Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.506
Filter
1.
Glob Chang Biol ; 30(6): e17357, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38822559

ABSTRACT

Determination of tipping points in nitrogen (N) isotope (δ15N) natural abundance, especially soil δ15N, with increasing aridity, is critical for estimating N-cycling dynamics and N limitation in terrestrial ecosystems. However, whether there are linear or nonlinear responses of soil δ15N to increases in aridity and if these responses correspond well with soil N cycling remains largely unknown. In this study, we investigated soil δ15N and soil N-cycling characteristics in both topsoil and subsoil layers along a drought gradient across a 3000-km transect of drylands on the Qinghai-Tibetan Plateau. We found that the effect of increasing aridity on soil δ15N values shifted from negative to positive with thresholds at aridity index (AI) = 0.27 and 0.29 for the topsoil and subsoil, respectively, although soil N pools and N transformation rates linearly decreased with increasing aridity in both soil layers. Furthermore, we identified markedly different correlations between soil δ15N and soil N-cycling traits above and below the AI thresholds (0.27 and 0.29 for topsoil and subsoil, respectively). Specifically, in wetter regions, soil δ15N positively correlated with most soil N-cycling traits, suggesting that high soil δ15N may result from the "openness" of soil N cycling. Conversely, in drier regions, soil δ15N showed insignificant relationships with soil N-cycling traits and correlated well with factors, such as soil-available phosphorus and foliage δ15N, demonstrating that pathways other than typical soil N cycling may dominate soil δ15N under drier conditions. Overall, these results highlight that different ecosystem N-cycling processes may drive soil δ15N along the aridity gradient, broadening our understanding of N cycling as indicated by soil δ15N under changing drought regimes. The aridity threshold of soil δ15N should be considered in terrestrial N-cycling models when incorporating 15N isotope signals to predict N cycling and availability under climatic dryness.


Subject(s)
Droughts , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes , Soil , Soil/chemistry , Nitrogen Isotopes/analysis , China , Nitrogen/analysis , Nitrogen/metabolism , Desert Climate
2.
BMC Plant Biol ; 24(1): 371, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724940

ABSTRACT

Variations in functional traits serve as measures of plants' ability to adapt to environment. Exploring the patterns of functional traits of desert plants along elevational gradients is helpful to understand the responses and adaptation strategies of species to changing environments. However, it is unknown whether the relationship between functional traits and elevation is affected by differences in the species' elevational distributions (elevation preference and species' range). Importantly, most researches have concerned with differences in mean trait values and ignored intraspecific trait variation. Here, we measured functional traits of desert plants along a wide elevational gradient in the Tibetan Plateau and adjacent areas and explored functional trait patterns over elevation in species with different elevational distributions. We decomposed trait variation and further investigated characterizations of intraspecific variation. Ultimately, the main drivers of trait variation were identified using redundancy analysis. We found that species' elevational distributions significantly influenced the relationship of functional traits such as plant height, leaf dry matter content, leaf thickness, leaf nitrogen and carbon content with elevation. Species with a lower elevational preference showed greater trait variation than species with a higher elevational preference, suggesting that species that prefer high elevation are more conservative facing environmental changes. We provide evidence that interspecific trait variation in leaf thickness and leaf carbon content decreased with increasing species' range, indicating that increased variations in resistance traits within species make greater responsiveness to environmental changes, enabling species a wider range. Elevation, temperature and precipitation were the main drivers of trait variation in species with a low elevational preference, while the effect of precipitation on trait variation in species with a high elevational preference was not significant. This study sheds new insights on how plants with different elevational distributions regulate their ecological strategies to cope with changing environments.


