Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.610
Filter
1.
J Oleo Sci ; 73(6): 887-894, 2024.
Article in English | MEDLINE | ID: mdl-38825541

ABSTRACT

Bicellar mixtures containing diacetylene molecules, such as diynoic acids, can be used as parent materials for functional membranes. A bicellar mixture consisting of a diynoic acid-10,12-tricosadiynoic acid (TCDA)-, a phospholipid-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-, and a detergent-3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropanesulfonate (CHAPSO)-was evaluated for its morphology and packing of TCDA molecules in its bicellar mixture. A TCDA/DMPC vesicle was prepared at different molar ratios, TCDA/DMPC = 2/8, 5/5, and 8/2; a TCDA/DMPC/CHAPSO bicellar mixture was prepared by mixing a CHAPSO solution with a TCDA/DMPC vesicle solution as a detergent at different composition ratios, x TCDA/DMPC = [TCDA/DMPC]/([TCDA/DMPC]+[CHAPSO]), of 1.0, 0.70, 0.50, and 0.30. A DMPC molecule formed a bilayer membrane structure and was used to suppress its precipitation. The packing density of the TCDA/DMPC/CHAPSO bicellar mixtures was increased by mixing a CHAPSO molecule in x TCDA/DMPC = 1.0 to 0.70 or 0.50. A TEM image of a TCDA/DMPC/CHAPSO bicellar mixture showed many discoidal assemblies at x TCDA/DMPC = 0.5 of TCDA/DMPC = 5/5. Polymerization of the TCDA molecules in the bicellar mixture by UV light suggested an ordered arrangement of TCDA. Polymerization at x TCDA/DMPC = 0.70 and 0.50 correlated with improved packing density.


Subject(s)
Dimyristoylphosphatidylcholine , Dimyristoylphosphatidylcholine/chemistry , Detergents/chemistry , Lipid Bilayers/chemistry , Phase Separation
2.
Sci Rep ; 14(1): 12682, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38830978

ABSTRACT

In the field of biotechnology, the utilization of agro-industrial waste for generating high-value products, such as microbial biomass and enzymes, holds significant importance. This study aimed to produce recombinant α-amylase from Anoxybacillus karvacharensis strain K1, utilizing whey as an useful growth medium. The purified hexahistidine-tagged α-amylase exhibited remarkable homogeneity, boasting a specific activity of 1069.2 U mg-1. The enzyme displayed its peak activity at 55 °C and pH 6.5, retaining approximately 70% of its activity even after 3 h of incubation at 55 °C. Its molecular weight, as determined via SDS-PAGE, was approximately 69 kDa. The α-amylase demonstrated high activity against wheat starch (1648.8 ± 16.8 U mg-1) while exhibiting comparatively lower activity towards cyclodextrins and amylose (≤ 200.2 ± 16.2 U mg-1). It exhibited exceptional tolerance to salt, withstanding concentrations of up to 2.5 M. Interestingly, metal ions and detergents such as sodium dodecyl sulfate (SDS), Triton 100, Triton 40, and Tween 80, 5,5'-dithio-bis-[2-nitrobenzoic acid (DNTB), ß-mercaptoethanol (ME), and dithiothreitol (DTT) had no significant inhibitory effect on the enzyme's activity, and the presence of CaCl2 (2 mM) even led to a slight activation of the recombinant enzyme (1.4 times). The Michaelis constant (Km) and maximum reaction rate (Vmax), were determined using soluble starch as a substrate, yielding values of 1.2 ± 0.19 mg mL-1 and 1580.3 ± 183.7 µmol mg-1 protein min-1, respectively. Notably, the most favorable conditions for biomass and recombinant α-amylase production were achieved through the treatment of acid whey with ß-glucosidase for 24 h.


