Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Physiol Pharmacol ; 75(1)2024 02.
Article in English | MEDLINE | ID: mdl-38583435

ABSTRACT

Endothelins and renal dopamine contribute to control of renal function and arterial pressure in health and various forms of experimental hypertension, the action is mediated by tonic activity of specific receptors. We determined the action mediated by endothelin type B and by dopamine D3 receptors (ETB-R, D3-R) in anaesthetized spontaneously hypertensive (SHR) and in deoxycorticosterone acetate (DOCA)-salt hypertensive rats. In rats of both hypertension models infused during 60 min into the interstitium of in situ kidney were either ETB-R antagonist, BQ788 (0.67 mg kg-1 BW h-1) or D3-R antagonist, GR103691 (0.2 mg kg-1 BW h-1). Arterial pressure (MAP), renal artery blood flow (RBF, transonic probe) and renal medullary blood flow (MBF, laser-Doppler) were measured along with sodium, water and total solute excretion (UNaV, V, UosmV). Experiments with ETB-R blockade confirmed their tonic vasodilator action in the whole kidney (RBF) and medulla (MBF) in both hypertension models. In SHR only, the first evidence was provided that ETB-R specifically increases transtubular backflux of non-electrolyte solutes. In DOCA-salt rats ETB-R blockade caused an early decrease in water and salt transport whereas an increase was often reported from many previous studies. The most striking effect of D3-R blockade in SHR was a selective increase in MBF, which strongly suggested tonic vasoconstrictor action of these receptors in the renal medulla; this speaks against prevailing opinion that D3 receptors are virtually inactive in SHR. In our model variant of DOCA-salt rats of D3-R blockade clearly caused a rapid major increase in MAP in parallel with depression of renal haemodynamics.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Receptors, Dopamine D3 , Desoxycorticosterone Acetate/pharmacology , Endothelin Receptor Antagonists/pharmacology , Rats, Inbred SHR , Hypertension/chemically induced , Endothelins/pharmacology , Water , Acetates/pharmacology , Blood Pressure , Endothelin-1
2.
Biomed Pharmacother ; 171: 116082, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38242036

ABSTRACT

To date, the complex pathological interactions between renal and cardiovascular systems represent a real global epidemic in both developed and developing countries. In this context, renovascular hypertension (RVH) remains among the most prevalent, but also potentially reversible, risk factor for numerous reno-cardiac diseases in humans and pets. Here, we investigated the anti-inflammatory and reno-cardiac protective effects of a polyphenol-rich fraction of bergamot (BPF) in an experimental model of hypertension induced by unilateral renal artery ligation. Adult male Wistar rats underwent unilateral renal artery ligation and treatment with deoxycorticosterone acetate (DOCA) (20 mg/kg, s.c.), twice a week for a period of 4 weeks, and 1% sodium chloride (NaCl) water (n = 10). A subgroup of hypertensive rats received BPF (100 mg/kg/day for 28 consecutive days, n = 10) by gavage. Another group of animals was treated with a sub-cutaneous injection of vehicle (that served as control, n = 8). Unilateral renal artery ligation followed by treatment with DOCA and 1% NaCl water resulted in a significant increase in mean arterial blood pressure (MAP; p< 0.05. vs CTRL) which strongly increased the resistive index (RI; p<0.05 vs CTRL) of contralateral renal artery flow and kidney volume after 4 weeks (p<0.001 vs CTRL). Renal dysfunction also led to a dysfunction of cardiac tissue strain associated with overt dyssynchrony in cardiac wall motion when compared to CTRL group, as shown by the increased time-to-peak (T2P; p<0.05) and the decreased whole peak capacity (Pk; p<0.01) in displacement and strain rate (p<0.05, respectively) in longitudinal motion. Consequently, the hearts of RAL DOCA-Salt rats showed a larger time delay between the fastest and the lowest region (Maximum Opposite Wall Delay-MOWD) when compared to CTRL group (p<0.05 in displacement and p <0.01 in strain rate). Furthermore, a significant increase in the levels of the circulating pro-inflammatory cytokines and chemokines (p< 0.05 for IL-12(40), p< 0.01 for GM-CSF, KC, IL-13, and TNF- α) and in the NGAL expression of the ligated kidney (p< 0.001) was observed compared to CTRL group. Interestingly, this pathological condition is prevented by BPF treatment. In particular, BPF treatment prevents the increase of blood pressure in RAL DOCA-Salt rats (p< 0.05) and exerts a protective effect on the volume of the contralateral kidney (p <0.01). Moreover, BPF ameliorates cardiac tissue strain dysfunction by increasing Pk in displacement (p <0.01) and reducing the T2P in strain rate motion (p<0.05). These latter effects significantly improve MOWD (p <0.05) preventing the overt dyssynchrony in cardiac wall motion. Finally, the reno-cardiac protective effect of BPF was associated with a significant reduction in serum level of some pro-inflammatory cytokines and chemokines (p<0.05 for KC and IL-12(40), p<0.01 for GM-CSF, IL-13, and TNF- α) restoring physiological levels of renal neutrophil gelatinase-associated lipocalin (NGAL, p<0.05) protein of the tethered kidney. In conclusion, the present results show, for the first time, that BPF promotes an efficient renovascular protection preventing the progression of inflammation and reno-cardiac damage. Overall, these data point to a potential clinical and veterinary role of dietary supplementation with the polyphenol-rich fraction of citrus bergamot in counteracting hypertension-induced reno-cardiac syndrome.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Humans , Rats , Male , Animals , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Desoxycorticosterone Acetate/pharmacology , Lipocalin-2/metabolism , Renal Artery/metabolism , Sodium Chloride , Interleukin-13/metabolism , Rats, Wistar , Kidney , Hypertension/drug therapy , Blood Pressure , Cytokines/metabolism , Chemokines/metabolism , Interleukin-12/metabolism , Polyphenols/pharmacology , Water/pharmacology
3.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38242697