Subject(s)
Altitude , Desert Climate , Tibet , Plant Leaves/physiology , Plant Leaves/anatomy & histology
3.
Naturwissenschaften ; 111(3): 28, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695961

ABSTRACT

Sedentary animals choose appropriate refuges against predators, while migratory ones may not necessarily do so. In ectotherms, refuge selection is critical during low temperatures, because they cannot actively evade predators. To understand how migratory ectotherms alter their defensive behaviors depending on refuge quality in cold temperatures, we evaluated migratory gregarious desert locust nymphs (Schistocerca gregaria) in the Sahara Desert, where daily thermal constraints occur. We recorded how roosting plant type (bush/shrub) and its height influenced two alternative defense behaviors (dropping/stationary) during cold mornings, in response to an approaching simulated ground predator. Most locusts in bushes dropped within the bush and hid irrespective of their height, whereas those roosting > 2 m height in shrubs remained stationary. These defenses are effective and match with refuge plant types because dynamic locomotion is not required. When nymphs roosted on shrubs < 1.5-m height, which was an unsafe position, nearly half showed both defensive behaviors, indicating that escaping decisions become ambiguous when the refuges are inappropriate. These results suggest that locusts display flexible defensive behaviors when finding appropriate refuges and selecting refuge before daily thermal limitations occur could be critical for migratory ectotherms, which is a risk associated with migration.


Subject(s)
Animal Migration , Grasshoppers , Nymph , Animals , Nymph/physiology , Nymph/growth & development , Grasshoppers/physiology , Grasshoppers/growth & development , Animal Migration/physiology , Cold Temperature , Desert Climate
4.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38813909

ABSTRACT

Desert ants stand out as some of the most intriguing insect navigators, having captured the attention of scientists for decades. This includes the structure of walking trajectories during goal approach and search behaviour for the nest and familiar feeding sites. In the present study, we analysed such trajectories with regard to changes in walking direction. The directional change of the ants was quantified, i.e. an angle θ between trajectory increments of a given arclength λ was computed. This was done for different length scales λ, according to our goal of analysing desert ant path characteristics with respect to length scale. First, varying λ through more than two orders of magnitude demonstrated Brownian motion characteristics typical of the random walk component of search behaviour. Unexpectedly, this random walk component was also present in - supposedly rather linear - approach trajectories. Second, there were small but notable deviations from a uniform angle distribution that is characteristic of random walks. This was true for specific search situations, mostly close to the (virtual) goal position. And third, experience with a feeder position resulted in straighter approaches and more focused searches, which was also true for nest searches, albeit to a lesser extent. Taken together, these results both verify and extend previous studies on desert ant path characteristics. Of particular interest are the ubiquitous Brownian motion signatures and specific deviations thereof close to the goal position, indicative of unexpectedly structured search behaviour.


Subject(s)
Ants , Desert Climate , Walking , Animals , Ants/physiology , Walking/physiology , Spatial Navigation/physiology
5.
Article in English | MEDLINE | ID: mdl-38752993

ABSTRACT

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Desert Climate , Fatty Acids , Pedobacter , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Soil Microbiology , Vitamin K 2 , RNA, Ribosomal, 16S/genetics , Pedobacter/genetics , Pedobacter/classification , Pedobacter/isolation & purification , Fatty Acids/chemistry , China , DNA, Bacterial/genetics , Vitamin K 2/analogs & derivatives , Nucleic Acid Hybridization
6.
Technol Cult ; 65(2): 603-622, 2024.
Article in English | MEDLINE | ID: mdl-38766963

ABSTRACT

In 1926, during an economic crisis that severely impacted the mining industry, Guggenheim Brothers, the Guggenheim family business, implemented a new technological system to extract saltpeter from the Atacama Desert in northern Chile. Known as the Guggenheim system, this cutting-edge technological innovation had a significant impact on regional society and facilitated the introduction of Chilean saltpeter into the global fertilizer market. For this system to succeed, however, it had to incorporate a sociopolitical strategy based on a highly hierarchical and well-controlled labor force. Through their political and cultural influence in the region, the Guggenheim family's industry transformed a remote area into a state periphery, creating new ways of inhabiting the desert within a strict framework in which workers' lives were regulated by company-imposed labor discipline. With more political power than the state, the Guggenheim family sought to suppress any social agency deemed dangerous to the production of saltpeter.