Subject(s)
Anoxybacillus , Detergents , Whey , alpha-Amylases , alpha-Amylases/metabolism , alpha-Amylases/chemistry , Whey/metabolism , Whey/chemistry , Anoxybacillus/enzymology , Anoxybacillus/genetics , Detergents/chemistry , Hydrogen-Ion Concentration , Enzyme Stability , Recombinant Proteins/metabolism , Recombinant Proteins/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Starch/metabolism , Starch/chemistry , Temperature
3.
Appl Microbiol Biotechnol ; 108(1): 365, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842543

ABSTRACT

Lipases are important biocatalysts and ubiquitous in plants, animals, and microorganisms. The high growth rates of microorganisms with low production costs have enabled the wide application of microbial lipases in detergent, food, and cosmetic industries. Herein, a novel lipase from Lacticaseibacillus rhamnosus IDCC 3201 (Lac-Rh) was isolated and its activity analyzed under a range of reaction conditions to evaluate its potential industrial application. The isolated Lac-Rh showed a molecular weight of 24 kDa and a maximum activity of 3438.5 ± 1.8 U/mg protein at 60 °C and pH 8. Additionally, Lac-Rh retained activity in alkaline conditions and in 10% v/v concentrations of organic solvents, including glycerol and acetone. Interestingly, after pre-incubation in the presence of multiple commercial detergents, Lac-Rh maintained over 80% of its activity and the stains from cotton were successfully removed under a simulated laundry  setting. Overall, the purified lipase from L. rhamnosus IDCC 3201 has potential for use as a detergent in industrial applications. KEY POINTS: • A novel lipase (Lac-Rh) was isolated from Lacticaseibacillus rhamnosus IDCC 3201 • Purified Lac-Rh exhibited its highest activity at a temperature of 60 °C and a pH of 8, respectively • Lac-Rh remains stable in commercial laundry detergent and enhances washing performance.


Subject(s)
Detergents , Enzyme Stability , Lacticaseibacillus rhamnosus , Lipase , Lipase/metabolism , Lipase/chemistry , Lipase/genetics , Lacticaseibacillus rhamnosus/enzymology , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/chemistry , Hydrogen-Ion Concentration , Detergents/chemistry , Temperature , Molecular Weight , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism
4.
Microb Biotechnol ; 17(6): e14466, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38829370

ABSTRACT

Microbial communities from extreme environments are largely understudied, but are essential as producers of metabolites, including enzymes, for industrial processes. As cultivation of most microorganisms remains a challenge, culture-independent approaches for enzyme discovery in the form of metagenomics to analyse the genetic potential of a community are rapidly becoming the way forward. This study focused on analysing a metagenome from the cold and alkaline ikaite columns in Greenland, identifying 282 open reading frames (ORFs) that encoded putative carbohydrate-modifying enzymes with potential applications in, for example detergents and other processes where activity at low temperature and high pH is desired. Seventeen selected ORFs, representing eight enzyme families were synthesized and expressed in two host organisms, Escherichia coli and Aliivibrio wodanis. Aliivibrio wodanis demonstrated expression of a more diverse range of enzyme classes compared to E. coli, emphasizing the importance of alternative expression systems for enzymes from extremophilic microorganisms. To demonstrate the validity of the screening strategy, we chose a recombinantly expressed cellulolytic enzyme from the metagenome for further characterization. The enzyme, Cel240, exhibited close to 40% of its relative activity at low temperatures (4°C) and demonstrated endoglucanase characteristics, with a preference for cellulose substrates. Despite low sequence similarity with known enzymes, computational analysis and structural modelling confirmed its cellulase-family affiliation. Cel240 displayed activity at low temperatures and good stability at 25°C, activity at alkaline pH and increased activity in the presence of CaCl2, making it a promising candidate for detergent and washing industry applications.