ABSTRACT

Cardiovascular homeostasis is maintained, in part, by neural signals arising from arterial baroreceptors that apprise the brain of blood volume and pressure. Here, we test whether neurons within the nodose ganglia that express angiotensin type-1a receptors (referred to as NGAT1aR) serve as baroreceptors that differentially influence blood pressure (BP) in male and female mice. Using Agtr1a-Cre mice and Cre-dependent AAVs to direct tdTomato to NGAT1aR, neuroanatomical studies revealed that NGAT1aR receive input from the aortic arch, project to the caudal nucleus of the solitary tract (NTS), and synthesize mechanosensitive ion channels, Piezo1/2 To evaluate the functionality of NGAT1aR, we directed the fluorescent calcium indicator (GCaMP6s) or the light-sensitive channelrhodopsin-2 (ChR2) to Agtr1a-containing neurons. Two-photon intravital imaging in Agtr1a-GCaMP6s mice revealed that NGAT1aR couple their firing to elevated BP, induced by phenylephrine (i.v.). Furthermore, optical excitation of NGAT1aR at their soma or axon terminals within the caudal NTS of Agtr1a-ChR2 mice elicited robust frequency-dependent decreases in BP and heart rate, indicating that NGAT1aR are sufficient to elicit appropriate compensatory responses to vascular mechanosensation. Optical excitation also elicited hypotensive and bradycardic responses in ChR2-expressing mice that were subjected to deoxycorticosterone acetate (DOCA)-salt hypertension; however, the duration of these effects was altered, suggestive of hypertension-induced impairment of the baroreflex. Similarly, increased GCaMP6s fluorescence observed after administration of phenylephrine was delayed in mice subjected to DOCA-salt or chronic delivery of angiotensin II. Collectively, these results reveal the structure and function of NGAT1aR and suggest that such neurons may be exploited to discern and relieve hypertension.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Red Fluorescent Protein , Mice , Male , Female , Animals , Desoxycorticosterone Acetate/pharmacology , Solitary Nucleus/physiology , Sensory Receptor Cells , Blood Pressure/physiology , Phenylephrine/pharmacology , Ion Channels
4.
Acta Pharmacol Sin ; 45(1): 76-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37670136

ABSTRACT

Mechanosensitive cation channels such as Piezo1 and Piezo2 are activated by mechanical force like a starched wall of the aorta while blood pressure (BP) rising, which helps to elucidate the underlying mechanism of mechanotransduction of baroreceptor endings. In this study we investigated how Piezo1 channel activation-mediated gender- and afferent-specific BP regulation in rats. We established high-fat diet and fructose drink-induced hypertension model rats (HFD-HTN) and deoxycorticosterone (DOCA)-sensitive hypertension model rats. We showed that the expression levels of Piezo1 and Piezo2 were significantly up-regulated in left ventricle of HFD and DOCA hypertensive rats, whereas the down-regulation of Piezo1 was likely to be compensated by Piezo2 up-regulation in the aorta. Likewise, down-regulated Piezo1 was observed in the nodose ganglion (NG), while up-regulated Piezo2 was found in the nucleus tractus solitarius (NTS), which might synergistically reduce the excitatory neurotransmitter release from the presynaptic membrane. Notably, microinjection of Yoda1 (0.025-2.5 mg/ml) into the NG concentration-dependently reduced BP in both hypertensive rat models as well as in control rats with similar EC50; the effect of Yoda1 was abolished by microinjection of a Piezo1 antagonist GsMTx4 (1.0 µM). Functional analysis in an in vitro aortic arch preparation showed that instantaneous firing frequency of single Ah-fiber of aortic depressor nerve was dramatically increased by Yoda1 (0.03-1.0 µM) and blocked by GsMTx4 (1.0 µM). Moreover, spontaneous synaptic currents recorded from identified 2nd-order Ah-type baroreceptive neurons in the NTS was also facilitated over 100% by Yoda1 (1.0 µM) and completely blocked by GsMTx4 (3.0 µM). These results demonstrate that Piezo1 expressed on Ah-type baroreceptor and baroreceptive neurons in the NG and NTS plays a key role in a sexual-dimorphic BP regulation under physiological and hypertensive condition through facilitation of baroreflex afferent neurotransmission, which is presumably collaborated by Piezo2 expression at different level of baroreflex afferent pathway via compensatory and synergistic mechanisms.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Baroreflex , Blood Pressure , Mechanotransduction, Cellular/physiology , Desoxycorticosterone Acetate/pharmacology , Synaptic Transmission
5.
Hypertension ; 80(9): 1871-1880, 2023 09.
Article in English | MEDLINE | ID: mdl-37470185