Subject(s)
Desert Climate , Mining , Chile , Mining/history , History, 20th Century , Nitrates/history , Humans , Politics
7.
BMC Plant Biol ; 24(1): 408, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755583

ABSTRACT

BACKGROUND: Grazing exclusion is an efficient practice to restore degraded grassland ecosystems by eliminating external disturbances and improving ecosystems' self-healing capacities, which affects the ecological processes of soil-plant systems. Grassland degradation levels play a critical role in regulating these ecological processes. However, the effects of vegetation and soil states at different degradation stages on grassland ecosystem restoration are not fully understood. To better understand this, desert steppe at three levels of degradation (light, moderate, and heavy degradation) was fenced for 6 years in Inner Mongolia, China. Community characteristics were investigated, and nutrient concentrations of the soil (0-10 cm depth) and dominant plants were measured. RESULTS: We found that grazing exclusion increased shoots' carbon (C) concentrations, C/N, and C/P, but significantly decreased shoots' nitrogen (N) and phosphorus (P) concentrations for Stipa breviflora and Cleistogenes songorica. Interestingly, there were no significant differences in nutrient concentrations of these two species among the three degraded desert steppes after grazing exclusion. After grazing exclusion, annual accumulation rates of aboveground C, N, and P pools in the heavily degraded area were the highest, but the aboveground nutrient pools were the lowest among the three degraded grasslands. Similarly, the annual recovery rates of community height, cover, and aboveground biomass in the heavily degraded desert steppe were the highest among the three degraded steppes after grazing exclusion. These results indicate that grazing exclusion is more effective for vegetation restoration in the heavily degraded desert steppe. The soil total carbon, total nitrogen, total phosphorus, available nitrogen, and available phosphorus concentrations in the moderately and heavily degraded desert steppes were significantly decreased after six years of grazing exclusion, whereas these were no changes in the lightly degraded desert steppe. Structural equation model analysis showed that the grassland degradation level mainly altered the community aboveground biomass and aboveground nutrient pool, driving the decrease in soil nutrient concentrations and accelerating nutrient transfer from soil to plant community, especially in the heavily degraded grassland. CONCLUSIONS: Our study emphasizes the importance of grassland degradation level in ecosystem restoration and provides theoretical guidance for scientific formulation of containment policies.


Subject(s)
Grassland , Herbivory , China , Desert Climate , Soil/chemistry , Phosphorus/metabolism , Phosphorus/analysis , Conservation of Natural Resources , Nitrogen/metabolism , Poaceae , Carbon/metabolism , Ecosystem , Nutrients/metabolism , Environmental Restoration and Remediation/methods , Animals
8.
Int J Med Mushrooms ; 26(5): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38780419

ABSTRACT

Podaxis pistillaris, an abundant gasteroid mushroom, has become an important biological element in arid and semiarid communities worldwide. This mushroom possesses cosmetic, edible, and medicinal attributes, playing a crucial role in communities in countries such as Australia, India, Saudi Arabia, Yemen, and Mexico. Proximate studies highlight the nutritional richness of P. pistillaris, characterized by high protein content and essential bioelements such as K, P, and Mg. Furthermore, P. pistillaris is integral to the traditional medicine of indigenous communities in America, Asia, and Africa, where it is revered for its purported wound-healing, anti-inflammatory, and coagulant properties. In the case of Mexico, the Seri community uses and markets P. pistillaris in various forms, including ointments and, within the region, its spores. Chemical analysis of this species reveals notable compounds, including epicorazines A-C exhibiting antimicrobial properties, along with polysaccharides such as ß-glucans, and a recently identified ergosterol derivative named podaxisterol. Despite its importance, the chemical characterization and assessment of the biological activity of its compounds have been largely understudied. Consequently, there are currently no wound-healing products on the market derived from fungi, as the majority originate from plant sources. This work aims to present the essential aspects of P. pistillaris's ethnobiological use, medicinal properties, bioactive compounds, and biotechnological applications. In addition, it underscores the overlooked status of P. pistillaris among fungi inhabiting arid areas, emphasizing its potential as a valuable subject for further research.


