Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.460
Filter
2.
J Cell Biol ; 223(4)2024 04 01.
Article in English | MEDLINE | ID: mdl-38477878

ABSTRACT

Glycosylation is essential to facilitate cell-cell adhesion and differentiation. We determined the role of the dolichol phosphate mannosyltransferase (DPM) complex, a central regulator for glycosylation, for desmosomal adhesive function and epidermal differentiation. Deletion of the key molecule of the DPM complex, DPM1, in human keratinocytes resulted in weakened cell-cell adhesion, impaired localization of the desmosomal components desmoplakin and desmoglein-2, and led to cytoskeletal organization defects in human keratinocytes. In a 3D organotypic human epidermis model, loss of DPM1 caused impaired differentiation with abnormally increased cornification, reduced thickness of non-corneal layers, and formation of intercellular gaps in the epidermis. Using proteomic approaches, SERPINB5 was identified as a DPM1-dependent interaction partner of desmoplakin. Mechanistically, SERPINB5 reduced desmoplakin phosphorylation at serine 176, which was required for strong intercellular adhesion. These results uncover a novel role of the DPM complex in connecting desmosomal adhesion with epidermal differentiation.


Subject(s)
Keratinocytes , Mannosyltransferases , Proteomics , Serine Proteinase Inhibitors , Humans , Cell Adhesion , Cell Differentiation , Desmoplakins , Dolichols , Phosphates , Serine Proteinase Inhibitors/metabolism , Mannosyltransferases/metabolism
3.
Exp Dermatol ; 33(3): e15046, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38509711

ABSTRACT

Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis. Here, we report a heterozygous DSP variant that was not previously described, NM_004415.4:c.3337C>T (NM_004415.4(NP_004406.2):p.(Arg1113*)) in a patient with PPK, WH and ACM. RNA and protein analysis revealed ~50% reduction of DSP mRNA and protein expression. Patient's keratinocytes showed fragile cell-cell connections and perinuclear retracted intermediate filaments. Epidermal growth factor receptor (EGFR) is a transmembrane protein expressed in the basal epidermal layer involved in proliferation and differentiation, processes that are disrupted in the development of PPK, and in the regulation of the desmosome. In skin of the abovementioned patient, evident EGFR upregulation was observed. EGFR inhibition in patient's keratinocytes strongly increased DSP expression at the plasma membrane, improved intermediate filament connection with the membrane edges and reduced the cell-cell fragility. This cell phenotypic recovery was due to a translocation of DSP to the plasma membrane together with an increased number of desmosomes. These results indicate a therapeutic potential of EGFR inhibitors for disorders caused by DSP haploinsufficiency.


Subject(s)
Desmoplakins , ErbB Receptors , Hair Diseases , Keratoderma, Palmoplantar , Humans , Desmoplakins/genetics , Desmoplakins/metabolism , Epidermis/metabolism , ErbB Receptors/genetics , ErbB Receptors/metabolism , Hair Diseases/genetics , Keratinocytes/metabolism , Keratoderma, Palmoplantar/genetics , Phenotype , Skin/metabolism
5.
Mol Cell Proteomics ; 23(3): 100735, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342409

ABSTRACT

Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.


Subject(s)
Desmosomes , Plakophilins , Animals , Dogs , Desmosomes/metabolism , Cell Membrane/metabolism , Plakophilins/metabolism , Madin Darby Canine Kidney Cells , Signal Transduction , Cell Adhesion , Desmoplakins/metabolism
6.
BMJ Case Rep ; 17(2)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383124