Subject(s)
Cellulase , Cold Temperature , Detergents , Enzyme Stability , Escherichia coli , Metagenomics , Greenland , Detergents/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Cellulase/genetics , Cellulase/metabolism , Cellulase/chemistry , Metagenome , Hydrogen-Ion Concentration , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Gene Expression , Open Reading Frames
5.
Sci Rep ; 14(1): 12533, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822066

ABSTRACT

In flaviviruses such as Dengue or Zika, non-structural (NS) NS4A protein forms homo-oligomers, participates in membrane remodelling and is critical for virulence. In both viruses, mature NS4A has the same length and three predicted hydrophobic domains. The oligomers formed by Dengue NS4A are reported to be small (n = 2, 3), based on denaturing SDS gels, but no high-resolution structure of a flavivirus NS4A protein is available, and the size of the oligomer in lipid membranes is not known. Herein we show that crosslinking Zika NS4A protein in lipid membranes results in oligomers at least up to hexamers. Further, sedimentation velocity shows that NS4A in mild detergent C14-betaine appears to be in fast equilibrium between at least two species, where one is smaller, and the other larger, than a trimer or a tetramer. Consistently, sedimentation equilibrium data was best fitted to a model involving an equilibrium between dimers (n = 2) and hexamers (n = 6). Overall, the large, at least hexameric, oligomers obtained herein in liposomes and in mild detergent are more likely to represent the forms of NS4A present in cell membranes.


Subject(s)
Detergents , Liposomes , Protein Multimerization , Viral Nonstructural Proteins , Zika Virus , Liposomes/chemistry , Liposomes/metabolism , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Detergents/chemistry , Zika Virus/chemistry
6.
Protein Sci ; 33(6): e4976, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38757374

ABSTRACT

G-protein coupled receptors (GPCRs) are the largest class of membrane proteins encoded in the human genome with high pharmaceutical relevance and implications to human health. These receptors share a prevalent architecture of seven transmembrane helices followed by an intracellular, amphipathic helix 8 (H8) and a disordered C-terminal tail (Ctail). Technological advancements have led to over 1000 receptor structures in the last two decades, yet frequently H8 and the Ctail are conformationally heterogeneous or altogether absent. Here we synthesize a peptide comprising the neurotensin receptor 1 (NTS1) H8 and Ctail (H8-Ctail) to investigate its structural stability, conformational dynamics, and orientation in the presence of detergent and phospholipid micelles, which mimic the membrane. Circular dichroism (CD) and nuclear magnetic resonance (NMR) measurements confirm that zwitterionic 1,2-diheptanoyl-sn-glycero-3-phosphocholine is a potent stabilizer of H8 structure, whereas the commonly-used branched detergent lauryl maltose neopentyl glycol (LMNG) is unable to completely stabilize the helix - even at amounts four orders of magnitude greater than its critical micellar concentration. We then used NMR spectroscopy to assign the backbone chemical shifts. A series of temperature and lipid titrations were used to define the H8 boundaries as F376-R392 from chemical shift perturbations, changes in resonance intensity, and chemical-shift-derived phi/psi angles. Finally, the H8 azimuthal and tilt angles, defining the helix orientation relative of the membrane normal were measured using paramagnetic relaxation enhancement NMR. Taken together, our studies reveal the H8-Ctail region is sensitive to membrane physicochemical properties and is capable of more adaptive behavior than previously suggested by static structural techniques.


Subject(s)
Receptors, Neurotensin , Receptors, Neurotensin/chemistry , Receptors, Neurotensin/metabolism , Receptors, Neurotensin/genetics , Humans , Micelles , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , Peptides/metabolism , Circular Dichroism , Protein Conformation, alpha-Helical , Detergents/chemistry , Models, Molecular
7.
Sci Rep ; 14(1): 10888, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38740835

