Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 280
Filter
1.
Rapid Commun Mass Spectrom ; 38(13): e9759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38680121

ABSTRACT

RATIONALE: The study addresses the challenge of identifying RNA post-transcriptional modifications when commercial standards are not available to generate reference spectral libraries. It proposes employing homologous nucleobases and deoxyribonucleosides as alternative reference spectral libraries to aid in identifying modified ribonucleosides and distinguishing them from their positional isomers when the standards are unavailable. METHODS: Complete sets of ribonucleoside, deoxyribonucleoside and nucleobase standards were analyzed using high-performance nano-flow liquid chromatography coupled to an Orbitrap Eclipse Tribrid mass spectrometer. Spectral libraries were constructed from homologous nucleobases and deoxyribonucleosides using targeted MS2 and neutral-loss-triggered MS3 methods, and collision energies were optimized. The feasibility of using these libraries for identifying modified ribonucleosides and their positional isomers was assessed through comparison of spectral fragmentation patterns. RESULTS: Our analysis reveals that both MS2 and neutral-loss-triggered MS3 methods yielded rich spectra with similar fragmentation patterns across ribonucleosides, deoxyribonucleosides and nucleobases. Moreover, we demonstrate that spectra from nucleobases and deoxyribonucleosides, generated at optimized collision energies, exhibited sufficient similarity to those of modified ribonucleosides to enable their use as reference spectra for accurate identification of positional isomers within ribonucleoside families. CONCLUSIONS: The study demonstrates the efficacy of utilizing homologous nucleobases and deoxyribonucleosides as interchangeable reference spectral libraries for identifying modified ribonucleosides and their positional isomers. This approach offers a valuable solution for overcoming limitations posed by the unavailability of commercial standards, enhancing the analysis of RNA post-transcriptional modifications via mass spectrometry.


Subject(s)
Deoxyribonucleosides , Ribonucleosides , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Ribonucleosides/chemistry , Ribonucleosides/analysis , Deoxyribonucleosides/chemistry , Chromatography, High Pressure Liquid/methods , Nanotechnology/methods , Chromatography, Liquid/methods
2.
Article in English | MEDLINE | ID: mdl-37165577

ABSTRACT

To assess the feasibility of high-temperature aminolysis of deoxyribooligonucleotides containing rare bases as a method to determine their base sequence, the 2'-ß-D-deoxyribosides of 5-bromouracil, 2-aminopurine, uracil, adenine, cytosine, 5-methylcytosine, hypoxanthine, N6-methyladenine, N4-ethylcytosine, and guanine were compared as to their rate of degradation in 0.5 M aqueous pyrrolidine at 110 °C, conditions used earlier in the analysis of oligonucleotides containing only the canonical bases. The reaction mixtures were analyzed by chromatography on Zorbax XDB-CN and UV absorption spectroscopy. The first-order rate constants for the nucleoside degradations decreased in the above order, spanning a wide range of reactivities. Some of these nucleosides were also tested in 0.5 M aqueous ammonia at 110 °C, giving similar first-order rate constants, except for 2'-deoxyguanosine, which is much more reactive with ammonia, due to the lower basicity of this reagent, leaving a larger proportion of the nucleoside in the non-ionized form, susceptible to nucleophilic attack at the base. Short oligothymidylates containing a single 2-aminopurine, adenine, guanine, or cytosine unit in central position were tested in pyrrolidinolysis, to determine the cleavage rates at these sites and the dependence of these cleavage rates on oligonucleotide length. A model decadeoxyribonucleotide containing all four canonical bases was also pyrrolidinolyzed, followed by ion-exchange chromatography, to deduce the nucleotide sequence from the resulting chromatographic profile.


Subject(s)
Deoxyribonucleosides , Oligodeoxyribonucleotides , Sequence Analysis, DNA , Deoxyribonucleosides/analysis , Deoxyribonucleosides/chemistry , Oligodeoxyribonucleotides/analysis , Oligodeoxyribonucleotides/chemistry , Solvents , Kinetics
3.
Chem Pharm Bull (Tokyo) ; 69(11): 1067-1074, 2021.
Article in English | MEDLINE | ID: mdl-34719588