ABSTRACT

BACKGROUND: Mice prefer warmer environments than humans. For this reason, behavioral and physiological thermoregulatory responses are engaged by mice in response to a standard room temperature of 22 to 24 °C. Autonomic mechanisms mediating thermoregulatory responses overlap with mechanisms activated in hypertension, and, therefore, we hypothesized that housing at thermoneutral temperatures (TNs; 30 °C) would modify the cardiometabolic effects of deoxycorticosterone acetate (DOCA)-salt in mice. METHODS: The effects of DOCA-salt treatment upon ingestive behaviors, energy expenditure, blood pressure, heart rate (HR), and core temperature were assessed in C57BL/6J mice housed at room temperature or TN. RESULTS: Housing at TN reduced food intake, energy expenditure, blood pressure, and HR and attenuated HR responses to acute autonomic blockade by chlorisondamine. At room temperature, DOCA-salt caused expected increases in fluid intake, sodium retention in osmotically inactive pools, blood pressure, core temperature, and also caused expected decreases in fat-free mass, total body water, and HR. At TN, the effects of DOCA-salt upon fluid intake, fat gains, hydration, and core temperature were exaggerated, but effects on energy expenditure and HR were blunted. Effects of DOCA-salt upon blood pressure were similar for 3 weeks and exaggerated by TN housing in the fourth week. CONCLUSIONS: Ambient temperature robustly influences behavioral and physiological functions in mice, including metabolic and cardiovascular phenotype development in response to DOCA-salt treatment. Studying cardiometabolic responses of mice at optimal ambient temperatures promises to improve the translational relevance of rodent models.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Humans , Mice , Animals , Desoxycorticosterone Acetate/pharmacology , Temperature , Mice, Inbred C57BL , Hypertension/chemically induced , Blood Pressure/physiology , Desoxycorticosterone/pharmacology
6.
Curr Vasc Pharmacol ; 21(4): 246-256, 2023.
Article in English | MEDLINE | ID: mdl-37349999

ABSTRACT

BACKGROUND: We previously reported that endothelins (ETs) regulate tyrosine hydroxylase (TH) activity and expression in the olfactory bulb (OB) of normotensive and hypertensive animals. Applying an ET receptor type A (ETA) antagonist to the brain suggested that endogenous ETs bind to ET receptor type B (ETB) to elicit effects. OBJECTIVE: The aim of the present work was to evaluate the role of central ETB stimulation on the regulation of blood pressure (BP) and the catecholaminergic system in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. METHODS: DOCA-salt hypertensive rats were infused for 7 days with cerebrospinal fluid or IRL-1620 (ETB receptor agonist) through a cannula placed in the lateral brain ventricle. Systolic BP (SBP) and heart rate were recorded by plethysmography. The expression of TH and its phosphorylated forms in the OB were determined by immunoblotting, TH activity by a radioenzymatic assay, and TH mRNA by quantitative real-time polymerase chain reaction. RESULTS: Chronic administration of IRL-1620 decreased SBP in hypertensive rats but not in normotensive animals. Furthermore, the blockade of ETB receptors also decreased TH-mRNA in DOCA-salt rats, but it did not modify TH activity or protein expression. CONCLUSION: These findings suggest that brain ETs through the activation of ETB receptors contribute to SBP regulation in DOCA-salt hypertension. However, the catecholaminergic system in the OB does not appear to be conclusively involved although mRNA TH was reduced. Present and previous findings suggest that in this salt-sensitive animal model of hypertension, the OB contributes to chronic BP elevation.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Desoxycorticosterone Acetate/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Tyrosine 3-Monooxygenase/pharmacology , Olfactory Bulb/metabolism , Hypertension/chemically induced , Hypertension/metabolism , Blood Pressure , Endothelins/metabolism , Endothelins/pharmacology , Receptor, Endothelin B/genetics , Receptor, Endothelin B/metabolism , RNA, Messenger/metabolism , Endothelin-1/genetics , Endothelin-1/metabolism , Endothelin-1/pharmacology , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism
7.
Exp Physiol ; 108(2): 268-279, 2023 02.
Article in English | MEDLINE | ID: mdl-36454195

ABSTRACT

NEW FINDINGS: What is the central question of this study? Are renal functional responses to intrarenal angiotensin 1-7 (Ang (1-7)) infusion dependent on the level of the endogenous renin-angiotensin system (RAS) in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt animal models of hypertension? What is the main finding and its importance? The renal actions of Ang (1-7) are dependent on the relative endogenous levels of each arm of the classical angiotensin II-angiotensin II type 1 receptor (AT1 R) axis and those of the Ang (1-7)-Mas receptor axis. These findings support the hypothesis that a balance exists between the intrarenal classical and novel arms of the RAS, and in particular the relative abundance of AT1 R to Mas receptor, which may to a large extent determine the renal excretory response to Ang (1-7) infusion. ABSTRACT: This study investigated the action of angiotensin 1-7 (Ang (1-7)) on renal haemodynamic and excretory function in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt rat models of hypertension, in which the endogenous renin-angiotensin system (RAS) activity was likely to be raised or lowered, respectively. Rats were anaesthetised and prepared for the measurement of mean arterial pressure and kidney function during renal interstitial infusion of Ang (1-7) or saline. Kidney tissue concentrations of angiotensin II (Ang II) and Ang (1-7) were determined. Intrarenal infusion of Ang (1-7) into the clipped kidney of 2K1C rats increased urine flow (UV), absolute (UNa V) and fractional sodium (FENa ) excretions by 110%, 214% and 147%, respectively. Renal Ang II concentrations of the clipped kidney were increased with no major changes in Ang (1-7) concentration. By contrast, Ang (1-7) infusion decreased UV, UNa V, and FENa by 27%, 24% and 21%, respectively in the non-clipped kidney in which tissue Ang (1-7) concentrations were increased, but renal Ang II concentrations were unchanged compared to sham animals. Ang (1-7) infusion in DOCA-salt rats had minimal effects on glomerular filtration rate but significantly decreased UV, UNa V and FENa by ∼30%. Renal Ang (1-7) concentrations were higher and Ang II concentrations were lower in DOCA-salt rats compared to sham rats. These findings demonstrate that the intrarenal infusion of exogenous Ang (1-7) elicits different renal excretory responses the magnitude of which is dependent on the balance between the endogenous renal Ang II-AT1 receptor axis and Ang (1-7)-Mas receptor axis.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Angiotensin II/pharmacology , Angiotensin II/physiology , Desoxycorticosterone Acetate/pharmacology , Kidney , Hypertension/chemically induced , Hemodynamics , Acetates/pharmacology
8.
Acta Pharmacol Sin ; 44(6): 1149-1160, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36473990