ABSTRACT

Ethylenediaminetetraacetic acid (EDTA), a classically used chelating agent of decalcification, maintains good morphological details, but its slow decalcification limits its wider applications. Many procedures have been reported to accelerate EDTA-based decalcification, involving temperature, concentration, sonication, agitation, vacuum, microwave, or combination. However, these procedures, concentrating on purely tissue-outside physical factors to increase the chemical diffusion, do not enable EDTA to exert its full capacity due to tissue intrinsic chemical resistances around the diffusion passage. The resistances, such as tissue inner lipids and electric charges, impede the penetration of EDTA. We hypothesized that delipidation and shielding electric charges would accelerate EDTA-based penetration and the subsequent decalcification. The hypothesis was verified by the observation of speedy penetration of EDTA with additives of detergents and hypertonic saline, testing on tissue-mimicking gels of collagen and adult mouse bones. Using a 26% EDTA mixture with the additives at 45°C, a conventional 7-day decalcification of adult mouse ankle joints could be completed within 24 h while the tissue morphological structure, antigenicity, enzymes, and DNA were well preserved, and mRNA better retained compared to using 15% EDTA at room temperature. The addition of hypertonic saline and detergents to EDTA decalcification is a simple, rapid, and inexpensive method that doesn't disrupt the current histological workflow. This method is equally or even more effective than the currently most used decalcification methods in preserving the morphological details of tissues. It can be highly beneficial for the related community.


Subject(s)
Detergents , Edetic Acid , RNA, Messenger , Animals , Edetic Acid/chemistry , Edetic Acid/pharmacology , Detergents/chemistry , Mice , RNA, Messenger/genetics , Saline Solution, Hypertonic/chemistry , Bone and Bones/metabolism , Bone and Bones/drug effects , Bone and Bones/chemistry , Decalcification Technique/methods
8.
Int J Mol Sci ; 25(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38674110

ABSTRACT

Membrane proteins constitute about 20% of the human proteome and play crucial roles in cellular functions. However, a complete understanding of their structure and function is limited by their hydrophobic nature, which poses significant challenges in purification and stabilization. Detergents, essential in the isolation process, risk destabilizing or altering the proteins' native conformations, thus affecting stability and functionality. This study leverages single-particle cryo-electron microscopy to elucidate the structural nuances of membrane proteins, focusing on the SLAC1 bacterial homolog from Haemophilus influenzae (HiTehA) purified with diverse detergents, including n-dodecyl ß-D-maltopyranoside (DDM), glycodiosgenin (GDN), ß-D-octyl-glucoside (OG), and lauryl maltose neopentyl glycol (LMNG). This research not only contributes to the understanding of membrane protein structures but also addresses detergent effects on protein purification. By showcasing that the overall structural integrity of the channel is preserved, our study underscores the intricate interplay between proteins and detergents, offering insightful implications for drug design and membrane biology.


Subject(s)
Bacterial Proteins , Cryoelectron Microscopy , Detergents , Haemophilus influenzae , Cryoelectron Microscopy/methods , Haemophilus influenzae/ultrastructure , Haemophilus influenzae/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Detergents/chemistry , Microscopy, Electron, Transmission/methods , Membrane Proteins/chemistry , Membrane Proteins/ultrastructure , Membrane Proteins/metabolism
9.
Protein Expr Purif ; 219: 106479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38574878

ABSTRACT

Owing to vast therapeutic, commercial, and industrial applications of microbial proteases microorganisms from different sources are being explored. In this regard, the gut microbiota of Monopteruscuchia were isolated and examined for the production of protease. All the isolates were primarily and secondarily screened on skim milk and gelatin agar plates. The protease-positive isolates were characterized morphologically, biochemically, and molecularly. Out of the 20 isolated strains,6 belonging to five different genera viz.Bacillus,Priestia,Aeromonas,Staphylococcus, and Serratia demonstrated proteolytic activity. Bacillussafensis strain PRN1 demonstrated the highest protease production and, thus, the largest hydrolytic clear zones in both skim milk agar (15 ± 1 mm) and gelatin (16 ± 1 mm) plates. The optimized parameters (time, pH, temperature, carbon, nitrogen) for highest protease activity and microbial growth of B.safensis strain PRN1 includes 72 h (OD600 = 0.56,1303 U/mL), pH 8 (OD600 = 0.83, 403.29 U/mL), 40 °C (OD600 = 1.75, 1849.11 U/mL), fructose (OD600 = 1.22, 1502 U/mL), and gelatin (OD600 = 1.88, 1015.33 U/mL). The enzyme was purified to homogeneity using salt-precipitation and gel filtration chromatography. The sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the purified enzyme was a monomer of a molecular weight of ∼33 kDa. The protease demonstrated optimal activity at pH 8 and 60 °C. It was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), demonstrating that it belongs to the serine-proteases family. The compatibility of the enzyme with surfactants and commercial detergents demonstrates its potential use in the detergent industry. Furthermore, the purified enzyme showed antibacterial and blood-stain removal properties.