Subject(s)
Medicine, Traditional , Humans , Desert Climate
9.
J Exp Biol ; 227(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38690630

ABSTRACT

Desert ants stand out as some of the most intriguing insect navigators, having captured the attention of scientists for decades. This includes the structure of walking trajectories during goal approach and search behaviour for the nest and familiar feeding sites. In the present study, we analysed such trajectories with regard to changes in walking direction. The directional change of the ants was quantified, i.e. an angle θ between trajectory increments of a given arclength λ was computed. This was done for different length scales λ, according to our goal of analysing desert ant path characteristics with respect to length scale. First, varying λ through more than two orders of magnitude demonstrated Brownian motion characteristics typical of the random walk component of search behaviour. Unexpectedly, this random walk component was also present in - supposedly rather linear - approach trajectories. Second, there were small but notable deviations from a uniform angle distribution that is characteristic of random walks. This was true for specific search situations, mostly close to the (virtual) goal position. And third, experience with a feeder position resulted in straighter approaches and more focused searches, which was also true for nest searches, albeit to a lesser extent. Taken together, these results both verify and extend previous studies on desert ant path characteristics. Of particular interest are the ubiquitous Brownian motion signatures and specific deviations thereof close to the goal position, indicative of unexpectedly structured search behaviour.


Subject(s)
Ants , Desert Climate , Walking , Animals , Ants/physiology , Walking/physiology , Spatial Navigation/physiology
10.
BMC Ecol Evol ; 24(1): 61, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734637

ABSTRACT

BACKGROUND: Reintroduction represents an effective strategy for the conservation of endangered wildlife, yet it might inadvertently impact the native ecosystems. This investigation assesses the impact of reintroducing endangered Przewalski's horses into the desert grassland ecosystem of the Kalamaili Nature Reserve (KNR), particularly its effect on the spatial distribution of ticks. In a 25 km2 core area of Przewalski's horse distribution, we set up 441 tick sampling sites across diverse habitats, including water sources, donkey trails, and grasslands, recording horse feces and characteristics to analyze the occurrence rate of ticks. Additionally, we gathered the data of 669 fresh feces of horses. To evaluate the spatial dynamics between these feces and ticks, we used methods such as Fixed Kernel Estimation (FKE), Moran's I spatial autocorrelation index, and Generalized Linear Models (GLM). RESULTS: The dominant species of ticks collected in the core area were adult Hyalomma asiaticum (91.36%). Their occurrence rate was higher near donkey trails (65.99%) and water sources (55.81%), particularly in areas with the fresh feces of Przewalski's horses. The ticks' three risk areas, as defined by FKE, showed significant overlap and positive correlation with the distribution of Przewalski's horses, with respective overlap rates being 90.25% in high risk, 33.79% in medium risk, and 23.09% in low risk areas. Moran's I analysis revealed a clustering trend of the fresh feces of Przewalski's horses in these areas. The GLM confirmed a positive correlation between the distribution of H. asiaticum and the presence of horse fresh feces, alongside a negative correlation with the proximity to water sources and donkey trails. CONCLUSIONS: This study reveals the strong spatial correlation between Przewalski's horses and H. asiaticum in desert grasslands, underlining the need to consider interspecific interactions in wildlife reintroductions. The findings are crucial for shaping effective strategies of wildlife conservation and maintaining ecological balance.


Subject(s)
Grassland , Animals , Horses , Conservation of Natural Resources/methods , Spatial Analysis , Feces/parasitology , Feces/chemistry , Desert Climate , Ixodidae/physiology , Endangered Species
11.
Sci Adv ; 10(22): eado6611, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820152

ABSTRACT

Northern glacial refugia are a hotly debated concept. The idea that many temperate organisms survived the Last Glacial Maximum (LGM; ~26.5 to 19 thousand years) in several sites across central and northern Europe stems from phylogeographic analyses, yet direct fossil evidence has thus far been missing. Here, we present the first unequivocal proof that thermophilous trees such as oak (Quercus), linden (Tilia), and common ash (Fraxinus excelsior) survived the LGM in Central Europe. The persistence of the refugium was promoted by a steady influx of hydrothermal waters that locally maintained a humid and warm microclimate. We reconstructed the geological and palaeohydrological factors responsible for the emergence of hot springs during the LGM and argue that refugia of this type, allowing the long-term survival and rapid post-LGM dispersal of temperate elements, were not exceptional in the European periglacial zone.