ABSTRACT

DNA reacts directly with UV light with a wavelength shorter than 300 nm. Although ground surface sunlight includes little of this short-wavelength UV light due to its almost complete absorption by the atmosphere, sunlight is the primary cause of skin cancer. Photosensitization by endogenous substances must therefore be involved in skin cancer development mechanisms. Uric acid is the final metabolic product of purines in humans, and is present at relatively high concentrations in cells and fluids. When a neutral mixed solution of 2'-deoxycytidine, 2'-deoxyguanosine, thymidine, and 2'-deoxyadenosine was irradiated with UV light with a wavelength longer than 300 nm in the presence of uric acid, all the nucleosides were consumed in a uric acid dose-dependent manner. These reactions were inhibited by the addition of radical scavengers, ethanol and sodium azide. Two products from 2'-deoxycytidine were isolated and identified as N4-hydroxy-2'-deoxycytidine and N4,5-cyclic amide-2'-deoxycytidine, formed by cycloaddition of an amide group from uric acid. A 15N-labeled uric acid, uric acid-1,3-15N2, having two 14N and two 15N atoms per molecule, produced N4,5-cyclic amide-2'-deoxycytidine containing both 14N and 15N atoms from uric acid-1,3-15N2. Singlet oxygen, hydroxyl radical, peroxynitrous acid, hypochlorous acid, and hypobromous acid generated neither N4-hydroxy-2'-deoxycytidine nor N4,5-cyclic amide-2'-deoxycytidine in the presence of uric acid. These results indicate that uric acid is a photosensitizer for the reaction of nucleosides by UV light with a wavelength longer than 300 nm, and that an unidentified radical derived from uric acid with a delocalized unpaired electron may be generated.


Subject(s)
DNA/chemistry , Deoxyadenosines/chemistry , Deoxyribonucleosides/chemistry , Photosensitizing Agents/chemistry , Uric Acid/chemistry , Bromates/chemistry , Deoxycytidine/chemistry , Deoxyguanosine/chemistry , Ethanol/chemistry , Free Radical Scavengers/chemistry , Hypochlorous Acid/chemistry , Kinetics , Peroxynitrous Acid/chemistry , Photochemical Processes , Singlet Oxygen/chemistry , Sodium Azide/chemistry , Thymidine/chemistry , Ultraviolet Rays
4.
Acta Crystallogr C Struct Chem ; 77(Pt 5): 202-208, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33949335

ABSTRACT

ß-2'-Deoxyribonucleosides are the constituents of nucleic acids, whereas their anomeric α-analogues are rarely found in nature. Moreover, not much information is available on the structural and conformational parameters of α-2'-deoxyribonucleosides. This study reports on the single-crystal X-ray structure of α-2'-deoxycytidine, C9H13N3O4 (1), and the conformational parameters characterizing 1 were determined. The conformation at the glycosylic bond is anti, with χ = 173.4 (2)°, and the sugar residue adopts an almost symmetrical C2'-endo-C3'-exo twist (23T; S-type), with P = 179.7°. Both values lie outside the conformational range usually preferred by α-nucleosides. In addition, the amino group at the nucleobase shows partial double-bond character. This is supported by two separated signals for the amino protons in the 1H NMR spectrum, indicating a hindered rotation around the C4-N4 bond and a relatively short C-N bond in the solid state. Crystal packing is controlled by N-H...O and O-H...O contacts between the nucleobase and sugar moieties. Moreover, two weak C-H...N contacts (C1'-H1' and C3'-H3'A) are observed. A Hirshfeld surface analysis was carried out and the results support the intermolecular interactions observed by the X-ray analysis.


Subject(s)
Deoxycytidine/chemistry , Deoxyribonucleosides/chemistry , Nucleic Acids/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Molecular Conformation , Nucleic Acids/analysis
5.
Nucleic Acids Res ; 48(21): 11982-11993, 2020 12 02.
Article in English | MEDLINE | ID: mdl-33152081

ABSTRACT

A set of modified 2'-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.


