Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 50(D1): D1508-D1514, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34643700

ABSTRACT

Stimulated by the growing interest in the role of dNTP pools in physiological and malignant processes, we established dNTPpoolDB, the database that offers access to quantitative data on dNTP pools from a wide range of species, experimental and developmental conditions (https://dntppool.org/). The database includes measured absolute or relative cellular levels of the four canonical building blocks of DNA and of exotic dNTPs, as well. In addition to the measured quantity, dNTPpoolDB contains ample information on sample source, dNTP quantitation methods and experimental conditions including any treatments and genetic manipulations. Functions such as the advanced search offering multiple choices from custom-built controlled vocabularies in 15 categories in parallel, the pairwise comparison of any chosen pools, and control-treatment correlations provide users with the possibility to quickly recognize and graphically analyse changes in the dNTP pools in function of a chosen parameter. Unbalanced dNTP pools, as well as the balanced accumulation or depletion of all four dNTPs result in genomic instability. Accordingly, key roles of dNTP pool homeostasis have been demonstrated in cancer progression, development, ageing and viral infections among others. dNTPpoolDB is designated to promote research in these fields and fills a longstanding gap in genome metabolism research.


Subject(s)
Databases, Genetic , Deoxyribonucleotides/classification , Genomic Instability/genetics , Neoplasms/genetics , DNA Replication/genetics , Data Curation , Deoxyribonucleotides/genetics , Humans , Neoplasms/classification , Neoplasms/pathology
2.
J Biomol Struct Dyn ; 26(5): 653-62, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19236114

ABSTRACT

The molecular structure and deformability (with respect to average geometry) of methyl ethers of canonical 2'-deoxyribonucleotides thymidine-5'-phosphate (mTMP), 2-deoxycytidine-5'-phosphate (mCMP), 2-deoxyadenosine-5'-phosphate (mAMP) and 2'-deoxyguanosine-5'-phosphate (mGMP) in different types of DNA have been calculated using B3LYP/cc-pvdz method. Comparison of energy at equilibrium conformations of nucleotides and conformations with torsion angles of backbone fixed to average values for different types of DNA reveals that incorporation of nucleotides to A-DNA macromolecules requires the minimum amount of deformation energy. Therefore, this type of DNA should be the least strained from viewpoint of intramolecular deformations of monomers. Modeling of environmental effects within the PCM approach reveals that the immersion of nucleotides in polar medium results in significant decrease of energy differences between anti conformers of all DNTs and syn conformers of mGMP. This also leads to reduction by almost a half nucleotides' deformation energy facilitating formation of DNA macromolecule. Change of DNTs conformation causes switch between different types of intramolecular H bonds. Every type of DNA possesses unique set of intramolecular hydrogen bonds in nucleotides.


Subject(s)
Deoxyribonucleotides/chemistry , Nucleic Acid Conformation , Computer Simulation , Deoxyribonucleotides/classification , Hydrogen Bonding , Molecular Structure
3.
Nucleic Acids Res ; 36(4): e25, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18263613

ABSTRACT

Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first version, all four modified nucleotides bearing a cleavable disulfide Alexa Fluor(R) 594 dye were assayed for their ability to act as a reversible stop for the incorporation of the next labeled base. Their use in SBS leaded to a signal-no signal output after successive addition of each labeled nucleotide during the sequencing process (binary read-out). Solid-phase immobilized synthetic DNA target sequences were used to optimize the method that has been applied to DNA polymerized colonies or clusters obtained by in situ solid-phase amplification of fragments of genomic DNA templates.


Subject(s)
Deoxyribonucleotides/chemical synthesis , Fluorescent Dyes/chemistry , Sequence Analysis, DNA , Deoxyribonucleotides/chemistry , Deoxyribonucleotides/classification , Microscopy, Fluorescence , Organic Chemicals/chemistry
4.
J Phys Chem B ; 110(9): 4413-22, 2006 Mar 09.
Article in English | MEDLINE | ID: mdl-16509743

ABSTRACT

The molecular structure and relative stability of different conformers of isolated canonical 2'-deoxyribonucleotides thymidine-5'-phosphate (pdT), 2-deoxycytidine-5'-phosphate (pdC), 2-deoxyadenosine-5'-phosphate (pdA), and 2'-deoxyguanosine-5'-phosphate (pdG) were calculated using the B3LYP/6-31++G(d,p) level of theory. The results of the calculations reveal that, for all nucleotides except pdG, conformers with a syn orientation of the base do not correspond to a minimum on the potential energy surface. In the case of pdA and pdC, conformers with an orthogonal orientation of the nucleobase are located instead, north/syn conformers. These conformers as well as syn conformers of pdG are stabilized by intramolecular N-H...O hydrogen bonds. Analysis of the electron density distribution within the atoms in molecules theory reveals the presence of numerous C-H...O hydrogen bonds in the nucleotides. However, a more detailed consideration of the properties of these bonds demonstrates that many of them should be considered as strong attractive electrostatic interactions rather than true hydrogen bonds. True hydrogen bonds are represented mainly by C6/ C8-H...O5'/O-P in anti conformers and the N-H...O-P bonds in syn conformers. It is demonstrated that the values of ellipticity of the electron density at the bond critical point (BCP) and the distance between BCP and ring critical point are the most reliable indicators for determining the true intramolecular hydrogen bonds.


Subject(s)
Deoxyribonucleotides/chemistry , Models, Chemical , Computer Simulation , Deoxyribonucleotides/classification , Hydrogen Bonding , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...