Subject(s)
Bacillus , Detergents , Serine Proteases , Detergents/chemistry , Detergents/pharmacology , Serine Proteases/isolation & purification , Serine Proteases/chemistry , Serine Proteases/genetics , Serine Proteases/metabolism , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration
10.
Environ Sci Pollut Res Int ; 31(21): 30497-30508, 2024 May.
Article in English | MEDLINE | ID: mdl-38607492

ABSTRACT

Detergents are highly produced pollutants with environmental problems like foam generation and toxic effects in biota. Nonylphenol ethoxylates (NPEs) are efficient, economical, and versatile surfactants, used in detergents for more than 40 years due to their detergency capacity. In the environment, NPE biodegrades into the metabolite nonylphenol (NP), classified as an endocrine disruptor. The identification and quantification of 4-NP in a designed detergent and 30 commercially available detergents were performed to prove the degradation of NPE into 4-NP during storage time. This investigation introduces the first evidence of NPE degradation during storage in commercially available detergents, demonstrating a novel exposure pathway in humans that has not been explored before, representing potential human health risks. Therefore, simple, easy, low-cost, and available approaches to remove and substitute NP is paramount. Alkyl polyglucoside (APG) was assessed as a substitute, and the feasibility of this substitution was proven according to physical and chemical properties, cleaning performance, and antimicrobial properties. NPE substitution in detergents is demonstrated as a viable strategy to minimize exposure risks in humans and the environment.


Subject(s)
Detergents , Detergents/chemistry , Ethylene Glycols/chemistry , Phenols , Surface-Active Agents/chemistry , Humans , Endocrine Disruptors/analysis
11.
Langmuir ; 40(12): 6524-6536, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38478717

ABSTRACT

Triton X-100 (TX-100) is a membrane-disrupting detergent that is widely used to inactivate membrane-enveloped viral pathogens, yet is being phased out due to environmental safety concerns. Intense efforts are underway to discover regulatory acceptable detergents to replace TX-100, but there is scarce mechanistic understanding about how these other detergents disrupt phospholipid membranes and hence which ones are suitable to replace TX-100 from a biophysical interaction perspective. Herein, using the quartz crystal microbalance-dissipation (QCM-D) and electrochemical impedance spectroscopy (EIS) techniques in combination with supported lipid membrane platforms, we characterized the membrane-disruptive properties of a panel of TX-100 replacement candidates with varying antiviral activities and identified two distinct classes of membrane-interacting detergents with different critical micelle concentration (CMC) dependencies and biophysical mechanisms. While all tested detergents formed micelles, only a subset of the detergents caused CMC-dependent membrane solubilization similarly to that of TX-100, whereas other detergents adsorbed irreversibly to lipid membrane interfaces in a CMC-independent manner. We compared these biophysical results to virus inactivation data, which led us to identify that certain membrane-interaction profiles contribute to greater antiviral activity and such insights can help with the discovery and validation of antiviral detergents to replace TX-100.


Subject(s)
Detergents , Phospholipids , Polyethylene Glycols , Octoxynol/pharmacology , Octoxynol/chemistry , Detergents/pharmacology , Detergents/chemistry , Phospholipids/chemistry , Micelles , Antiviral Agents/pharmacology , Lipid Bilayers/chemistry
12.
Biofabrication ; 16(2)2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394679