Subject(s)
DNA Replication , DNA-Directed DNA Polymerase/metabolism , DNA/genetics , Deoxyribonucleosides/chemistry , Dinucleoside Phosphates/chemistry , Polymers/chemical synthesis , Adenine/chemistry , Adenine/metabolism , Aptamers, Nucleotide/chemical synthesis , Aptamers, Nucleotide/genetics , Base Pairing , Base Sequence , Cytosine/chemistry , Cytosine/metabolism , DNA/chemistry , DNA/metabolism , DNA-Directed DNA Polymerase/genetics , Deoxyribonucleosides/genetics , Deoxyribonucleosides/metabolism , Dinucleoside Phosphates/genetics , Dinucleoside Phosphates/metabolism , Guanine/chemistry , Guanine/metabolism , Hydrophobic and Hydrophilic Interactions , Polymerase Chain Reaction , Polymers/metabolism , Uracil/chemistry , Uracil/metabolism
6.
J Agric Food Chem ; 68(37): 10200-10212, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32853523

ABSTRACT

A new chemical labeling-based LC-MS/MS approach was developed for quantitative profiling of nine canonical bases and deoxynucleosides (dNs) in natural products. Using 2-bromo-1-(4-dimethylamino-phenyl)-ethaone (BrDPE) as the tagging reagent, a previously unexploited N-alkylpyrimidine derivative (Nad) was created for one-pot labeling of widescope nucleobases via a flexible bromophilic substitution under mild conditions. The derivatization notably improved the LC-MS detection sensitivity by 31-107 fold, enabling a fast dilute-and-shoot analysis of highly diluted samples. The optimized and validated method demonstrated satisfactory accuracy (87-107%), precision (RSDs < 7.5%), and recovery (89-105%) for matrix-matched standard addition. The method was applied to simultaneously determine all target analytes and four uncanonical analogues and base-modified species in seven traditional health foods, which differ in contents by up to 600-fold for discrimination among samples. Further, the base-labeled Nads exhibit a unique fragmentation signature that could be used for untargeted screening of nucleobase-containing metabolites by simplified LC-MS/MS workflow to improve quality evaluation of natural medicinal products.


Subject(s)
Biological Products/chemistry , Chromatography, High Pressure Liquid/methods , Nucleosides/chemistry , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Tandem Mass Spectrometry/methods , Deoxyribonucleosides/chemistry , Limit of Detection
7.
Curr Protoc Nucleic Acid Chem ; 80(1): e101, 2020 03.
Article in English | MEDLINE | ID: mdl-31909864

ABSTRACT

4-Cyanoindole-2'-deoxyribonucleoside (4CIN) is a fluorescent isomorphic nucleoside analogue with superior spectroscopic properties in terms of Stokes shift and quantum yield in comparison to the widely utilized isomorphic nucleoside analogue, 2-aminopurine-2'-deoxyribonucleoside (2APN). Notably, when inserted into single- or double-stranded DNA, 4CIN experiences substantially less in-strand fluorescence quenching compared to 2APN. Given the utility of these properties for a spectrum of research applications involving oligonucleotides and oligonucleotide-protein interactions (e.g., enzymatic processes, DNA hybridization, DNA damage), we envision that additional reagents based on 4-cyanoindole nucleosides may be widely utilized. This protocol expands on the previously published synthesis of 4CIN to include synthetic routes to both 4-cyanoindole-ribonucleoside (4CINr) and 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP), as well as a method for the enzymatic incorporation of 4CIN-TP into DNA by a polymerase. These methods are anticipated to further enable the utilization of 4CIN in diverse applications involving DNA and RNA oligonucleotides. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside (4CIN) and 4CIN phosphoramidite 4 Basic Protocol 2: Synthesis of 4-cyanoindole-ribonucleoside (4CINr) Basic Protocol 3: Synthesis of 4-cyanoindole-2'-deoxyribonucleoside-5'-triphosphate (4CIN-TP) Basic Protocol 4: Steady state incorporation kinetics of 2AP-TP and 4CIN-TP by a DNA polymerase.


Subject(s)
Cyanides/chemistry , DNA/chemistry , Deoxyribonucleosides/chemistry , Indoles/chemistry , Nucleosides/chemical synthesis , Carbon-13 Magnetic Resonance Spectroscopy , Mass Spectrometry , Nucleosides/chemistry , Proton Magnetic Resonance Spectroscopy
8.
J Phys Chem A ; 123(32): 7087-7103, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31323178