Subject(s)
Hot Springs , Refugium , Trees , Europe , Trees/genetics , Phylogeography , Desert Climate , Ice Cover , Fossils , Quercus/genetics
12.
Anim Cogn ; 27(1): 39, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789697

ABSTRACT

The Australian red honey ant, Melophorus bagoti, stands out as the most thermophilic ant in Australia, engaging in all outdoor activities during the hottest periods of the day during summer months. This species of desert ants often navigates by means of path integration and learning landmark cues around the nest. In our study, we observed the outdoor activities of M. bagoti workers engaged in nest excavation, the maintenance of the nest structure, primarily by taking excess sand out of the nest. Before undertaking nest excavation, the ants conducted a single exploratory walk. Following their initial learning expedition, these ants then engaged in nest excavation activities. Consistent with previous findings on pre-foraging learning walks, after just one learning walk, the desert ants in our study demonstrated the ability to return home from locations 2 m away from the nest, although not from locations 4 m away. These findings indicate that even for activities like dumping excavated sand within a range of 5-10 cm outside the nest, these ants learn and utilize the visual landmark panorama around the nest.


Subject(s)
Ants , Animals , Ants/physiology , Australia , Learning , Walking , Nesting Behavior , Desert Climate , Homing Behavior , Cues , Spatial Navigation
13.
BMC Ecol Evol ; 24(1): 68, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789929

ABSTRACT

Ecological resource availability is crucial for the persistence and survival of local desert animal communities. Dryland resources such as shrubs and burrows positively benefit animal species by mitigating harsh abiotic factors and providing habitat. Understanding the role of native shrubs, many of which serve as foundation species within desert regions, as well as the function of underground burrows as resources, provides insights into habitat utilization. In this study, we seek to better understand the co-occurrence of these two resources as a first step in quantifying key patterns locally and regionally in drylands. We tested whether the presence of burrows increased with the density of foundational shrubs near the burrows at two scales-within a 5 m radius of every burrow recorded and at the site level-defined as discrete ecological areas. We performed fieldwork across 31 sites within the arid and semiarid regions of Central California. We used a combination of burrow field surveys and satellite imagery to document both vertebrate animal burrow frequencies and shrub densities. Additionally, the accuracy of the shrub data was verified through ground truthing. Both fine-scale and site-level shrub densities positively predicted the relative likelihood of burrows and the frequency of burrows, respectively. The existence of two highly utilized dryland resources and the relationship between them signal that areas abundant in both resources will likely better support resident animal species. This finding underscores the significance of incorporating both shrub density and burrow frequency in studies of habitat interconnectivity and quality. The co-occurrence patterns of these resources will support novel habitat management and conservation strategies designed around both conservation and restoration efforts.


Subject(s)
Ecosystem , Animals , California , Desert Climate , Population Density
14.
Ecotoxicol Environ Saf ; 279: 116479, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38768539

ABSTRACT

The concentration of potentially toxic elements (PTEs) in soils of different land-use types varies depending on climatic conditions and human. Topsoil samples were collected in Northwest China to investigate PTE pollution and risk in different land uses, and thereby estimate the risk of various pollution sources. The results showed that human activity had an impact on PTE concentrations in the study area across all land use types, with farmland, grassland, woodland, and the gobi at moderate pollution levels and the desert at light pollution levels. Different PTE sources pose different risks depending on the land-use type. Apart from deserts, children are exposed to carcinogenic risk from a variety of sources. A mixed natural and agricultural source was the main source of public health risk in the study area, contributing 38.7% and 39.0% of the non-carcinogenic and 40.7% and 35.5% of the carcinogenic risks, respectively. Monte Carlo simulations showed children were at a higher health risk from PTEs than adult s under all land uses, which ranked in severity as farmland > woodland > grassland > gobi > desert. As and Ni has a higher probability of posing both a non-carcinogenic and a carcinogenic risk to children. Sensitivity analysis showed that the contribution of parameters to the assessment model of PTEs exhibited the following contribution pattern: concentration > average body weight > ingestion rate > other parameters. The PTEs affecting the risk assessment model were not common among different land use types, where the importance distribution pattern of each parameter was basically the same in woodland, grassland, and farmland, and Ni contributed the most to carcinogenic risk. However, Cr contributed the most to the carcinogenic risk in the desert and gobi.


