Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(9): 4926-32, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22500779

ABSTRACT

The biogeochemical transformations of mercury are a complex process, with the production of methylmercury, a potent human neurotoxin, repeatedly demonstrated in sulfate- and Fe(III)-reducing as well as methanogenic bacteria. However, little is known regarding the morphology, genes, or proteins involved in methylmercury generation. Desulfovibrio africanus strain Walvis Bay is a Hg-methylating δ-proteobacterium with a sequenced genome and has unusual pleomorphic forms. In this study, a relationship between the pleomorphism and Hg methylation was investigated. Proportional increases in the sigmoidal (regular) cell form corresponded with increased net MeHg production but decreased when the pinched cocci (persister) form became the major morphotype. D. africanus microarrays indicated that the ferrous iron transport genes (feoAB), as well as ribosomal genes and several genes whose products are predicted to have metal binding domains (CxxC), were up-regulated during exposure to Hg in the exponential phase. Whereas no specific methylation pathways were identified, the finding that Hg may interfere with iron transport and the correlation of growth-phase-dependent morphology with MeHg production are notable. The identification of these relationships between differential gene expression, morphology, and the growth-phase dependence of Hg transformations suggests that actively growing cells are primarily responsible for methylation, and so areas with ample carbon and electron-acceptor concentrations may also generate a higher proportion of methylmercury than more oligotrophic environments. The observation of increased iron transporter expression also suggests that Hg methylation may interfere with iron biogeochemical cycles.


Subject(s)
Desulfovibrio africanus/metabolism , Methylmercury Compounds/metabolism , Desulfovibrio africanus/drug effects , Desulfovibrio africanus/genetics , Desulfovibrio africanus/growth & development , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Mercury/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...