Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.686
Filter
1.
Food Res Int ; 183: 114189, 2024 May.
Article in English | MEDLINE | ID: mdl-38760128

ABSTRACT

Complex coacervation can be used for controlled delivery of bioactive compounds (i.e., flaxseed oil and quercetin). This study investigated the co-encapsulation of flaxseed oil and quercetin by complex coacervation using soluble pea protein (SPP) and gum arabic (GA) as shell materials, followed by innovative electrostatic spray drying (ES). The dried system was analyzed through encapsulation efficiency (EE) and yield (EY), morphological and physicochemical properties, and stability for 60 days. Small droplet size emulsions were produced by GA (in the first step of complex coacervation) due to its greater emulsifying activity than SPP. Oil EY and EE, moisture, and water activity in dried compositions ranged from 75.7 to 75.6, 76.0-73.4 %, 3.4-4.1 %, and 0.1-0.2, respectively. Spherical microcapsules were created with small and aggregated particle size but stable for 60 days. An amount of 8 % of quercetin remained in the dried coacervates after 60 days, with low hydroperoxide production. In summary, when GA is used as the emulsifier and SPP as the second biopolymer in the coacervation process, suitable coacervates for food applications are obtained, with ES being a novel alternative to obtain coacervates in powder, with improved stability for encapsulated compounds. As a result, this study helps provide a new delivery system option and sheds light on how the characteristics of biopolymers and the drying process affect coacervate formation.


Subject(s)
Gum Arabic , Linseed Oil , Particle Size , Quercetin , Spray Drying , Static Electricity , Gum Arabic/chemistry , Quercetin/chemistry , Linseed Oil/chemistry , Capsules , Emulsions/chemistry , Desiccation/methods , Pea Proteins/chemistry , Emulsifying Agents/chemistry
2.
Food Chem ; 451: 139497, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692240

ABSTRACT

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.


Subject(s)
Actinidia , Antioxidants , Desiccation , Fruit , Nutritive Value , Antioxidants/chemistry , Antioxidants/analysis , Actinidia/chemistry , Fruit/chemistry , Desiccation/methods , Desiccation/instrumentation , Freeze Drying , Food Handling/instrumentation , Food Handling/methods , Vacuum , Dietary Fiber/analysis
3.
Food Res Int ; 187: 114455, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763691

ABSTRACT

Dendrobium officinale flower tea (DFT) is a traditional health product of geographical identity known for its unique aroma and taste. The effects of different drying methods on sensory properties, metabolic profiles and antioxidant activity of DFT were compared using sensomics and metabolomics approaches. Twenty-seven aroma-active compounds were identified and more than half of the volatiles responsible for the "green" and "floral" scent lost after drying. Sensory evaluations revealed that vacuum freeze-dried DFT showed a significant preference in taste and fifty-eight metabolites with higher levels of glutamine were observed, possibly contributing to a "fresh" taste and increased preference. Among the three drying methods, natural air drying retained the fresh flower scent better, while freeze drying preserved the color and shape of the flowers better and enhanced the taste and antioxidant activity of DFT. The research results may provide a foundation for the selection of DFT processing method and quality detection.


Subject(s)
Antioxidants , Dendrobium , Flowers , Metabolomics , Odorants , Taste , Antioxidants/analysis , Odorants/analysis , Metabolomics/methods , Flowers/chemistry , Humans , Dendrobium/chemistry , Male , Adult , Female , Volatile Organic Compounds/analysis , Desiccation/methods , Freeze Drying , Young Adult , Food Handling/methods
4.
Sci Rep ; 14(1): 12014, 2024 05 26.
Article in English | MEDLINE | ID: mdl-38797730

ABSTRACT

The present work investigates the quality and the chemical effects of dehydration, using a novel dehydration system based on an electromagnetic induction and low pressures technique, comparing it with the thermo-solar drying system. High oleic sunflower seeds, which are an important oil seed crop, were used due to the fact that they have a special place in the food industry. The seed samples were exposed to electromagnetic induction and low pressures by 0.5 and 1 h, then several chemical characterizations were carried out, in the electrophoresis study, it was found that most proteins in the hull were degraded or denatured, some of them were lost during the time in the thermosolar dryer while in kernel keeps 94.9% of the concentration in control proteins. Otherwise, the electromagnetic induction dryer did not lose the most of proteins in the kernel keeping 99.1% in 0.5 h and 98.4% in 1 h, just degrading its concentration. Germination viability results did not show changes after 0.5 h in the electromagnetic fields, but they decreased in 1 h from 66 to 40% until the thermosolar method fell to 24% in 4 h, both analysis results change proportionally with the treatment time and moisture content and the amount of the oxygen.