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent, and lacks effective treatment. The aberration of WNT pathway underlies many pathological processes including cardiac fibrosis and hypertrophy, while porcupine is an acyltransferase essential for the secretion of WNT ligands. In this study we investigated the role of WNT signaling pathway in HFpEF as well as whether blocking WNT signaling by a novel porcupine inhibitor CGX1321 alleviated HFpEF. We established two experimental HFpEF mouse models, namely the UNX/DOCA model and high fat diet/L-NAME ("two-hit") model. The UNX/DOCA and "two-hit" mice were treated with CGX1321 (3 mg·kg-1·d-1) for 4 and 10 weeks, respectively. We showed that CGX1321 treatment significantly alleviated cardiac hypertrophy and fibrosis, thereby improving cardiac diastolic function and exercise performance in both models. Furthermore, both canonical and non-canonical WNT signaling pathways were activated, and most WNT proteins, especially WNT3a and WNT5a, were upregulated during the development of HEpEF in mice. CGX1321 treatment inhibited the secretion of WNT ligands and repressed both canonical and non-canonical WNT pathways, evidenced by the reduced phosphorylation of c-Jun and the nuclear translocation of ß-catenin and NFATc3. In an in vitro HFpEF model, MCM and ISO-treated cardiomyocytes, knockdown of porcupine by siRNA leads to a similar inhibitory effect on WNT pathways, cardiomyocyte hypertrophy and cardiac fibroblast activation as CGX1321 did, whereas supplementation of WNT3a and WNT5a reversed the anti-hypertrophy and anti-fibrosis effect of CGX1321. We conclude that WNT signaling activation plays an essential role in the pathogenesis of HFpEF, and porcupine inhibitor CGX1321 exerts a therapeutic effect on HFpEF in mice by attenuating cardiac hypertrophy, alleviating cardiac fibrosis and improving cardiac diastolic function.


Subject(s)
Cardiomyopathies , Desoxycorticosterone Acetate , Heart Failure , Animals , Mice , Cardiomegaly/pathology , Cardiomyopathies/pathology , Desoxycorticosterone Acetate/pharmacology , Desoxycorticosterone Acetate/therapeutic use , Fibrosis , Heart Failure/metabolism , Myocytes, Cardiac , Stroke Volume/physiology , Wnt Signaling Pathway
9.
Nutrients ; 14(15)2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35956350

ABSTRACT

Dietary intake of fermented soymilk is associated with hypotensive effects, but the mechanisms involved have not been fully elucidated. We investigated the anti-hypertensive effects of soymilk fermented by L. rhamnosus AC1 on DOCA-salt hypertension from the point of view of oxidative stress, inflammatory response and alteration of the gut microbiome. The antioxidant assays in vitro indicated the ethanol extract (EE) of L. rhamnosus AC1 fermented soymilk showed better antioxidative effects than the water extract (WE). Those extracts displayed a hypotensive effect using a tail-cuff approach to measuring blood pressure and improved nitric oxide (NO), angiotensin II (Ang II), tumor necrosis factor-α (TNF-α) and interleukin factor-6 (IL-6) on DOCA-salt hypertensive rats. Furthermore, cardiac and renal fibrosis were attenuated by those extracts. The gut microbiota analysis revealed that they significantly reduced the abundance of phylum Proteobacteria, its family Enterobacteriaceae and genus Escherichia-Shigella. Moreover, metabolomic profiling revealed several potential gut microbiota-related metabolites which appeared to involve in the development and recovery of hypertension. In conclusion, fermented soymilk is a promising nutritional intervention strategy to improve hypertension via reducing inflammation and reverting dysbiotic microbiota.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Lacticaseibacillus rhamnosus , Acetates/pharmacology , Animals , Antihypertensive Agents/pharmacology , Blood Pressure , Desoxycorticosterone , Desoxycorticosterone Acetate/pharmacology , Rats
10.
Circ Res ; 130(10): 1550-1564, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35430873

ABSTRACT

BACKGROUND: Renal T cells contribute importantly to hypertension, but the underlying mechanism is incompletely understood. We reported that CD8Ts directly stimulate distal convoluted tubule cells (DCTs) to increase NCC (sodium chloride co-transporter) expression and salt reabsorption. However, the mechanistic basis of this pathogenic pathway that promotes hypertension remains to be elucidated. METHODS: We used mouse models of DOCA+salt (DOCA) treatment and adoptive transfer of CD8+ T cells (CD8T) from hypertensive animals to normotensive animals in in vivo studies. Co-culture of mouse DCTs and CD8Ts was used as in vitro model to test the effect of CD8T activation in promoting NCC-mediated sodium retention and to identify critical molecular players contributing to the CD8T-DCT interaction. Interferon (IFNγ)-KO mice and mice receiving renal tubule-specific knockdown of PDL1 were used to verify in vitro findings. Blood pressure was continuously monitored via radio-biotelemetry, and kidney samples were saved at experimental end points for analysis. RESULTS: We identified critical molecular players and demonstrated their roles in augmenting the CD8T-DCT interaction leading to salt-sensitive hypertension. We found that activated CD8Ts exhibit enhanced interaction with DCTs via IFN-γ-induced upregulation of MHC-I and PDL1 in DCTs, thereby stimulating higher expression of NCC in DCTs to cause excessive salt retention and progressive elevation of blood pressure. Eliminating IFN-γ or renal tubule-specific knockdown of PDL1 prevented T cell homing into the kidney, thereby attenuating hypertension in 2 different mouse models. CONCLUSIONS: Our results identified the role of activated CD8Ts in contributing to increased sodium retention in DCTS through the IFNγ-PDL1 pathway. These findings provide a new mechanism for T cell involvement in the pathogenesis of hypertension and reveal novel therapeutic targets.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Animals , CD8-Positive T-Lymphocytes/metabolism , Desoxycorticosterone Acetate/metabolism , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Hypertension/metabolism , Kidney Tubules, Distal/metabolism , Kidney Tubules, Distal/pathology , Mice , Sodium/metabolism , Sodium Chloride Symporters/metabolism , Sodium Chloride, Dietary
11.
Am J Physiol Regul Integr Comp Physiol ; 322(6): R467-R485, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35348007