Subject(s)
Environmental Monitoring , Monte Carlo Method , Soil Pollutants , Soil , China , Risk Assessment , Soil Pollutants/analysis , Humans , Soil/chemistry , Agriculture , Child , Farms , Desert Climate , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis
15.
Sci Total Environ ; 937: 173432, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38797402

ABSTRACT

The Dryland East Asia (DEA) is one of the largest inland arid regions, and vegetation is very sensitive to climate change. The complex environment in DEA with defects of modeling construction make it difficult to simulate and predict changes in vegetation structure and productivity. Here, we use the emergent constraint (EC) method to constrain the future interannual leaf area index (LAI) and gross primary productivity (GPP) trends in DEA, under four scenarios of the latest Sixth Coupled Model Intercomparison Project (CMIP6) model ensemble. LAI and GPP increase in all scenarios in the near term (2015-2050), with continued growth in SSP370 and SSP585 and stasis in SSP126 and SSP245 in the far term (2051-2100). However, after building effective EC relationships, the constrained increasing trends of LAI (GPP) are reduced by 43.5 %-53.9 % (30.5 %-50.0 %) compared with the uncertainties of the original ensemble, which are reduced by 10.0 %-45.7 % (4.6 %-34.3 %). We also extend the EC in moving windows and grid cells, further strengthening the robustness of the constraints, especially by illustrating spatial sources of these emergent relationships. Overestimations of LAI and GPP trends suggest that current CMIP6 models may be insufficient to capture the complex relationships between climate change and vegetation dynamics in DEA; however, these models can be adjusted based on established emergent relationships.


Subject(s)
Climate Change , Photosynthesis , Asia, Eastern , Climate Models , Environmental Monitoring/methods , Desert Climate
16.
Mol Ecol ; 33(12): e17380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38745400

ABSTRACT

In order to thrive and survive, plant species need to combine stability in the long term and rapid response to environmental challenges in the short term. The former would be reflected by parallel or convergent adaptation across species, and the latter by pronounced local adaptation among populations of the same species. In the present study, we generated a high-quality genome and re-sequenced 177 individuals for Gymnocarpos przewalskii, an important desert plant species from North-West China, to detect local adaptation. We first focus on ancient adaptation to aridity at the molecular level by comparing the genomic data of 15 species that vary in their ability to withstand aridity. We found that a total of 118 genes were shared across xerophytic species but absent from non-xerophytic species. Of the 65 found in G. przewalskii, 63 were under purifying selection and two under positive selection. We then focused on local adaptation. Up to 20% of the G. przewalskii genome showed signatures of local adaptation to aridity during population divergence. Thirteen of the selected shared xerophytic genes were reused in local adaptation after population differentiation. Hence, only about 20% of the genes shared and specific to xerophytic species and associated with adaptation to aridity were later recruited for local adaptation in G. przewalskii.


Subject(s)
Adaptation, Physiological , Desert Climate , Adaptation, Physiological/genetics , China , Genome, Plant , Selection, Genetic , Genes, Plant , Genetics, Population
17.
Int J Biol Macromol ; 270(Pt 1): 132259, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740161

ABSTRACT

A distinct family of plant-specific WRKY transcription factors plays a crucial role in modulating responses to biotic and abiotic stresses. In this investigation, we unveiled a signaling pathway activated in the desert shrub Ammopiptanthus nanus during feeding by the moth Spodoptera exigua. The process involves a Ca2+ flux that facilitates interaction between the protein kinase AnCIPK12 and AnWRKY29. AnWRKY29 directly interacts with the promoters of two key genes encoding AnPDF1 and AnHsfB1, involved in the biosynthesis of plant defensins. Consequently, AnWRKY29 exerts its transcriptional regulatory function, influencing plant defensins biosynthesis. This discovery implies that A. nanus can bolster resistance against herbivorous insects like S. exigua by utilizing this signaling pathway, providing an effective natural defense mechanism that supports its survival and reproductive success.