Subject(s)
Germination , Helianthus , Seeds , Helianthus/chemistry , Seeds/chemistry , Germination/drug effects , Plant Proteins , Desiccation/methods , Water/chemistry , Dehydration
5.
Food Chem ; 453: 139558, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38781892

ABSTRACT

The effect of moisture content changes during drying processing on the appearance of sea buckthorn was studied. Using computer vision methods and various image processing methods to collect and analyze images during the drying process of sea buckthorn fruit. Sea buckthorn is dried in a drying oven at a temperature of 65 °C and Level 1 wind speed conditions. The images of the entire drying process of sea buckthorn fruit were collected at 30-min intervals. Deep mining and transformation of image information through various image processing methods. By calibrating and modeling the color components, real-time online detection of the moisture content of sea buckthorn fruit can be achieved. After modeling, this article attempted to use LSTM (Long Short Term Memory) to predict the appearance of sea buckthorn fruit with supercritical moisture content. Different agricultural products adapt to different color spaces, but after standard modeling with a certain amount of data, applying color components to detect moisture content is a very good method.


Subject(s)
Fruit , Hippophae , Image Processing, Computer-Assisted , Water , Hippophae/chemistry , Fruit/chemistry , Water/analysis , Water/chemistry , Image Processing, Computer-Assisted/methods , Color , Desiccation/methods
6.
Waste Manag ; 183: 278-289, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38781819

ABSTRACT

Convective drying is an effective method for reducing the moisture content of the sludge. Fewer studies have discussed the effect of sludge physicochemical properties on drying compared to air parameters. Eleven types of sludge were collected, and ultimate analysis, proximate analysis, and heat value analysis were performed. Meanwhile, the maximum drying rate (umax) of sludge convection drying at 70 °C was determined. The results showed that the cumulative variance contribution of the two extracted principal components (PCs) was 92.5 %. Then, a regression model of umax was developed based on the extracted PCs. The coefficient of determination of this model was 0.788, and the difference was statistically significant, with a negative correlation between umax and PC2. Further, the principal component score plot enabled the traceability of the integrated sludge, and based on this classification results, the drying characteristics of various types of sludge were discussed, and a high correlation (R2 = 0.9590) between the initial moisture content of sludge and umax was found. Mathematical models between sludge physicochemical properties and drying characteristics can be effectively developed from both sludge composition and type scales. This exploration deepened the knowledge of sludge drying and facilitates the prediction of drying rate.


Subject(s)
Desiccation , Sewage , Sewage/chemistry , Sewage/analysis , Desiccation/methods , Models, Theoretical , Waste Disposal, Fluid/methods
7.
Int J Med Mushrooms ; 26(6): 69-80, 2024.
Article in English | MEDLINE | ID: mdl-38801088

ABSTRACT

Although mushrooms are widely used for nutraceutical purposes, post-harvest storage is extremely crucial to avoid degradation and quality reduction in fresh mushrooms. Drying treatments are commonly applied in the mushroom industry to extend shelf life. Drying may cause instability of food quality and antioxidant parameters due to unsuitable drying temperatures. Therefore, in this research a common set of temperatures typically used by mushroom growers was applied (50°C, 60°C, 70°C) to Ganoderma lucidum, Lignosus rhinocerus, Auricularia auricula-judae, and Schizophyllum commune to analyze color changes and concentration of elements and phenolic compounds. Mushrooms were chosen based on commonly cultivated species among growers. L. rhinocerus dried at 70°C indicated significantly lower L* (78.90) compared to control (89.94). Element retention in each sample differed depending on the species. The amount of calcium was significantly higher in L. rhinocerus (11,893 mg/kg) and A. auricula-judae (10,941.81 mg/kg) when dried at 60°C. Drying at 70°C resulted in significantly higher magnesium for Sch. commune (13,054.38 mg/kg) and A. auricula-judae (80,56.92 mg/kg). Higher levels of iron and manganese were observed in Sch. commune dried at 70°C (216.54 and 10.02 mg/kg, respectively). Gallic acid had significantly higher retention at 50°C for A. auricula-judae and G. lucidum. Meanwhile, L. rhinocerus and Sch. commune showed significantly higher gallic acid at 60°C. It is evident from these results that temperature does affect the food quality and elemental parameters during the drying process for each mushroom.