ABSTRACT

Hypertension characterized by low circulating renin activity accounts for roughly 25%-30% of primary hypertension in humans and can be modeled experimentally via deoxycorticosterone acetate (DOCA)-salt treatment. In this model, phenotypes develop in progressive phases, although the timelines and relative contributions of various mechanisms to phenotype development can be distinct between laboratories. To explore interactions among environmental influences such as diet formulation and dietary sodium (Na) content on phenotype development in the DOCA-salt paradigm, we examined an array of cardiometabolic endpoints in young adult male C57BL/6J mice during sham or DOCA-salt treatments when mice were maintained on several common, commercially available laboratory rodent "chow" diets including PicoLab 5L0D (0.39% Na), Envigo 7913 (0.31% Na), Envigo 2920x (0.15% Na), or a customized version of Envigo 2920x (0.4% Na). Energy balance (weight gain, food intake, digestive efficiency, and energy efficiency), fluid and electrolyte homeostasis (fluid intake, Na intake, fecal Na content, hydration, and fluid compartmentalization), renal functions (urine production rate, glomerular filtration rate, urine Na excretion, renal expression of renin, vasopressin receptors, aquaporin-2 and relationships among markers of vasopressin release, aquaporin-2 shedding, and urine osmolality), and blood pressure, all exhibited changes that were subject to interactions between diet and DOCA-salt. Interestingly, some of these phenotypes, including blood pressure and hydration, were dependent on nonsodium dietary components, as Na-matched diets resulted in distinct phenotype development. These findings provide a broad and robust illustration of an environment × treatment interaction that impacts the use and interpretation of a common rodent model of low-renin hypertension.


Subject(s)
Desoxycorticosterone Acetate , Hypertension , Animals , Aquaporin 2 , Blood Pressure/physiology , Desoxycorticosterone/pharmacology , Desoxycorticosterone Acetate/pharmacology , Diet , Hypertension/metabolism , Male , Mice , Mice, Inbred C57BL , Renin/metabolism , Sodium/metabolism
12.
Eur J Pharmacol ; 914: 174681, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34871556

ABSTRACT

Secreted protein acidic and rich in cysteine (SPARC), an extracellular matrix (ECM) protein, was recently shown to induce collagen deposition through the production of a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) in the aging heart. ADAMTS1 regulates ECM turnover by degrading ECM components, and its excessive activation contributes to various pathological states, including fibrosis. The present study investigated the pathophysiological regulation and role of SPARC and ADAMTS1 in renal fibrosis using uninephrectomized rats treated with deoxycorticosterone acetate (DOCA, 40 mg/kg/week, subcutaneously) and salt (1% in drinking water). The administration of DOCA and salt gradually and significantly elevated systolic blood pressure during the 3-week treatment period, induced proteinuria, decreased creatinine clearance, and increased NADPH oxidase-derived superoxide production, malondialdehyde concentrations, and monocyte chemoattractant protein-1 and osteopontin expression in the kidneys. Glomerulosclerosis, fibrillar collagen deposition, and transforming growth factor-ß expression increased in a time-dependent manner, and SPARC and ADAMTS1 expression showed a similar pattern to these changes. The angiotensin II type-1 receptor blocker losartan suppressed the overexpression of SPARC and ADAMTS1, and an in vitro exposure to angiotensin II induced the production of both SPARC and ADAMTS1 in renal fibroblast NRK-49F cells. Knockdown of the SPARC gene with small interfering RNA reduced all forms (the 110-kDa latent and 87- and 65-kDa bioactive forms) of ADAMTS1 expression as well as collagen production. These results suggest that SPARC is induced by the renin-angiotensin system and may be a fibrogenic factor, at least in part, by producing ADAMTS1 in hypertensive renal disease.


Subject(s)
ADAMTS1 Protein/metabolism , Fibrillar Collagens , Kidney , Losartan/pharmacology , Osteonectin/metabolism , Renin-Angiotensin System , Angiotensin II Type 1 Receptor Blockers/pharmacology , Animals , Desoxycorticosterone Acetate/pharmacology , Extracellular Matrix Proteins/metabolism , Fibrillar Collagens/biosynthesis , Fibrillar Collagens/metabolism , Fibrosis/metabolism , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/physiopathology , Hypertension/chemically induced , Hypertension/metabolism , Kidney/metabolism , Kidney/pathology , Mineralocorticoids/pharmacology , Rats , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sodium Chloride, Dietary/administration & dosage
13.
Biomed Pharmacother ; 140: 111682, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34020248