ABSTRACT

The Cremer-Pople ring puckering analysis and the Konkoli-Cremer local mode analysis supported by the topological analysis of the electron density were applied for the first comprehensive analysis of the interplay between deoxyribose ring puckering and intramolecular H-bonding in 2'-deoxycytidine, 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxyguanosine. We mapped for each deoxyribonucleoside the complete conformational energy surface and the corresponding pseudorotation path. We found only incomplete pseudorotation cycles, caused by ring inversion, which we coined as pseudolibration paths. On each pseudolibration path a global and a local minimum separated by a transition state were identified. The investigation of H-bond free deoxyribonucleoside analogs revealed that removal of the H-bond does not restore the full conformational flexibility of the sugar ring. Our work showed that ring puckering predominantly determines the conformational energy; the larger the puckering amplitude, the lower the conformational energy. In contrast no direct correlation between conformational energy and H-bond strength was found. The longest and weakest H-bonds are located in the local minimum region, whereas the shortest and strongest H-bonds are located outside the global and local minimum regions at the turning points of the pseudolibration paths, i.e., H-bonding determines the shape and length of the pseudolibration paths. In addition to the H-bond strength, we evaluated the covalent/electrostatic character of the H-bonds applying the Cremer-Kraka criterion of covalent bonding. H-bonding in the puric bases has a more covalent character whereas in the pyrimidic bases the H-bond character is more electrostatic. We investigated how the mutual orientation of the CH2OH group and the base influences H-bond formation via two geometrical parameters describing the rotation of the substituents perpendicular to the sugar ring and their tilting relative to the ring center. According to our results, rotation is more important for H-bond formation. In addition we assessed the influence of the H-bond acceptor, the lone pair (N, respectively O), via the delocalization energy. We found larger delocalization energies corresponding to stronger H-bonds for the puric bases. The global minimum conformation of 2'-deoxyguanosine has the strongest H-bond of all conformers investigated in this work with a bond strength of 0.436 which is even stronger than the H-bond in the water dimer (0.360). The application of our new analysis to DNA deoxyribonucleotides and to unnatural base pairs, which have recently drawn a lot of attention, is in progress.


Subject(s)
Deoxyribonucleosides/chemistry , DNA/chemistry , Hydrogen Bonding , Nucleic Acid Conformation , Thermodynamics
9.
Nucleic Acids Res ; 47(17): e101, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31318971

ABSTRACT

A new approach to single-molecule DNA sequencing in which dNTPs, released by pyrophosphorolysis from the strand to be sequenced, are captured in microdroplets and read directly could have substantial advantages over current sequence-by-synthesis methods; however, there is no existing method sensitive enough to detect a single nucleotide in a microdroplet. We have developed a method for dNTP detection based on an enzymatic two-stage reaction which produces a robust fluorescent signal that is easy to detect and process. By taking advantage of the inherent specificity of DNA polymerases and ligases, coupled with volume restriction in microdroplets, this method allows us to simultaneously detect the presence of and distinguish between, the four natural dNTPs at the single-molecule level, with negligible cross-talk.


Subject(s)
Deoxyribonucleotides/analysis , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleosides/chemistry , Deoxyribonucleotides/chemistry , Limit of Detection , Microscopy, Fluorescence , Oligodeoxyribonucleotides/biosynthesis , Oligodeoxyribonucleotides/chemistry , Sensitivity and Specificity
10.
Article in English | MEDLINE | ID: mdl-30942138

ABSTRACT

Degradation of 2'-deoxyribonucleosides in 0.5 M aqueous pyrrolidine at 110 °C proceeds at different rates, ordered as deoxyuridine > deoxyadenosine > deoxycytidine > deoxyguanosine ≫ deoxythymidine. Deoxyadenosine degradation produces the free base, adenine, while deoxycytidine by deamination produces deoxyuridine, and then uracil. The solvolysis of deoxyadenosine has an activation energy of 23.3 kcal/mol. Ammonolysis is slower than pyrrolidinolysis for deoxyadenosine, but faster for deoxyguanosine. In pyrrolidinolysis of the trinucleotides, d-TGT and d-TAT, the guanine moiety reacts faster than the adenine moiety. These trends are interpreted in terms of the ionization of the guanine moieties under basic conditions, rendering them less susceptible to nucleophilic attack.