Subject(s)
Agaricales , Color , Desiccation , Phenols , Temperature , Phenols/analysis , Phenols/chemistry , Agaricales/chemistry , Desiccation/methods , Antioxidants/analysis , Antioxidants/chemistry
8.
Pharm Biol ; 62(1): 436-446, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38755954

ABSTRACT

CONTEXT: Nine steaming and nine drying is a traditional Chinese medicine (TCM) processing method and it is widely used for processing tonifying herbs. Modern research reveals that the repeated steaming and drying process varies the composition and clinical efficacy of TCM. OBJECTIVE: This paper analyzes and explores the historical evolution, research progress, development strategies, and problems encountered in the nine steaming and nine drying process so as to provide a reasonable explanation for this method. METHODS: English and Chinese literature from 1986 to 2023 was collected from databases including Web of Science, PubMed, Elsevier, Chinese Pharmacopoeia 2020 (CP), and CNKI (Chinese). Nine steaming and nine drying, processing, TCM and pharmacological activity were used as the key words. RESULTS: Nine steaming and nine drying has undergone thousands of years of clinical practice. Under specific processing conditions of nine steaming and nine drying, the ingredients of the TCM have significant changes, which in turn altered clinical applications. CONCLUSIONS: This review provides sufficient evidence to prove the rationality and scientific value of nine steaming and nine drying and puts forward a development direction for future research.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Medicine, Chinese Traditional/history , Medicine, Chinese Traditional/methods , Drugs, Chinese Herbal/history , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Humans , Desiccation/methods , Steam , History, 20th Century , History, 21st Century , Drug Compounding/history
9.
Environ Sci Pollut Res Int ; 31(23): 34214-34233, 2024 May.
Article in English | MEDLINE | ID: mdl-38700773

ABSTRACT

A direct flow evacuated tube solar dryer (DF_ETSD), a novel drying system, was used for drying pre-treated okra (Abelmoschus esculentus). The performance of DF_ETSD was analysed by determining thermal profiling, dryer and collector efficiency hourly. The maximum 3-day average ambient temperature, collector outlet temperature and solar radiation were 35.6 °C, 66.4 °C and 976 W m-2 respectively. The collector efficiency increased as solar radiation increased over time due to a higher temperature difference between the collector outlet and ambient temperature. The maximum collector and dryer efficiency observed were 30.19% and 21.47%, respectively. A pre-treatment of okra was done in hot water at 70, 80 and 90 °C for 5 min. Okra samples were dried from an initial moisture content of 87.42 ± 1.49% (wb) to a final value of 10.77 ± 1.03% (wb) in 9 h. The pre-treatment temperature of 80 °C is suitable for maximum drying rate, colour retention and rehydration ratio and minimum water activity, which signifies the longer shelf-life of okra. Midilli and Kucuk model was best fitted (highest R2, lowest χ2 and RMSE) for the control and samples pre-treated at 80 °C; however, Verma model was suitably fitted for the sample pre-treated at 70 and 90 °C. The payback period of DF_ETSD was found to be 1.27 years. Environmental analysis shows the CO2 emission and net CO2 mitigation ranged between 1.24 and 18.65 t and 9.86 and 154.05 t respectively for different selected lifecycles of the dryer. Due to its environmental sustainability and low payback period, the presented drying system is recommended for okra and other fruits and vegetables.