ABSTRACT

In the brain, aminopeptidase A (APA) generates angiotensin III, one of the effector peptides of the brain renin-angiotensin system (RAS), exerting tonic stimulatory control over blood pressure (BP) in hypertensive rats. Oral administration of firibastat, an APA inhibitor prodrug, in hypertensive rats, inhibits brain APA activity, blocks brain angiotensin III formation and decreases BP. In this study, we evaluated the efficacy of firibastat in combination with enalapril, an angiotensin I-converting enzyme inhibitor, and hydrochlorothiazide (HCTZ), in conscious hypertensive deoxycorticosterone acetate (DOCA)-salt rats, which display high plasma arginine-vasopressin levels, low circulating renin levels and resistance to treatment by systemic RAS blockers. We determined mean arterial BP, heart rate, plasma arginine-vasopressin levels and renin activity in DOCA-salt rats orally treated with firibastat, enalapril or HCTZ administered alone or in combination. Acute oral firibastat administration (30 mg/kg) induced a significant decrease in BP, whereas enalapril (10 mg/kg) or HCTZ (10 mg/kg) administered alone induced no significant change in BP in conscious DOCA-salt rats. The BP decrease induced by acute and nine-day chronic tritherapy [Firibastat+Enalapril+HCTZ] was significantly greater than that observed after bitherapy [Enalapril+HCTZ]. Interestingly, the chronic administration of a combination of firibastat with [Enalapril+HCTZ] reduced plasma arginine-vasopressin levels by 62% relative to those measured in DOCA-salt rats receiving bitherapy. Our data show that tritherapy with firibastat, enalapril and HCTZ improves BP control and arginine-vasopressin release in an experimental salt-dependent model of hypertension, paving the way for the development of new treatments for patients with currently difficult-to-treat or resistant hypertension.


Subject(s)
Blood Pressure/drug effects , Desoxycorticosterone Acetate/pharmacology , Disulfides/pharmacology , Enalapril/pharmacology , Hydrochlorothiazide/pharmacology , Hypertension/drug therapy , Sulfonic Acids/pharmacology , Vasopressins/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Disease Models, Animal , Glutamyl Aminopeptidase/metabolism , Hypertension/metabolism , Male , Rats , Rats, Inbred WKY , Renin-Angiotensin System/drug effects
14.
Pflugers Arch ; 473(4): 623-631, 2021 04.
Article in English | MEDLINE | ID: mdl-33651165

ABSTRACT

Earlier evidence from studies of rat hypertension models undermines the widespread view that the rate of renal medullary blood flow (MBF) is critical in control of arterial pressure (MAP). Here, we examined the role of MBF in rats that were normotensive, with modest short-lasting pressure elevation, or with overt established hypertension. The groups studied were anaesthetised Sprague-Dawley rats: (1) normotensive, (2) with acute i.v. norepinephrine-induced MAP elevation, and (3) with hypertension induced by unilateral nephrectomy followed by administration of deoxycorticosterone-acetate (DOCA) and 1% NaCl drinking fluid for 3 weeks. MBF was measured (laser-Doppler probe) and selectively increased using 4-h renal medullary infusion of bradykinin. MAP, renal excretion parameters and post-experiment medullary tissue osmolality and sodium concentration were determined. In the three experimental groups, baseline MAP was 117, 151 and 171 mmHg, respectively. Intramedullary bradykinin increased MBF by 45%, 65% and 70%, respectively, but this was not associated with a change in MAP. In normotensive rats a significant decrease in medullary tissue sodium was seen. The intramedullary bradykinin specifically increased renal excretion of water, sodium and total solutes in norepinephrine-treated rats but not in the two other groups. As previously shown in models of rat hypertension, in the normotensive rats and those with acute mild pressure elevation (resembling labile borderline human hypertension), 4-h renal medullary hyperperfusion failed to decrease MAP. Nor did it decrease in DOCA-salt model mimicking low-renin human hypertension. Evidently, within the 4-h observation, medullary perfusion was not a critical determinant of MAP in normotensive and hypertensive rats.


Subject(s)
Hypertension/physiopathology , Kidney Medulla/physiopathology , Renal Circulation , Animals , Arterial Pressure , Bradykinin/pharmacology , Desoxycorticosterone Acetate/pharmacology , Hypertension/etiology , Kidney Medulla/drug effects , Male , Mineralocorticoids/pharmacology , Norepinephrine/pharmacology , Osmolar Concentration , Rats , Rats, Sprague-Dawley , Sodium Chloride/pharmacology , Vasodilator Agents/pharmacology
15.
Hypertension ; 75(6): 1615-1623, 2020 06.
Article in English | MEDLINE | ID: mdl-32336228

ABSTRACT

Hypertension is the most common risk factor for cardiovascular disease, causing over 18 million deaths a year. Although the mechanisms controlling blood pressure (BP) in either sex remain largely unknown, T cells play a critical role in the development of hypertension. Further evidence supports a role for the immune system in contributing to sex differences in hypertension. The goal of the current study was to first, determine the impact of sex on the renal T-cell profiles in DOCA-salt hypertensive males and females and second, test the hypothesis that greater numbers of T regulatory cells (Tregs) in females protect against DOCA-salt-induced increases in BP and kidney injury. Male rats displayed greater increases in BP than females following 3 weeks of DOCA-salt treatment, although increases in renal injury were comparable between the sexes. DOCA-salt treatment resulted in an increase in proinflammatory T cells in both sexes; however, females had more anti-inflammatory Tregs than males. Additional male and female DOCA-salt rats were treated with anti-CD25 to decrease Tregs. Decreasing Tregs significantly increased BP only in females, thereby abolishing the sex difference in the BP response to DOCA-salt. This data supports the hypothesis that Tregs protect against the development of hypertension and are particularly important for the control of BP in females.