Subject(s)
Defensins , Gene Expression Regulation, Plant , Plant Proteins , Defensins/genetics , Defensins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Spodoptera/genetics , Signal Transduction , Promoter Regions, Genetic , Desert Climate , Herbivory
18.
Genome Biol Evol ; 16(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38761112

ABSTRACT

The increased availability of quality genomic data has greatly improved the scope and resolution of our understanding of the recent evolutionary history of wild species adapted to extreme environments and their susceptibility to anthropogenic impacts. The guanaco (Lama guanicoe), the largest wild ungulate in South America, is a good example. The guanaco is well adapted to a wide range of habitats, including the Sechura Desert, the high Andes Mountains to the north, and the extreme temperatures and conditions of Navarino Island to the south. Guanacos also have a long history of overexploitation by humans. To assess the evolutionary impact of these challenging habitats on the genomic diversity, we analyzed 38 genomes (∼10 to 16×) throughout their extensive latitudinal distribution from the Sechura and Atacama Desert to southward into Tierra del Fuego Island. These included analyses of patterns of unique differentiation in the north and geographic region further south with admixture among L. g. cacsilensis and L. g. guanicoe. Our findings provide new insights on the divergence of the subspecies ∼800,000 yr BP and document two divergent demographic trajectories and to the initial expansion of guanaco into the more southern portions of the Atacama Desert. Patagonian guanacos have experienced contemporary reductions in effective population sizes, likely the consequence of anthropogenic impacts. The lowest levels of genetic diversity corresponded to their northern and western limits of distribution and some varying degrees of genetic differentiation. Adaptive genomic diversity was strongly linked with environmental variables and was linked with colonization toward the south followed by adaptation.


Subject(s)
Camelids, New World , Animals , Camelids, New World/genetics , Ecosystem , Desert Climate , Adaptation, Physiological/genetics , Genome , Genetic Variation , Antarctic Regions , South America , Evolution, Molecular
19.
Curr Biol ; 34(11): 2487-2501.e3, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38772361

ABSTRACT

Sleep is broadly conserved across the animal kingdom but can vary widely between species. It is currently unclear which selective pressures and regulatory mechanisms influence differences in sleep between species. The fruit fly Drosophila melanogaster has become a successful model system for examining sleep regulation and function, but little is known about the sleep patterns in many related fly species. Here, we find that fly species with adaptations to extreme desert environments, including D. mojavensis, exhibit strong increases in baseline sleep compared with D. melanogaster. Long-sleeping D. mojavensis show intact homeostasis, indicating that desert flies carry an elevated drive for sleep. In addition, D. mojavensis exhibit altered abundance or distribution of several sleep/wake-related neuromodulators and neuropeptides that are consistent with their reduced locomotor activity and increased sleep. Finally, we find that in a nutrient-deprived environment, the sleep patterns of individual D. mojavensis are strongly correlated with their survival time and that disrupting sleep via constant light stimulation renders D. mojavensis more sensitive to starvation. Our results demonstrate that D. mojavensis is a novel model for studying organisms with high sleep drive and for exploring sleep strategies that provide resilience in extreme environments.


Subject(s)
Drosophila , Sleep , Animals , Sleep/physiology , Drosophila/physiology , Drosophila melanogaster/physiology , Stress, Physiological , Female , Male , Desert Climate , Species Specificity
20.
Extremophiles ; 28(2): 25, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664270

ABSTRACT

We surveyed the presence of perchlorate-reducing microorganisms in available metagenomic data of halite environments from the Atacama Desert, an extreme environment characterized by high perchlorate concentrations, intense ultraviolet radiation, saline and oxidizing soils, and severe desiccation. While the presence of perchlorate might suggest a broad community of perchlorate reducers or a high abundance of a dominant taxa, our search reveals a scarce presence. In fact, we identified only one halophilic species, Salinibacter sp003022435, carrying the pcrA and pcrC genes, represented in low abundance. Moreover, we also discovered some napA genes and organisms carrying the nitrate reductase nasB gene, which hints at the possibility of cryptic perchlorate reduction occurring in these ecosystems. Our findings contribute with the knowledge of perchlorate reduction metabolism potentially occurring in halites from Atacama Desert and point towards promising future research into the perchlorate-reducing mechanism in Salinibacter, a common halophilic bacterium found in hypersaline ecosystems, whose metabolic potential remains largely unknown.


Subject(s)
Desert Climate , Extreme Environments , Oxidation-Reduction , Perchlorates , Perchlorates/metabolism , Metagenome , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL
...