Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 49(7): 4193-9, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25734617

ABSTRACT

Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal. The bacterium, here designated WB3, respires soluble arsenate and couples its reduction to the oxidation of acetate; WB3 is therefore implicated in the process of arsenic pollution of groundwater, which is largely by arsenite. The bacterium WB3 is also capable of reducing dissolved Fe(III) citrate, solid Fe(III)-oxyhydroxide, and elemental sulfur, using acetate as the electron donor. It is a member of the Desulfuromonas genus and possesses a dissimilatory arsenate reductase that was identified using degenerate polymerase chain reaction primers. The sediment from which WB3 was isolated was brown, Pleistocene sand at a depth of 35.2 m below ground level (mbgl). This level was some 3 cm below the boundary between the brown sands and overlying reduced, gray, Holocene aquifer sands. The color boundary is interpreted to be a reduction front that releases As for resorption downflow, yielding a high load of labile As sorbed to the sediment at a depth of 35.8 mbgl and concentrations of As in groundwater that reach >1000 µg/L.


Subject(s)
Arsenates/chemistry , Arsenic/analysis , Desulfuromonas/isolation & purification , Environmental Monitoring/methods , Groundwater/microbiology , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Asia, Western , Desulfuromonas/growth & development , Ferric Compounds/analysis , Geologic Sediments/chemistry , Geologic Sediments/microbiology , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
2.
Int J Syst Evol Microbiol ; 65(Pt 5): 1686-1693, 2015 May.
Article in English | MEDLINE | ID: mdl-25736408

ABSTRACT

A novel, mesophilic, obligately anaerobic, acetate-oxidizing, dissimilatory iron-, sulfur-, and manganese-reducing bacterium, designated strain ICBM(T), was obtained from an active, coalbed methane gas well in Indiana, USA. Strain ICBM(T) was a Gram-stain-negative, non-spore-forming, rod-shaped, non-motile bacterium that was rich in c-type cytochromes and formed red colonies in solid medium. Strain ICBM(T) conserved energy to support growth from the oxidation of acetate, propionate, pyruvate, malate, fumarate, succinate and dl-lactate, concomitant with dissimilatory iron reduction. Strain ICBM(T) fermented fumarate yielding succinate and acetate. Strain ICBM(T) was able to grow in the temperature range of 10 °C to 37 °C, NaCl concentration range of 0 to 1.2 M, and pH range of 6.5 to 8.0. The physiological characteristics of strain ICBM(T) indicated that it belongs to the Desulfuromonas cluster. The G+C content of its genomic DNA was 61.2 mol%. The predominant cellular fatty acids were C16 : 0 (39.3%), C16 : 1ω7c and/or iso-C15 : 0 2-OH (36.6%). The closest cultured phylogenetic relative of strain ICBM(T) was Desulfuromonas michiganensis BB1(T) with only 95% 16S rRNA gene sequence similarity. This confirmed that strain ICBM(T) is affiliated with the genus Desulfuromonas . On the basis of phenotypic and genotypic differences between strain ICBM(T) and other taxa of the genus Desulfuromonas , strain ICBM(T) represents a novel species for which the name Desulfuromonas carbonis sp. nov. is proposed (type strain ICBM(T) = DSM 29759(T) = JCM 30471(T)). Strain ICBM(T) is the first Fe(III)-, S(0)-, and Mn(IV)-reducing bacterium that was isolated from a coal bed.


Subject(s)
Desulfuromonas/classification , Oil and Gas Fields/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , Cytochromes/chemistry , DNA, Bacterial/genetics , Desulfuromonas/genetics , Desulfuromonas/isolation & purification , Fatty Acids/chemistry , Ferric Compounds/metabolism , Indiana , Manganese Compounds/metabolism , Methane , Molecular Sequence Data , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
3.
Microbiology (Reading) ; 160(Pt 1): 123-129, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24169815

ABSTRACT

Microbial oxidation of elemental sulfur with an electrode serving as the electron acceptor is of interest because this may play an important role in the recovery of electrons from sulfidic wastes and for current production in marine benthic microbial fuel cells. Enrichments initiated with a marine sediment inoculum, with elemental sulfur as the electron donor and a positively poised (+300 mV versus Ag/AgCl) anode as the electron acceptor, yielded an anode biofilm with a diversity of micro-organisms, including Thiobacillus, Sulfurimonas, Pseudomonas, Clostridium and Desulfuromonas species. Further enrichment of the anode biofilm inoculum in medium with elemental sulfur as the electron donor and Fe(III) oxide as the electron acceptor, followed by isolation in solidified sulfur/Fe(III) medium yielded a strain of Desulfuromonas, designated strain TZ1. Strain TZ1 effectively oxidized elemental sulfur to sulfate with an anode serving as the sole electron acceptor, at rates faster than Desulfobulbus propionicus, the only other organism in pure culture previously shown to oxidize S° with current production. The abundance of Desulfuromonas species enriched on the anodes of marine benthic fuel cells has previously been interpreted as acetate oxidation driving current production, but the results presented here suggest that sulfur-driven current production is a likely alternative.


Subject(s)
Desulfuromonas/metabolism , Electricity , Electrodes/microbiology , Sulfates/metabolism , Sulfur/metabolism , Bioelectric Energy Sources , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Desulfuromonas/classification , Desulfuromonas/genetics , Desulfuromonas/isolation & purification , Geologic Sediments/microbiology , Molecular Sequence Data , Oxidation-Reduction , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...