ABSTRACT

Arrhythmogenic cardiomyopathy is a non-ischaemic cardiomyopathy characterised by the presence of myocardial dysfunction and inherited conduction disease that predisposes patients to malignant ventricular arrhythmias and sudden cardiac death. There is a growing awareness of the diverse phenotypic presentation of arrhythmogenic cardiomyopathy, which may demonstrate preferential involvement of the left, right or both ventricles. A subset of arrhythmogenic cardiomyopathy may be due to mutations of desmosomes, intercellular junctions of the myocardium that promote structural and electrical integrity. Mutations of desmoplakin, encoded by the DSP gene and a critical constituent protein of desmosomes, have been implicated in the onset of arrhythmogenic cardiomyopathy. We present a structured case report of desmoplakin arrhythmogenic cardiomyopathy secondary to novel heterozygous DSP mutations (c.1061T>C and c.795G>C) manifesting as early onset non-ischaemic cardiomyopathy and recurrent ventricular tachycardia refractory to multiple modalities of therapy, including oral antiarrhythmics, cardiac ablation and bilateral sympathectomy, as well as frequent implantable cardioverter-defibrillator discharges.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Tachycardia, Ventricular , Humans , Desmoplakins/genetics , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Cardiomyopathies/complications , Cardiomyopathies/genetics , Cardiomyopathies/therapy , Myocardium/pathology , Tachycardia, Ventricular/genetics , Tachycardia, Ventricular/therapy
7.
JACC Clin Electrophysiol ; 10(3): 502-511, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206261

ABSTRACT

BACKGROUND: Desmoplakin (DSP) pathogenic variants are rare causes of arrhythmogenic cardiomyopathy and often involve the right and left ventricles. Ventricular tachycardia (VT) ablations may be required in these patients, but procedural characteristics have not been reported. OBJECTIVES: In this study, the authors sought to report a multicenter experience of VT ablation in patients with DSP pathogenic variants. METHODS: VT ablations performed in patients with known DSP pathogenic variants were analyzed across 6 centers in 3 countries. Patient characteristics and acute and long-term procedural outcomes were reported. RESULTS: A total of 20 patients (13 men, median age 43 years [Q1-Q3: 41.5-53.0 years], left ventricular ejection fraction 43.0% [Q1-Q3: 41.5%-53.0%], 11 previous failed ablations) were referred for VT ablation procedures. All patients had symptomatic VTs, with ICD therapy in 19 patients. Epicardial procedures were performed in 16 of the 20 patients. VT target sites were located in the right ventricular (RV) endocardium (n = 11), the RV epicardium (n = 4), the left ventricular (LV) endocardium (n = 2) and the LV epicardium (n = 7). In 3 patients, the VT target sites were in close proximity to coronary arteries, limiting ablation. During follow-up, VTs recurred in 11 patients, and repeated ablations were performed in 9 patients. Allowing for multiple procedures, 19 of the 20 patients remained free of VT recurrence after a median follow-up of 18 months [Q1-Q3: 5-60 months]. CONCLUSIONS: Patients with DSP cardiomyopathy often have biventricular involvement, and ablation procedures often require ablation in both ventricles and the epicardium. Recurrences are not uncommon, and the pathologic substrate can be located in close proximity to epicardial coronary arteries, limiting the success rate of ablations.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Catheter Ablation , Tachycardia, Ventricular , Male , Humans , Adult , Desmoplakins/genetics , Stroke Volume , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/surgery , Ventricular Function, Left , Cardiomyopathies/complications , Cardiomyopathies/surgery , Catheter Ablation/methods
8.
JACC Clin Electrophysiol ; 10(3): 487-498, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38206263