Subject(s)
Abelmoschus , Abelmoschus/chemistry , Temperature , Desiccation/methods , Sunlight
10.
AAPS PharmSciTech ; 25(5): 99, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714608

ABSTRACT

Hypericum perforatum (HP) contains valuable and beneficial bioactive compounds that have been used to treat or prevent several illnesses. Encapsulation technology offers protection of the active compounds and facilitates to expose of the biologically active compounds in a controlled mechanism. Microcapsulation of the hydroalcoholic gum arabic and maltodextrin have hot been used as wall materials in the encapsulation of HP extract. Therefore, the optimum microencapsulation parameters of Hypericum perforatum (HP) hydroalcoholic extract were determined using response surface methodology (RSM) for the evaluation of HP extract. Three levels of three independent variables were screened using the one-way ANOVA. Five responses were monitored, including total phenolic content (TPC), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), carr index (CI), hausner ratio (HR), and solubility. Optimum drying conditions for Hypericum perforatum microcapsules (HPMs) were determined: 180 °C for inlet air temperature, 1.04/1 for ratio of maltodextrin to gum arabic (w/w), and 1.98/1 for coating to core material ratio (w/w). TPC, antioxidant activity, CI, HR, and solubility values were specified as 316.531 (mg/g GAE), 81.912%, 6.074, 1.066, and 35.017%, respectively, under the optimized conditions. The major compounds of Hypericum perforatum (hypericin and pseudohypericin) extract were determined as 4.19 µg/g microcapsule and 15.09 µg/g microcapsule, respectively. Scanning electron microscope (SEM) analysis revealed that the mean particle diameter of the HPMs was 20.36 µm. Based on these results, microencapsulation of HPMs by spray drying is a viable technique which protects the bioactive compounds of HP leaves, facilitating its application in the pharmaceutical, cosmetic, and food industries.


Subject(s)
Antioxidants , Capsules , Drug Compounding , Gum Arabic , Hypericum , Plant Extracts , Polysaccharides , Solubility , Hypericum/chemistry , Plant Extracts/chemistry , Drug Compounding/methods , Gum Arabic/chemistry , Polysaccharides/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Capsules/chemistry , Spray Drying , Phenols/chemistry , Desiccation/methods
11.
J Microbiol Biotechnol ; 34(5): 1051-1058, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803106

ABSTRACT

This study investigated the impact of inulin (INL) on viability of L. plantarum D-2 (LPD2) by encapsulation through spray drying (SD) and its commercialization potential to alternative of conventional wall material maltodextrin (MD). LPD2, derived from sea tangle (Saccharina japonica) kimchi, is probiotics exhibiting significant attributes like cholesterol reduction, antioxidant properties, and resilience to acidic and bile environments. To enhance storage viability and stability of LPD2, encapsulation was applied by SD technology. The optimum encapsulation condition with MD was 10% MD concentration (MD10) and inlet temperature (96°C). The optimum concentration ratio of MD and INL was 7:3 (INL3) for alternative of MD with similar encapsulation yield and viability of LPD2. Viability of LPD2 with INL3 exhibited almost 8% higher than that with MD10 after 50 days storage at 25°C. Physicochemical characteristics of the encapsulated LPD2 (ELPD2) with MD10 and INL3 had no significant different between flowability and morphology. But, ELPD2 with INL3 had lower water solubility and higher water absorption resulting in extension of viability of LPD2 compared to that with MD10. The comprehensive study results showed that there was no significant difference in the encapsulation yield and physicochemical properties between ELPD2 with MD10 and INL3, except of water solubility index (WSI) and water absorption index (WAI). INL have the potential to substitute of MD as a commercial wall material with prebiotic functionality to enhance the viability of LPD2 by encapsulation.


Subject(s)
Inulin , Lactobacillus plantarum , Microbial Viability , Polysaccharides , Prebiotics , Spray Drying , Inulin/chemistry , Inulin/pharmacology , Polysaccharides/chemistry , Microbial Viability/drug effects , Lactobacillus plantarum/growth & development , Lactobacillus plantarum/metabolism , Lactobacillus plantarum/chemistry , Probiotics , Temperature , Desiccation/methods , Solubility
12.
PLoS One ; 19(5): e0302585, 2024.
Article in English | MEDLINE | ID: mdl-38820449