Subject(s)
Amines/chemistry , Deoxyribonucleosides/chemistry , Heterocyclic Compounds/chemistry , Hot Temperature , Kinetics , Solvents , Thermodynamics , Water
11.
Phys Chem Chem Phys ; 21(17): 8925-8932, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30984941

ABSTRACT

Computations using the combined quantum mechanical/molecular mechanical (QM/MM) method were performed to investigate excess electron attachment to and detachment from aqueous deoxyribonucleosides (dRNs). The QM/MM vertical electron affinities (VEAs) of four dRNs are higher than the values of the corresponding nucleobases by ∼0.20 eV. The QM/MM diabatic electron affinities (AEAs) are much larger than the calculations of the implicit solvent model. Bulk water induces evident VEA and AEA increases and boosts the vertical detachment energies by over 1.20 eV. It affects excess electron attachment to and detachment from aqueous dRNs and stabilizes the anions. Moreover, the water molecules around deoxyadenosine (dA) anions form intermolecular hydrogen bonds with dA and break the intramolecular hydrogen bond of dA which had been found in the gas structure. In vertical electron attachment, ∼50% of excess electrons would be delocalized over the water molecules around the dRNs. The anionic structural relaxations cause the transfer of ∼-0.30 e excess electrons from the water molecules to the dRN nucleobases. However, the main excess electrons (∼-0.76 e) would be localized on dRN nucleobases in the stable anionic structure.


Subject(s)
DNA/chemistry , Deoxyribonucleosides/chemistry , Models, Molecular , Water/chemistry , Anions/chemistry , Deoxyadenosines/chemistry , Electrons , Hydrogen Bonding , Solvents/chemistry
12.
Molecules ; 24(3)2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30744004

ABSTRACT

Unnatural nucleosides possessing unique spectroscopic properties that mimic natural nucleobases in both size and chemical structure are ideally suited for spectroscopic measurements of DNA/RNA structure and dynamics in a site-specific manner. However, such unnatural nucleosides are scarce, which prompts us to explore the utility of a recently found unnatural nucleoside, 4-cyanoindole-2'-deoxyribonucleoside (4CNI-NS), as a site-specific spectroscopic probe of DNA. A recent study revealed that 4CNI-NS is a universal nucleobase that maintains the high fluorescence quantum yield of 4-cyanoindole and that among the four natural nucleobases, only guanine can significantly quench its fluorescence. Herein, we further show that the C≡N stretching frequency of 4CNI-NS is sensitive to the local environment, making it a useful site-specific infrared probe of oligonucleotides. In addition, we demonstrate that the fluorescence-quencher pair formed by 4CNI-NS and guanine can be used to quantitatively assess the binding affinity of a single-stranded DNA to the protein system of interest via fluorescence spectroscopy, among other applications. We believe that this fluorescence binding assay is especially useful as its potentiality allows high-throughput screening of DNA⁻protein interactions.


Subject(s)
DNA/chemistry , Deoxyribonucleosides/chemistry , Fluorescent Dyes/chemistry , Indoles/chemistry , Molecular Dynamics Simulation , Nucleic Acid Conformation , Molecular Structure , Spectrum Analysis
13.
Bioorg Med Chem ; 27(4): 664-676, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30655167

ABSTRACT

We report herein the synthesis and evaluation of a series of ß-d-2'-deoxy-2'-α-chloro-2'-ß-fluoro and ß-d-2'-deoxy-2'-α-bromo-2'-ß-fluoro nucleosides along with their corresponding phosphoramidate prodrugs. Key intermediates, lactols 11 and 12, were obtained by a diastereoselective fluorination of protected 2-deoxy-2-chloro/bromo-ribonolactones 7 and 8. All synthesized nucleosides and prodrugs were evaluated with a hepatitis C virus (HCV) subgenomic replicon system.


Subject(s)
Antiviral Agents/pharmacology , Deoxyribonucleosides/pharmacology , Hepacivirus/drug effects , Prodrugs/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Cell Line, Tumor , Chlorocebus aethiops , Deoxyribonucleosides/chemical synthesis , Deoxyribonucleosides/chemistry , Humans , Prodrugs/chemical synthesis , Prodrugs/chemistry , Stereoisomerism , Vero Cells
14.
Org Biomol Chem ; 17(2): 290-301, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30543241