ABSTRACT

BACKGROUND: Desmoplakin (DSP) pathogenic/likely pathogenic (P/LP) variants are associated with malignant phenotypes of arrhythmogenic cardiomyopathy (DSP-ACM). Reports of outcomes after ventricular tachycardia (VT) ablation in DSP-ACM are scarce. OBJECTIVES: In this study, the authors sought to report on long-term outcomes of VT ablation in DSP-ACM. METHODS: Patients with P/LP DSP variants at 9 institutions undergoing VT ablation were included. Demographic, clinical, and instrumental data as well as all ventricular arrhythmia (VA) events were collected. Sustained VAs after the index procedure were the primary outcome. A per-patient before and after ablation comparison of rates of VA episodes per year was performed as well. RESULTS: Twenty-four DSP-ACM patients (39.3 ± 12.1 years of age, 62.5% male, median 6,116 [Q1-Q3: 3,362-7,760] premature ventricular complexes [PVCs] per 24 hours, median 4 [Q1-Q3: 2-11] previous VA episodes per patient at ablation) were included. Index procedure was most commonly endocardial/epicardial (19/24) The endocardium of the right ventricle (RV), the left ventricle (LV), or both ventricles were mapped in 8 (33.3%), 9 (37.5%), and 7 (29.2%) cases, respectively. Low voltage potentials were found in 10 of 15 patients in the RV and 11 of 16 in the LV. Endocardial ablation was performed in 18 patients (75.0%). Epicardial mapping in 19 patients (79.2%) identified low voltage potentials in 17, and 16 received epicardial ablation. Over the following 2.9 years (Q1-Q3: 1.8-5.5 years), 13 patients (54.2%) experienced VA recurrences. A significant reduction in per-patient event/year before and after ablation was observed (1.4 [Q1-Q3: 0.5-2.4] to 0.1 [Q1-Q3: 0.0-0.4]; P = 0.009). Two patients needed heart transplantation, and 4 died (3 of heart failure and 1 noncardiac death). CONCLUSIONS: VT ablation in DSP-ACM is effective in reducing the VA burden of the disease, but recurrences are common. Most VT circuits are epicardial, with both LV and RV low voltage abnormalities. Heart failure complicates clinical course and is an important cause of mortality.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Catheter Ablation , Heart Failure , Tachycardia, Ventricular , Humans , Male , Middle Aged , Female , Desmoplakins , Treatment Outcome , Arrhythmogenic Right Ventricular Dysplasia/complications , Arrhythmogenic Right Ventricular Dysplasia/surgery , Cardiomyopathies/etiology , Catheter Ablation/methods , Heart Failure/etiology
9.
J Invest Dermatol ; 144(2): 284-295.e16, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37716648

ABSTRACT

Desmosomes are dynamic complex protein structures involved in cellular adhesion. Disruption of these structures by loss-of-function variants in desmosomal genes leads to a variety of skin- and heart-related phenotypes. In this study, we report TUFT1 as a desmosome-associated protein, implicated in epidermal integrity. In two siblings with mild skin fragility, woolly hair, and mild palmoplantar keratoderma but without a cardiac phenotype, we identified a homozygous splice-site variant in the TUFT1 gene, leading to aberrant mRNA splicing and loss of TUFT1 protein. Patients' skin and keratinocytes showed acantholysis, perinuclear retraction of intermediate filaments, and reduced mechanical stress resistance. Immunolabeling and transfection studies showed that TUFT1 is positioned within the desmosome and that its location is dependent on the presence of the desmoplakin carboxy-terminal tail. A Tuft1-knockout mouse model mimicked the patients' phenotypes. Altogether, this study reveals TUFT1 as a desmosome-associated protein, whose absence causes skin fragility, woolly hair, and palmoplantar keratoderma.


Subject(s)
Hair Diseases , Keratoderma, Palmoplantar , Skin Abnormalities , Animals , Humans , Mice , Desmoplakins/genetics , Desmoplakins/metabolism , Desmosomes/metabolism , Hair/metabolism , Hair Diseases/genetics , Hair Diseases/metabolism , Keratoderma, Palmoplantar/genetics , Keratoderma, Palmoplantar/metabolism , Skin/metabolism , Skin Abnormalities/metabolism
10.
J Cutan Pathol ; 51(1): 76-82, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37691139