ABSTRACT

The article is devoted to investigation of energy-efficient moisture removal from capillary-porous materials. Moisture is removed by dispersion at collapse of cylindrical cavitation bubbles, formed by ultrasonic vibrations in the capillaries of the material. Mathematical model, which allowed to investigate the mechanism of moisture dispersion, has been developed. Necessity of realization of cavitation bubble full life cycle in capillary (slow growth, rapid expansion with deformation, collapse) was found. An optimal range of sound pressure levels from 150 dB ("critical level" at which dispersion of water from capillary starts) up to 170 dB (dispersion productivity growth stops due to cavitation bubbles reaching maximum size equal to diameter of capillary) was determined. It is shown that the size of the dewatered sample for maximum drying efficiency should correspond to the ultrasonic wavelength in air. Ultrasonic dispersion of liquid during drying was confirmed experimentally. It is found that for significant reduction of drying time (up to 50% and more) it is necessary to affect in the range of 165-170 dB. And the materials to be dried must be placed as particles or layers having dimensions or thicknesses corresponding to the length of the ultrasonic wave in air. The implementation of ultrasonic drying, on the example of food products (beets) provided a reduction in drying time of 1.9 times, while reducing energy costs by 1.7 times in comparison with convective drying.


Subject(s)
Water , Water/chemistry , Desiccation/methods , Computer Simulation , Ultrasonics/methods , Models, Theoretical , Ultrasonic Waves , Porosity
13.
Int J Pharm ; 658: 124191, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38701909

ABSTRACT

Conventional spray drying using a 2-fluid nozzle forms matrix microparticles, where drug is distributed throughout the particle and may not effectively mask taste. In contrast, spray drying using a 3-fluid nozzle has been reported to encapsulate material. The objective of this study was to spray dry Eudragit® E-PO (EE) with acetaminophen (APAP), a water-soluble model drug with a bitter taste, using 2- and 3-fluid nozzles for taste masking. Spray drying EE with APAP, however, resulted in yields of ≤ 13 %, irrespective of nozzle configuration. Yields improved when Eudragit® L 100-55 (EL) or Methocel® E6 (HPMC) was used in the inner fluid stream of the 3-fluid nozzle or in place of EE for the 2-fluid nozzle. Drug release from microparticles prepared with the 2-fluid nozzle was relatively rapid. Using EE in the outer fluid stream of the 3-fluid nozzle resulted in comparatively slower drug release, although drug release was observed, indicating that encapsulation was incomplete. Results from these studies also show that miscible polymers used in the two fluid streams mix during the spray drying process. In addition, findings from this study indicate that the polymer used in the inner fluid stream can impact drug release.


Subject(s)
Acetaminophen , Drug Liberation , Polymethacrylic Acids , Taste , Acetaminophen/chemistry , Acetaminophen/administration & dosage , Polymethacrylic Acids/chemistry , Spray Drying , Drug Compounding/methods , Hypromellose Derivatives/chemistry , Particle Size , Solubility , Desiccation/methods , Acrylic Resins
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124299, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38640629

ABSTRACT

Solar dehydration processes, implemented with NIR sensors, were studied. The research plan was divided into phases to achieve specific objectives. Phase 1: laboratory tests on micro plants; phase 2: scale transposition tests on small-sized plants - pilot scale; phase 3: tests on commercial systems already in use by Italian SMEs. The realisation of the scheduled activities started with the design, programming, and positioning of NIR sensor for data collection and configuration optimization. NIR spectra were collected in reflectance mode (900-1700 nm) using the MicroNIR1700™ or the MicroNIR On-site W™ (VIAVI Solutions Italia S.r.L., Monza, Italy) portable spectrometers with the MicroNIR Pro ES 1700 software. Spectra were acquired automatically throughout the process by placing the NIR probe over a sample slice, positioned on the intermediate shelf. The probe was thermally insulated to avoid temperature variations. The spectra were first transformed by converting reflectance to absorbance; then the second derivative Savitzky-Golay filter (second order polynomial fit and 21 points) and multiplicative scatter correction were applied to remove potential scatter effects. Aquagrams were calculated from the spectral data. The experiments were carried out with a micro-drying system (45x45x45 cm), and a pilot scale plant available at CREA.IT (Milan). Then, the transfer of the selected configuration was realised using a commercial plant already active in a farm of Pavia area. Different food matrices were tested (pineapple, apple, melon, eggplant, onion). NIR data processing by multivariate analysis was made to prove the reliability of the aquaphotomics approach in detecting the actual end of the drying process. The evaluation of the potential development of dedicated App, easy to consult, to be made available through integration on virtual platform was finally computed.