Subject(s)
Desoxycorticosterone Acetate/pharmacology , Hypertension , Kidney , Sex Factors , T-Lymphocytes, Regulatory/immunology , Animals , Blood Pressure/immunology , Cardiometabolic Risk Factors , Cell Count/methods , Female , Flavoring Agents/pharmacology , Hypertension/immunology , Hypertension/physiopathology , Interleukin-2 Receptor alpha Subunit/antagonists & inhibitors , Kidney/immunology , Kidney/pathology , Male , Mineralocorticoids/pharmacology , Protective Factors , Rats , Sodium Chloride, Dietary/pharmacology , T-Lymphocytes, Regulatory/drug effects , Treatment Outcome
16.
Mol Biol Rep ; 47(3): 2243-2252, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32072406

ABSTRACT

Hypertension is an important risk factor for cardiovascular diseases. Besides cardiovascular system, it could cause damage to liver. It has been shown that endoplasmic reticulum stress (ERS) plays a crucial role in the pathogenesis of hypertension. ERS inhibitor tauroursodeoxycholic-acid (TUDCA) has favorable effects on various pathologies including cardiovascular, metabolic and hepatic diseases. In this study, the hepatoprotective effect and mechanism of TUDCA were investigated in the deoxycorticosterone acetate (DOCA)-salt-induced hypertension. Male Wistar rats were used and divided into four groups: Control, DOCA, TUDCA and DOCA + TUDCA. Hypertension was induced by DOCA-salt administration for twelve weeks after the unilateral nephrectomy. TUDCA was given for the last 4 weeks. Systolic blood pressure was measured by using tail-cuff method. At the end of the treatment, liver was isolated and weighed. The expressions of various proteins and histopathological evaluation were examined in the liver. TUDCA markedly decreased systolic blood pressure in the hypertensive animals. Hypertension caused increase in the expressions of glucose-regulated protein-78 (GRP78), matrix metalloproteinase-2 (MMP-2) and phospho-inhibitor κB-α (p-IκB-α) and the decrease in the expression of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and phospho-extracellular signal-regulated kinase (p-ERK) in the liver. Alterations in these protein expressions were not detected in the TUDCA-treated hypertensive group. Also, hepatic balloon degeneration, inflammation and fibrosis were observed in the hypertensive group. TUDCA improved inflammation and fibrosis in the hypertensive liver. Our findings indicate that the detrimental effect of DOCA-salt-induced hypertension on the liver was defended by the inhibition of ERS. Hepatic ERS and its treatment should be taken into consideration for therapeutic approaches to hypertension.


Subject(s)
Desoxycorticosterone Acetate/pharmacology , Endoplasmic Reticulum Stress/drug effects , Hypertension/metabolism , Liver/drug effects , Liver/metabolism , Animals , Blood Pressure/drug effects , Disease Models, Animal , Hypertension/complications , Hypertension/physiopathology , Liver/pathology , Male , Rats
17.
Biomolecules ; 11(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396366

ABSTRACT

Molecular targeting of growth factors has shown great therapeutic potential in pharmaceutical research due to their roles in pathological conditions. In the present study, we developed a novel suramin fragment and deoxycholic acid conjugate (SFD) that exhibited the potential to bind to the heparin-binding site (HBD) of vascular endothelial growth factor (VEGF) and to inhibit its pathogenic action for the first time. Notably, SFD was optimally designed for binding to the HBD of VEGF using the naphthalenetrisulfonate group, allowing to observe its excellent binding efficacy in a surface plasmon resonance (SPR) study, showing remarkable binding affinity (KD = 3.8 nM) as a small molecule inhibitor. In the tubular formation assay, it was observed that SFD could bind to HBD and exhibit antiangiogenic efficacy by inhibiting VEGF, such as heparins. The cellular treatment of SFD resulted in VEGF-inhibitory effects in human umbilical vein endothelial cells (HUVECs). Therefore, we propose that SFD can be employed as a novel drug candidate to inhibit the pathophysiological action of VEGF in diseases. Consequently, SFD, which has a molecular structure optimized for binding to HBD, is put forward as a new chemical VEGF inhibitor.


Subject(s)
Heparin/chemistry , Suramin/chemistry , Vascular Endothelial Growth Factor A/genetics , Binding Sites/drug effects , Desoxycorticosterone Acetate/chemistry , Desoxycorticosterone Acetate/pharmacology , Heparin/pharmacology , Human Umbilical Vein Endothelial Cells , Humans , Suramin/pharmacology , Surface Plasmon Resonance , Vascular Endothelial Growth Factor A/antagonists & inhibitors
18.
J Pharmacol Exp Ther ; 369(3): 503-510, 2019 06.
Article in English | MEDLINE | ID: mdl-30894457

ABSTRACT

Underlying pathogenic mechanisms in chronic kidney disease (CKD) include chronic inflammation, oxidant stress, and matrix remodeling associated with dysregulated nuclear factor-κ B, nuclear factor-κ B, and SMAD signaling pathways, respectively. Important cytoprotective mechanisms activated by oxidative inflammatory conditions are mediated by nitrated fatty acids that covalently modify proteins to limit inflammation and oxidant stress. In the present study, we evaluated the effects of chronic treatment with CXA-10 (10-nitro-9(E)-octadec-9-enoic acid) in the uninephrectomized deoxycorticosterone acetate-high-salt mouse model of CKD. After 4 weeks of treatment, CXA-10 [2.5 millligrams per kilogram (mpk), p.o.] significantly attenuated increases in plasma cholesterol, heart weight, and kidney weight observed in the model without impacting systemic arterial blood pressure. CXA-10 also reduced albuminuria, nephrinuria, glomerular hypertrophy, and glomerulosclerosis in the model. Inflammatory MCP-1 and fibrosis (collagen, fibronectin, plasminogen activator inhibitor-1, and osteopontin) renal biomarkers were significantly reduced in the CXA-10 (2.5 mpk) group. The anti-inflammatory and antifibrotic effects, as well as glomerular protection, were not observed in the enalapril-treated group. Also, CXA-10 appears to exhibit hormesis as all protective effects observed in the low-dose group were absent in the high-dose group (12.5 mpk). Taken together, these findings demonstrate that, at the appropriate dose, the nitrated fatty acid CXA-10 exhibits anti-inflammatory and antifibrotic effects in the kidney and limits renal injury in a model of CKD.