ABSTRACT

Cutaneous graft versus host disease (cGVHD) has substantial clinical and histopathologic overlap with erythema multiforme (EM), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). This overlap can make it difficult to distinguish these disorders in patients who have received hematopoietic transplants. We sought to evaluate the utility of Dp I/II immunohistochemical stain in differentiating EM/SJS/TEN and cGVHD in a large cohort. Skin biopsy specimens from patients with cGVHD (n = 58) and EM/SJS/TEN (n = 60) were evaluated for Dp I/II expression by immunohistochemistry. We found a statistically significant difference in Dp I/II staining between cGVHD (all grades) and EM/SJS/TEN (mean scores 1.62 and 2.14, respectively; p < 0.005), as well as between Grades 2 + 3 cGVHD and EM/SJS/TEN (mean scores 2.26 and 1.62, respectively; p < 0.005), while we did not find a significant difference between Grade 4 cGVHD and EM/SJS/TEN (mean scores 1.69 and 1.62, respectively; p = 0.71). Dp I/II immunostain may be useful for differentiating EM/SJS/TEN from Grade 2 and Grade 3 cGVHD, especially in clinically ambiguous cases without extracutaneous GVHD.


Subject(s)
Erythema Multiforme , Graft vs Host Disease , Stevens-Johnson Syndrome , Humans , Stevens-Johnson Syndrome/diagnosis , Stevens-Johnson Syndrome/pathology , Desmoplakins , Erythema Multiforme/diagnosis , Erythema Multiforme/pathology , Graft vs Host Disease/diagnosis , Staining and Labeling
11.
Int Immunopharmacol ; 124(Pt A): 110867, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37660597

ABSTRACT

Keratin 7 (Krt7) is a member of the keratin family and is primarily involved in cytoskeleton composition. It has been shown that Krt7 is able to influence its own remodeling and interactions with other signaling molecules via phosphorylation at specific sites unique to Krt7. However, its molecular mechanism in acute lung injury (ALI) remains unclear. In this study, differential proteomics was used to analyze lung samples from the receptor for advanced glycation end products (RAGE)-deficient and (wild-type)WT-septic mice. We screened for the target protein Krt7 and identified Ser53 as the phosphorylation site using mass spectrometry (MS), and this phosphorylation further triggered the deformation and disintegration of Desmoplakin (Dsp), ultimately leading to epithelial barrier dysfunction. Furthermore, we demonstrated that in sepsis, mDia1/Cdc42/p38 MAPK signaling activation plays a role in septic lung injury. We also explored the mechanism of alveolar dysfunction of the Krt7-Dsp complex in the epithelial cell barrier. In summary, the present findings increase our understanding of the pathogenesis of septic acute lung injury.


Subject(s)
Acute Lung Injury , Sepsis , Animals , Mice , Acute Lung Injury/chemically induced , Desmoplakins/metabolism , Lung/pathology , Receptor for Advanced Glycation End Products/metabolism , Sepsis/metabolism
12.
Cardiovasc Res ; 119(17): 2712-2728, 2023 12 30.
Article in English | MEDLINE | ID: mdl-37625794