Subject(s)
Spectroscopy, Near-Infrared , Vegetables , Spectroscopy, Near-Infrared/methods , Vegetables/chemistry , Farms , Desiccation/methods
15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 625-633, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621866

ABSTRACT

Extracts are important intermediates in the production of traditional Chinese medicines preparations. The drying effect of extracts will directly affect the subsequent production process and the quality of the preparation. To meet the requirements of high drug loading, short time consumption, and simple production process of personalized traditional Chinese medicine preparations, this study explored the application of multi-program microwave vacuum drying process in the extract drying of personalized traditional Chinese medicine preparations. The influencing factors of microwave vacuum drying process were investigated for 5 excipients and 40 prescriptions. Taking the feasibility of drying, drying rate, drying time, and dried extract status as indicators, this study investigated the feeding requirements of microwave vacuum drying. With the dried extract status as the evaluation indicator, the three drying programs(A, B, and C) were compared to obtain the optimal drying condition. The experimental results showed that the optimal feeding conditions for microwave vacuum drying were material layer thickness of 2 cm and C program(a total of 7 drying processes), which solved the problem of easy scorching in microwave drying with process management. Furthermore, the preset moisture content of the dried extract in microwave drying should be 4%-5%, so that the dried extract of traditional Chinese medicine preparation had uniform quality, complete drying, and no scorching. This study lays a foundation for the application of microwave drying in the production of traditional Chinese medicine preparations, promoting the high-quality development of personalized traditional Chinese medicine preparations.


Subject(s)
Medicine, Chinese Traditional , Microwaves , Vacuum , Desiccation/methods , Plant Extracts
16.
Waste Manag ; 182: 237-249, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38677141

ABSTRACT

The effectiveness of dehydration and utilization processes for citric acid dewatered sludge is hampered by its high concentrations of polysaccharides, proteins, and water-binding properties of microbial extracellular polymers (EPS). This research explores the efficacy and mechanisms involved in extracting water from this type of sludge using biological drying technology, with varying rates of ventilation. Especially pertinent was the use of low ventilation rates as control variables. Our results suggest that a scheduled intermittent ventilation at lower rates allows for the most efficient removal of water, achieving a rate of 41.71 % within eight days, according to the zero-order kinetic model. Remarkably, the peak temperature registered was 60 °C, reaching this threshold in just 0.1 days and maintaining high temperatures for approximately 5.9 days. Component analysis of organic matter illustrated a preferential degradation process for lipids under these ventilation conditions which is pivotal for releasing and transforming bound water for efficient extraction, as well as facilitating the breakdown of easily hydrolysable materials. Further, polysaccharide/protein (EPS) decomposition contributed to water removal, though less significantly. The periodic ventilation strategy allowed for the maximum cumulative temperature to be sustained, demonstrating superior efficiency in harnessing bio-generated heat (82.77 % for water evaporation), resulting in dry sludge suitable for self-sustained combustion at relatively low cost ($26.61/t). Highlighted by this study is the considerable potential of energy-efficient ventilation methods in the biological drying treatment of citric acid fermented sludge and similar industrial waste materials.


Subject(s)
Citric Acid , Desiccation , Sewage , Desiccation/methods , Waste Disposal, Fluid/methods , Water
17.
Food Chem ; 449: 138957, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38608600

ABSTRACT

The effects of microwave drying (MD), hot air drying (HAD), vacuum hot air drying (VD), and vacuum freeze drying (VFD) on the volatile profiles of Penaeus vannamei were investigated. A total of 89 and 94 volatile compounds were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and monolithic material sorptive extraction gas chromatography-mass spectrometry (MMSE-GC-MS), respectively. Orthogonal partial least squares-discriminant analysis (OPLS-DA) and variable influence on projection (VIP) models were utilized to select characteristic volatiles and key marker compounds (e.g., octanal, 1-octen-3-ol, 2-methyl-butanal, 2-ethyl-furan, and trimethyl-pyrazine) to discriminate among four drying methods. Based on synthesis of odor descriptions and sensory evaluation, it was found that P. vannamei via MD, HAD, and VD greatly reduced the fishy and generated roasted, fatty, and smoked odors. This study systematically analyzed the aroma characteristics of four traditional dried P. vannamei products, which may provide theoretical guidance for industrial production.