Subject(s)
Cytoprotection/drug effects , Desoxycorticosterone Acetate/pharmacology , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney/drug effects , Kidney/pathology , Nitro Compounds/pharmacology , Oleic Acids/pharmacology , Salts/adverse effects , Animals , Desoxycorticosterone Acetate/pharmacokinetics , Kidney/metabolism , Kidney Diseases/metabolism , Male , Mice , Nitro Compounds/pharmacokinetics , Oleic Acids/pharmacokinetics , Oxidative Stress/drug effects , Tissue Distribution
19.
J Gen Physiol ; 151(1): 42-52, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30567709

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome characterized by a preserved ejection fraction but increased diastolic stiffness and abnormalities of filling. Although the prevalence of HFpEF is high and continues to rise, no effective therapies exist; however, the diabetic drug metformin has been associated with improved diastolic function in diabetic patients. Here we determine the therapeutic potential of metformin for improving diastolic function in a mouse model with HFpEF-like symptoms. We combine transverse aortic constriction (TAC) surgery with deoxycorticosterone acetate (DOCA) supplementation to obtain a mouse model with increased diastolic stiffness and exercise intolerance. Echocardiography and pressure-volume analysis reveal that providing metformin to TAC/DOCA mice improves diastolic function in the left ventricular (LV) chamber. Muscle mechanics show that metformin lowers passive stiffness of the LV wall muscle. Concomitant with this improvement in diastolic function, metformin-treated TAC/DOCA mice also demonstrate preserved exercise capacity. No metformin effects are seen in sham operated mice. Extraction experiments on skinned ventricular muscle strips show that the metformin-induced reduction of passive stiffness in TAC/DOCA mice is due to an increase in titin compliance. Using phospho-site-specific antibodies, we assay the phosphorylation of titin's PEVK and N2B spring elements. Metformin-treated mice have unaltered PEVK phosphorylation but increased phosphorylation of PKA sites in the N2B element, a change which has previously been shown to lower titin's stiffness. Consistent with this result, experiments with a mouse model deficient in the N2B element reveal that the beneficial effect of metformin on LV chamber and muscle stiffness requires the presence of the N2B element. We conclude that metformin offers therapeutic benefit during HFpEF by lowering titin-based passive stiffness.


Subject(s)
Diastole/drug effects , Heart Failure/drug therapy , Metformin/pharmacology , Protein Kinases/metabolism , Animals , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Heart Failure/metabolism , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Phosphorylation/drug effects , Stroke Volume/drug effects
20.
Chem Biol Interact ; 299: 52-58, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30502333

ABSTRACT

Hypertension is a civilization disease leading to remodeling and damage of blood vessels, impaired renal function and premature death. The aim of this study was to compare the effect of chronic administration of URB597, the FAAH (fatty acid amide hydrolase) inhibitor, to rats with primary (SHRs) and secondary (DOCA-salt hypertensive rats) hypertension on electrical and physicochemical properties of kidney cells membranes. Changes in the electrical charge of the membrane may affect the cell functions. The electrical properties of the kidney cells (surface charge density, zeta potential) were measured by electrophoresis. Qualitative and quantitative composition of the membrane (phospholipids and proteins) was determined by HPLC and lipid peroxidation product (4-hydroxy-2E-hexenal; 4-HHE) level was examined by GCMSMS, while the sialic acid content was measured by resorcinol method. In rats with primary hypertension (SHR) and secondary hypertension (DOCA-salt), changes in electrical properties (increase of electric charge and zeta potential) and membrane composition (increase in sialic acid and protein concentration and decrease in phospholipid level) of kidney cells are observed in comparison to control animals. Greater changes were observed in DOCA-salt hypertensive rats. Changes in membrane properties caused by URB597 depend on the type of hypertension. The administration of URB597 to rats with primary hypertension partially prevents changes in the electrical properties (electrical charge, zeta potential) of the membrane caused by hypertension as well as in the sialic acid and proteins content. However, there is no reduction in oxidative stress, assessed by the level of 4-HHE, which may affect the metabolic function of the kidneys. URB597 administered to rats with DOCA salt does not prevent, but rather intensifies, changes caused by hypertension in the kidney. In conclusion, URB597 given to individuals with hypertension, particularly with secondary hypertension, enhancing some disturbances in electric and physicochemical properties of kidney cells observed in hypertension what may lead to additional kidney disorders. Therefore, further researches are necessary.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Benzamides/therapeutic use , Carbamates/therapeutic use , Cell Membrane/metabolism , Enzyme Inhibitors/therapeutic use , Hypertension/drug therapy , Amidohydrolases/metabolism , Animals , Benzamides/pharmacology , Carbamates/pharmacology , Cell Membrane/drug effects , Chromatography, High Pressure Liquid , Desoxycorticosterone Acetate/pharmacology , Disease Models, Animal , Hypertension/pathology , Kidney/cytology , Lipid Peroxidation/drug effects , Male , N-Acetylneuraminic Acid/analysis , Phospholipids/analysis , Rats , Rats, Inbred SHR , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...