ABSTRACT

AIMS: Mutations in the DSP gene encoding desmoplakin, a constituent of the desmosomes at the intercalated discs (IDs), cause a phenotype that spans arrhythmogenic cardiomyopathy (ACM) and dilated cardiomyopathy. It is typically characterized by biventricular enlargement and dysfunction, myocardial fibrosis, cell death, and arrhythmias. The canonical wingless-related integration (cWNT)/ß-catenin pathway is implicated in the pathogenesis of ACM. The ß-catenin is an indispensable co-transcriptional regulator of the cWNT pathway and a member of the IDs. We genetically inactivated or activated ß-catenin to determine its role in the pathogenesis of desmoplakin cardiomyopathy. METHODS AND RESULTS: The Dsp gene was conditionally deleted in the 2-week-old post-natal cardiac myocytes using tamoxifen-inducible MerCreMer mice (Myh6-McmTam:DspF/F). The cWNT/ß-catenin pathway was markedly dysregulated in the Myh6-McmTam:DspF/F cardiac myocytes, as indicated by a concomitant increase in the expression of cWNT/ß-catenin target genes, isoforms of its key co-effectors, and the inhibitors of the pathway. The ß-catenin was inactivated or activated upon inducible deletion of its transcriptional or degron domain, respectively, in the Myh6-McmTam:DspF/F cardiac myocytes. Genetic inactivation of ß-catenin in the Myh6-McmTam:DspF/F mice prolonged survival, improved cardiac function, reduced cardiac arrhythmias, and attenuated myocardial fibrosis, and cell death caused by apoptosis, necroptosis, and pyroptosis, i.e. PANoptosis. In contrast, activation of ß-catenin had the opposite effects. The deleterious and the salubrious effects were independent of changes in the expression levels of the cWNT target genes and were associated with changes in several molecular and biological pathways, including cell death programmes. CONCLUSION: The cWNT/ß-catenin was markedly dysregulated in the cardiac myocytes in a mouse model of desmoplakin cardiomyopathy. Inactivation of ß-catenin attenuated, whereas its activation aggravated the phenotype, through multiple molecular pathways, independent of the cWNT transcriptional activity. Thus, suppression but not activation of ß-catenin might be beneficial in desmoplakin cardiomyopathy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Mice , Animals , Arrhythmogenic Right Ventricular Dysplasia/genetics , Desmoplakins/genetics , Desmoplakins/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Cardiomyopathies/genetics , Arrhythmias, Cardiac/metabolism , Fibrosis
13.
Sci Rep ; 13(1): 12720, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37543698

ABSTRACT

Critical for the maintenance of epidermal integrity and function are attachments between intermediate filaments (IF) and intercellular junctions called desmosomes. The desmosomal cytoplasmic plaque protein desmoplakin (DP) is essential for anchoring IF to the junction. DP-IF interactions are regulated by a phospho-regulatory motif within the DP C-terminus controlling keratinocyte intercellular adhesion. Here we identify the protein phosphatase 2A (PP2A)-B55α holoenzyme as the major serine/threonine phosphatase regulating DP's C-terminus and consequent intercellular adhesion. Using a combination of chemical and genetic approaches, we show that the PP2A-B55α holoenzyme interacts with DP at intercellular membranes in 2D- and 3D- epidermal models and human skin samples. Our experiments demonstrate that PP2A-B55α regulates the phosphorylation status of junctional DP and is required for maintaining strong desmosome-mediated intercellular adhesion. These data identify PP2A-B55α as part of a regulatory module capable of tuning intercellular adhesion strength and a candidate disease target in desmosome-related disorders of the skin and heart.


Subject(s)
Keratinocytes , Protein Phosphatase 2 , Humans , Desmoplakins , Holoenzymes/metabolism , Intercellular Junctions/metabolism , Keratinocytes/metabolism , Protein Phosphatase 2/metabolism
14.
Sci Adv ; 9(25): eadg3347, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37343090

ABSTRACT

Many mechanobiological processes that govern development and tissue homeostasis are regulated on the level of individual molecular linkages, and a number of proteins experiencing piconewton-scale forces in cells have been identified. However, under which conditions these force-bearing linkages become critical for a given mechanobiological process is often still unclear. Here, we established an approach to revealing the mechanical function of intracellular molecules using molecular optomechanics. When applied to the integrin activator talin, the technique provides direct evidence that its role as a mechanical linker is indispensable for the maintenance of cell-matrix adhesions and overall cell integrity. Applying the technique to desmoplakin shows that mechanical engagement of desmosomes to intermediate filaments is expendable under homeostatic conditions yet strictly required for preserving cell-cell adhesion under stress. These results reveal a central role of talin and desmoplakin as mechanical linkers in cell adhesion structures and demonstrate that molecular optomechanics is a powerful tool to investigate the molecular details of mechanobiological processes.