Subject(s)
Gas Chromatography-Mass Spectrometry , Odorants , Penaeidae , Solid Phase Microextraction , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/isolation & purification , Solid Phase Microextraction/methods , Odorants/analysis , Penaeidae/chemistry , Humans , Taste , Desiccation/methods
18.
Int J Biol Macromol ; 267(Pt 1): 131470, 2024 May.
Article in English | MEDLINE | ID: mdl-38599425

ABSTRACT

Hot air (HA) drying caused quality damage of grains with long treatment time. Radio frequency (RF) heating as an emerging technology was applied to improve drying quality of cereals effectively. The effects of HA-RF drying (50 °C, 70 °C, 90 °C) of corn kernels on the morphology, structure, and physicochemical properties of starch were investigated and compared with HA drying. The surface of treated starch became rough, along with fragments and pores. Drying treatments increased the amylose content from 10.59 % to 23.88 % and the residual protein content of starch from 0.58 % to 1.23 %, and reduced the crystallinity from 31.95 % to 17.15 % and short-range order structures of starch from 0.918 to 0.868. The change of structures in turn resulted in the increase of pasting viscosity, gelatinization temperature, storage modulus and loss modulus. Furthermore, the HA-RF dried starch displayed stronger thermal stability, higher gelatinization degree and better gelation properties than the HA-treated starch at the same temperature. The data proved that the synergistic effects of HA and RF were more effective in modulating the starch structure and improving the functional characteristics of corn starch. This paper would like to provide potential reference for better application of HA-RF technologies to corn.


Subject(s)
Hot Temperature , Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Amylose/chemistry , Radio Waves , Viscosity , Desiccation/methods , Air
19.
Int J Pharm ; 657: 124135, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38643808

ABSTRACT

Pharmaceutical twin-screw wet granulation is a multifaceted and intricate process pivotal to drug product development. Accurate modeling of this process is indispensable for optimizing manufacturing parameters and ensuring product quality. The fluid bed dryer, an integral component of this granulation process, significantly influences the granular critical quality attributes. This study builds upon prior research by integrating experimental findings on granule segregation during fluid bed drying into an existing compartmental model, enhancing its predictive capabilities. An additional model layer on granule segregation behavior is composed and integrated into the existing model structure in this study. The added model compartment describes probability distributions on the vertical position of granules within each granule size class considered. To beware of overfitting, predictions of both the moisture content after drying and the granule bed temperature throughout drying are discussed in this study relative to experimental data from earlier published studies. These independent analyses demonstrated a marked improvement in prediction accuracy compared to earlier published model structures. The refined model accurately predicts the residual moisture content after drying for an untrained formulation. Moreover, it simultaneously makes accurate predictions of the granular bed temperature, which emboldens its structural correctness. This advancement makes it a powerful tool for predicting the behavior of the pharmaceutical fluid bed drying, which holds significant promise to facilitate pharmaceutical product development.


Subject(s)
Desiccation , Temperature , Desiccation/methods , Particle Size , Drug Compounding/methods , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Models, Theoretical , Excipients/chemistry
20.
Food Chem ; 450: 139287, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640541

ABSTRACT

The effects of ultrasonic pretreatment on the drying characteristics and microstructure of strawberry slices were investigated. The rehydration characteristics of freeze-dried products, which were pre-frozen at -20 °C and - 80 °C were explored, with a focus on water mobility and distribution. The ultrasonic pretreatment significantly increased the water mobility of the strawberry slices, resulting in a reduction in their water content. However, the application of ultrasound significantly decreased the rehydration speed, indicating a lower moisture absorption capacity in the pretreated sample. The micrographs revealed that the structure of the tissue was more uniform after ultrasonic treatment, and water loss was accelerated. In addition, the contact angle measurements showed that the samples were more hydrophobic after ultrasonic treatment, and the eutectic temperature and fold point of the samples increased. Therefore, this study found that ultrasonic-assisted freeze vacuum drying technology effectively reduces hygroscopicity, improves product storage, and represents a potential method for dried production.


Subject(s)
Fragaria , Freeze Drying , Fruit , Water , Fragaria/chemistry , Water/chemistry , Fruit/chemistry , Ultrasonics , Desiccation/methods , Desiccation/instrumentation , Hydrophobic and Hydrophilic Interactions
SELECTION OF CITATIONS
SEARCH DETAIL
...