen for PDT, which damaged mitochondrial function and enhanced the efficacy of 2DG by inhibiting hexokinase 2 and lactate dehydrogenase A expressions. As a result, glucose metabolism reprogramming was inhibited and the efficiency of starvation therapy was significantly enhanced. Overall, the proposed NIR-II bioimaging-guided PDT-augmented starvation therapy, which simultaneously inhibited glycolysis and mitochondria, facilitated the effects of a cancer theranostic system.


Subject(s)
Chlorophyllides , Glucose , Nanoparticles , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photochemotherapy/methods , Humans , Animals , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Porphyrins/pharmacology , Porphyrins/therapeutic use , Glucose/metabolism , Nanoparticles/therapeutic use , Deoxyglucose/pharmacology , Mice , Infrared Rays , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/therapy , Neoplasms/diagnostic imaging , Hexokinase/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Glycolysis/drug effects , Metabolic Reprogramming
SELECTION OF CITATIONS
SEARCH DETAIL