Subject(s)
Integrins , Talin , Talin/metabolism , Desmoplakins/genetics , Desmoplakins/metabolism , Cell Adhesion/physiology , Integrins/metabolism , Intermediate Filaments
15.
Anatol J Cardiol ; 27(8): 462-471, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37288855

ABSTRACT

BACKGROUND: While desmosomal junctions and gap junction remodeling are among the arrhythmogenic substrates, the fate of desmosomal and gap junctions in high-pacing-induced heart failure remains unclear. This aim of this study was to determine the fate of desmosomal junctions in high-pacing-induced heart failure. METHODS: Dogs were randomly divided into 2 equal groups, a high-pacing-induced heart failure model group (heart failure group, n = 6) and a sham operation group (control group, n = 6). Echocardiography and cardiac electrophysiological examination were performed. Cardiac tissue was analyzed by immunofluorescence and transmission electron microscopy. The expression of desmoplakin and desmoglein-2 proteins was detected by western blot. RESULTS: A significant decrease in ejection fraction, significant cardiac dilatation, diastolic and systolic dysfunction, and ventricular thinning occurred after 4 weeks in high-pacing-induced dog model of heart failure. Effective refractory period action potential duration at 90% repolarization was prolonged in the heart failure group. Immunofluorescence analysis and transmission electron microscopy demonstrated connexin-43 lateralization accompanies desmoglein-2 and desmoplakin remodeling in the heart failure group. Western blotting showed that the expression of desmoplakin and desmoglein-2 proteins was higher in heart failure than in normal tissue. CONCLUSION: Desmosome (desmoglein-2 and desmoplakin) redistribution and desmosome (desmoglein-2) overexpression accompanying connexin-43 lateralization were parts of a complex remodeling in high-pacing-induced heart failure.


Subject(s)
Heart Failure , Dogs , Animals , Desmoplakins , Heart , Arrhythmias, Cardiac , Desmogleins , Cardiac Pacing, Artificial
17.
BMC Med Genomics ; 16(1): 95, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143080

ABSTRACT

BACKGROUND: Homozygous truncating mutations located in the C-terminal region of the desmoplakin gene (DSP) are known to mainly cause Carvajal syndrome, an autosomal recessive syndromic form of arrhythmogenic cardiomyopathy with an extra-cardiac cutaneous phenotype. CASE PRESENTATION: Here we describe a female proband with a documented arrhythmogenic left ventricular cardiomyopathy and a syncopal episode at the age of 13, who was found homozygous for the novel DSP variant: NM_004415.4:c.8586delC, p.(Ser2863Hisfs*20) at the extreme C-terminal region of the protein, just 8 amino acids upstream the stop codon. She did not have any of the typical dermatological symptoms that characterize Carvajal syndrome. Her brother had died suddenly at the age of 18 during exercise and was found homozygous for the same variant at the post-mortem, while their parents were heterozygous. The region of origin of both parents was the same geographic area of Greece, but they were not aware of any common ancestor. Detailed clinical examination revealed that the mother displayed a mild arrhythmic phenotype, while the father was asymptomatic. CONCLUSION: These observations pinpoint to a significant functional role of the extreme C-terminal tail of the protein.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Dilated , Keratoderma, Palmoplantar , Male , Female , Humans , Desmoplakins/genetics , Cardiomyopathies/genetics , Keratoderma, Palmoplantar/diagnosis , Keratoderma, Palmoplantar/genetics , Mutation
18.
Stem Cell Reports ; 18(3): 749-764, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36868229

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited progressive disease characterized by electrophysiological and structural remodeling of the ventricles. However, the disease-causing molecular pathways, as a consequence of desmosomal mutations, are poorly understood. Here, we identified a novel missense mutation within desmoplakin in a patient clinically diagnosed with ACM. Using CRISPR-Cas9, we corrected this mutation in patient-derived human induced pluripotent stem cells (hiPSCs) and generated an independent knockin hiPSC line carrying the same mutation. Mutant cardiomyocytes displayed a decline in connexin 43, NaV1.5, and desmosomal proteins, which was accompanied by a prolonged action potential duration. Interestingly, paired-like homeodomain 2 (PITX2), a transcription factor that acts a repressor of connexin 43, NaV1.5, and desmoplakin, was induced in mutant cardiomyocytes. We validated these results in control cardiomyocytes in which PITX2 was either depleted or overexpressed. Importantly, knockdown of PITX2 in patient-derived cardiomyocytes is sufficient to restore the levels of desmoplakin, connexin 43, and NaV1.5.