ABSTRACT

We developed a versatile access to a series of 4-substituted imidazole 2'-deoxynucleoside triphosphate bearing functionalized phenyl or pyrimidinyl rings. 4-Iodo-1H-imidazole was enzymatically converted into the corresponding 2'-deoxynucleoside, which was then chemically derived into its 5'-triphosphate, followed by 4-arylation via Suzuki-Miyaura coupling using (hetero)arylboronic acids. Both KF (exo-) and Deep Vent (exo-) DNA polymerases incorporated these modified nucleotides in primer-extension assays, adenine being the preferred pairing partner in the template. The 4-(3-aminophenyl)imidazole derivative (3APh) was the most efficiently inserted opposite A by KF (exo-) with only a 37-fold lower efficiency (Vmax/KM) than that of the correct dTTP. No further extension occurred after the incorporation of a single aryl-imidazole nucleotide. Interestingly, the aryl-imidazole dNTPs were found to undergo successive incorporation by calf thymus terminal deoxynucleotidyl transferase with different tailing efficiencies among this series and with a marked preference for 2APyr polymerization.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleosides/metabolism , Imidazoles/metabolism , Polyphosphates/metabolism , Pyrimidines/metabolism , Animals , Base Sequence , Cattle , DNA Polymerase I/metabolism , Deoxyribonucleosides/chemical synthesis , Deoxyribonucleosides/chemistry , Imidazoles/chemical synthesis , Imidazoles/chemistry , Polymerization , Polyphosphates/chemical synthesis , Polyphosphates/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry
15.
J Org Chem ; 83(24): 14923-14932, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30474372

ABSTRACT

The preparation of 2-deoxy-l-ribose derivatives or mirror image deoxyribonucleosides (l-deoxyribonucleosides) from d-ribose is reported. Starting from inexpensive d-ribose, an acyclic d-form carbohydrate precursor was synthesized to study a unique carbonyl translocation process. In this novel radical reaction, not only was the configuration of the sugar transformed from the d-form to the l-form, but also deoxygenation at the C(2) position of the sugar was successfully achieved. This is one of the most practical methods for converting a d-sugar to a 2-deoxy-l-sugar in a one-step reaction. To further identify the reaction product, radical reactions followed by treatment with 1,3-propanedithiol and then benzoylation were performed to afford a dithioacetal derivative. The stereochemistry and configuration of the 2-deoxy-l-ribose dithioacetal derivative were confirmed by its X-ray crystal structure. To further apply this methodology, a diethyl thioacetal derivative was formed, followed by selective benzoyl protection, and an NIS-initiated cyclization reaction to give the desired ethyl S-l-2-deoxyriboside, which can be used as a 2-deoxy-l-ribosyl synthon in the formal total synthesis of various l-deoxyribonucleosides, such as l-dT.


Subject(s)
Deoxyribonucleosides/chemistry , Deoxyribonucleosides/chemical synthesis , Ribose/chemistry , Chemistry Techniques, Synthetic , Cyclization , Stereoisomerism
16.
Bioconjug Chem ; 29(11): 3906-3912, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30365300

ABSTRACT

Synthesis of cytosine, uracil, and 7-deazaadenine 2'-deoxyribonucleosides and triphosphates (dNTPs) bearing hexamethylated phenyl-bodipy fluorophore attached at position 5 of pyrimidines or at position 7 of 7-deazapurine was developed. All the title labeled nucleosides and dNTPs displayed bright green fluorescence with very high quantum yields. The modified dNmBdpTPs were good substrates to diverse DNA polymerases and were used for in vitro enzymatic synthesis of labeled DNA by primer extension or PCR. In combination with cationic cyclodextrin-peptide-based dNTP transporter, the dNmBdpTPs were successfully used for staining of genomic DNA in living cells for applications in confocal microscopy and in flow cytometry. The best performing cytosine nucleotide dCmBdpTP was used to monitor mitosis in live cells.


Subject(s)
Boron Compounds/chemistry , DNA/analysis , Deoxyribonucleosides/chemistry , Fluorescent Dyes/chemistry , Polyphosphates/chemistry , Adenine/analogs & derivatives , Adenine/chemistry , Cell Line, Tumor , Cytosine/chemistry , Flow Cytometry , Humans , Methylation , Optical Imaging , Purines/chemistry , Staining and Labeling
17.
Org Biomol Chem ; 16(30): 5427-5432, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29905748

ABSTRACT

2'-Deoxyribonucleoside triphosphates (dNTPs) containing 5-(hydroxymethyl)cytosine (5hmC) protected with photocleavable groups (2-nitrobenzyl or 6-nitropiperonyl) were prepared and studied as substrates for the enzymatic synthesis of oligonucleotides and DNA containing a photocaged epigenetic 5hmC base. DNA probes containing photocaged or free 5hmC in the recognition sequence of restriction endonucleases were prepared and used for the study of the photorelease of caged DNA by UV or visible light at different wavelengths. The nitrobenzyl-protected dNTP was a slightly better substrate for DNA polymerases in primer extension or PCR, whereas the nitropiperonyl-protected nucleotide underwent slightly faster photorelease at 400 nm. However, both photocaged building blocks can be used in polymerase synthesis and the photorelease of 5hmC in DNA.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA/chemistry , Deoxyribonucleosides/chemistry , Polyphosphates/chemistry , 5-Methylcytosine/chemical synthesis , 5-Methylcytosine/chemistry , DNA/chemical synthesis , Deoxyribonucleosides/chemical synthesis , Light , Photochemical Processes , Polyphosphates/chemical synthesis , Ultraviolet Rays
18.
Eur J Pharm Sci ; 111: 226-237, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-28986193