Subject(s)
Cardiomyopathies , Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac/metabolism , Connexin 43/genetics , Connexin 43/metabolism , Desmoplakins/genetics , Desmoplakins/metabolism , Induced Pluripotent Stem Cells/metabolism , Mutation
19.
Circ Genom Precis Med ; 16(1): e003672, 2023 02.
Article in English | MEDLINE | ID: mdl-36580316

ABSTRACT

BACKGROUND: Truncating variants in desmoplakin (DSPtv) are an important cause of arrhythmogenic cardiomyopathy; however the genetic architecture and genotype-specific risk factors are incompletely understood. We evaluated phenotype, risk factors for ventricular arrhythmias, and underlying genetics of DSPtv cardiomyopathy. METHODS: Individuals with DSPtv and any cardiac phenotype, and their gene-positive family members were included from multiple international centers. Clinical data and family history information were collected. Event-free survival from ventricular arrhythmia was assessed. Variant location was compared between cases and controls, and literature review of reported DSPtv performed. RESULTS: There were 98 probands and 72 family members (mean age at diagnosis 43±8 years, 59% women) with a DSPtv, of which 146 were considered clinically affected. Ventricular arrhythmia (sudden cardiac arrest, sustained ventricular tachycardia, appropriate implantable cardioverter defibrillator therapy) occurred in 56 (33%) individuals. DSPtv location and proband status were independent risk factors for ventricular arrhythmia. Further, gene region was important with variants in cases (cohort n=98; Clinvar n=167) more likely to occur in the regions resulting in nonsense mediated decay of both major DSP isoforms, compared with n=124 genome aggregation database control variants (148 [83.6%] versus 29 [16.4%]; P<0.0001). CONCLUSIONS: In the largest series of individuals with DSPtv, we demonstrate that variant location is a novel risk factor for ventricular arrhythmia, can inform variant interpretation, and provide critical insights to allow for precision-based clinical management.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Cardiomyopathies , Desmoplakins , Female , Humans , Male , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Cardiomyopathies/genetics , Desmoplakins/genetics , Risk Factors
20.
Cells ; 11(19)2022 09 29.
Article in English | MEDLINE | ID: mdl-36231013

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by fibro-fatty infiltration with an increased propensity for ventricular arrhythmias and sudden death. Genetic variants in desmosomal genes are associated with ACM. Incomplete penetrance is a common feature in ACM families, complicating the understanding of how external stressors contribute towards disease development. To analyze the dual role of genetics and external stressors on ACM progression, we developed one of the first mouse models of ACM that recapitulates a human variant by introducing the murine equivalent of the human R451G variant into endogenous desmoplakin (DspR451G/+). Mice homozygous for this variant displayed embryonic lethality. While DspR451G/+ mice were viable with reduced expression of DSP, no presentable arrhythmogenic or structural phenotypes were identified at baseline. However, increased afterload resulted in reduced cardiac performance, increased chamber dilation, and accelerated progression to heart failure. In addition, following catecholaminergic challenge, DspR451G/+ mice displayed frequent and prolonged arrhythmic events. Finally, aberrant localization of connexin-43 was noted in the DspR451G/+ mice at baseline, becoming more apparent following cardiac stress via pressure overload. In summary, cardiovascular stress is a key trigger for unmasking both electrical and structural phenotypes in one of the first humanized ACM mouse models.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Animals , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Arrhythmogenic Right Ventricular Dysplasia/metabolism , Desmoplakins/genetics , Disease Models, Animal , Heart , Humans , Mice , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...