ABSTRACT

Lipophilicity was investigated for 20 2'-deoxyribonucleoside derivatives modified with electron-neutral 1,2-dicarba-closo-dodecaborane, 1,12-dicarba-closo-dodecaborane, 7,8-dicarba-nido-undecaborate anion, and metallacarborane containing Co, Fe, or Cr. The partition coefficient (P) for neutral conjugates and the distribution coefficient (D7.4) for ionic compounds were determined as a lipophilicity descriptor using a shake-flask method. All modified nucleosides had P/D7.4 values higher than those of an appropriate unmodified 2'-closo-dodecaborane and metallacarborane was found to be three orders of magnitude higher than that of its unmodified counterpart. The lowest impact on the P/D7.4 values of the conjugates was observed for the 7,8-dicarba-nido-undecaborate anion. A preliminary molecular modeling study of a thymidine-carborane conjugate with ß-cyclodextrin confirmed the ability of the components to form an inclusion complex.


Subject(s)
Boron Compounds/chemistry , Deoxyribonucleosides/chemistry , Lipids/chemistry , Molecular Structure
19.
Carbohydr Res ; 449: 125-133, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28780317

ABSTRACT

Milligram quantities of α-D-ribofuranosyl 1-phosphate (sodium salt) (αR1P) were prepared by the phosphorolysis of inosine, catalyzed by purine nucleoside phosphorylase (PNPase). The αR1P was isolated by chromatography in >95% purity and characterized by 1H and 13C NMR spectroscopy. Aqueous solutions of αR1P were stable at pH 6.4 and 4 °C for several months. The isolated αR1P was N-glycosylated with different nitrogen bases (adenine, guanine and uracil) using PNPase or uridine phosphorylase (UPase) to give the corresponding ribonucleosides in high yield based on the glycosyl phosphate. This methodology is attractive for the preparation of stable isotopically labeled ribo- and 2'-deoxyribonucleosides because of the ease of product purification and convenient use and recycling of nitrogen bases. The approach eliminates the need for separate reactions to prepare individual furanose-labeled ribonucleosides, since only one ribonucleoside (inosine) needs to be labeled, if desired, in the furanose ring, the latter achieved by a high-yield chemical N-glycosylation. 2'-Deoxyribonucleosides were prepared from 2'-deoxyinosine using the same methodology with minor modifications.


Subject(s)
Deoxyribonucleosides/chemistry , Deoxyribonucleosides/chemical synthesis , Furans/chemistry , Phosphates/chemistry , Purine-Nucleoside Phosphorylase/metabolism , Biocatalysis , Chemistry Techniques, Synthetic , Glycosylation , Isotope Labeling , Kinetics
20.
Curr Protoc Nucleic Acid Chem ; 69: 2.1.1-2.1.40, 2017 06 19.
Article in English | MEDLINE | ID: mdl-28628209

ABSTRACT

Oligonucleotides carrying a variety of chemical modifications including conjugates are finding increasing applications in therapeutics, diagnostics, functional genomics, proteomics, and as research tools in chemical and molecular biology. The successful synthesis of oligonucleotides primarily depends on the use of appropriately protected nucleoside building blocks including the exocyclic amino groups of the nucleobases, the hydroxyl groups at the 2'-, 3'-, and 5'-positions of the sugar moieties, and the internucleotide phospho-linkage. This unit is a thoroughly revised update of the previously published version and describes the recent development of various protecting groups that facilitate reliable oligonucleotide synthesis. In addition, various protecting groups for the imide/lactam function of thymine/uracil and guanine, respectively, are described to prevent irreversible nucleobase modifications that may occur in the presence of reagents used in oligonucleotide synthesis. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Deoxyribonucleosides/chemistry , Ribonucleosides/chemistry , Acetylation , Photochemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...