ABSTRACT

Decellularized matrices are an attractive choice of scaffold in regenerative medicine as they can provide the necessary extracellular matrix (ECM) components, signals and mechanical properties. Various detergent-based protocols have already been proposed for decellularization of skeletal muscle tissue. However, a proper comparison is difficult due to differences in species, muscle origin and sample sizes. Moreover, a thorough evaluation of the remaining acellular matrix is often lacking. We compared an in-house developed decellularization protocol to four previously published methods in a standardized manner. Porcine skeletal muscle samples with uniform thickness were subjected to in-depth histological, ultrastructural, biochemical and biomechanical analysis. In addition, 2D and three-dimensional cytocompatibility experiments were performed. We found that the decellularization methods had a differential effect on the properties of the resulting acellular matrices. Sodium deoxycholate combined with deoxyribonuclease I was not an effective method for decellularizing thick skeletal muscle tissue. Triton X-100 in combination with trypsin, on the other hand, removed nuclear material but not cytoplasmic proteins at low concentrations. Moreover, it led to significant alterations in the biomechanical properties. Finally, sodium dodecyl sulphate (SDS) seemed most promising, resulting in a drastic decrease in DNA content without major effects on the ECM composition and biomechanical properties. Moreover, cell attachment and metabolic activity were also found to be the highest on samples decellularized with SDS. Through a newly proposed standardized analysis, we provide a comprehensive understanding of the impact of different decellularizing agents on the structure and composition of skeletal muscle. Evaluation of nuclear content as well as ECM composition, biomechanical properties and cell growth are important parameters to assess. SDS comes forward as a detergent with the best balance between all measured parameters and holds the most promise for decellularization of skeletal muscle tissue.


Subject(s)
Detergents , Extracellular Matrix , Animals , Swine , Detergents/chemistry , Detergents/metabolism , Detergents/pharmacology , Extracellular Matrix/metabolism , Octoxynol/chemistry , Octoxynol/metabolism , Octoxynol/pharmacology , Muscle, Skeletal , Sodium Dodecyl Sulfate/chemistry , Sodium Dodecyl Sulfate/metabolism , Sodium Dodecyl Sulfate/pharmacology , Tissue Scaffolds , Tissue Engineering/methods
13.
Proteomics ; 24(10): e2300339, 2024 May.
Article in English | MEDLINE | ID: mdl-38299459

ABSTRACT

Detergent-based workflows incorporating sodium dodecyl sulfate (SDS) necessitate additional steps for detergent removal ahead of mass spectrometry (MS). These steps may lead to variable protein recovery, inconsistent enzyme digestion efficiency, and unreliable MS signals. To validate a detergent-based workflow for quantitative proteomics, we herein evaluate the precision of a bottom-up sample preparation strategy incorporating cartridge-based protein precipitation with organic solvent to deplete SDS. The variance of data-independent acquisition (SWATH-MS) data was isolated from sample preparation error by modelling the variance as a function of peptide signal intensity. Our SDS-assisted cartridge workflow yield a coefficient of variance (CV) of 13%-14%. By comparison, conventional (detergent-free) in-solution digestion increased the CV to 50%; in-gel digestion provided lower CVs between 14% and 20%. By filtering peptides predicting to display lower precision, we further enhance the validity of data in global comparative proteomics. These results demonstrate the detergent-based precipitation workflow is a reliable approach for in depth, label-free quantitative proteome analysis.


Subject(s)
Chemical Precipitation , Detergents , Proteomics , Sodium Dodecyl Sulfate , Workflow , Proteomics/methods , Sodium Dodecyl Sulfate/chemistry , Detergents/chemistry , Proteome/analysis , Proteome/chemistry , Humans , Peptides/chemistry , Peptides/analysis
14.
Bioconjug Chem ; 35(2): 223-231, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38215010

ABSTRACT

Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.


Subject(s)
Detergents , Membrane Proteins , Membrane Proteins/metabolism , Detergents/chemistry , Micelles
15.
Anal Chem ; 96(6): 2574-2581, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38291764

ABSTRACT

Mass spectrometry (MS) analysis is often challenged by contaminations from detergents, salts, and polymers that compromise data quality and can damage the chromatography and MS instruments. However, researchers often discover contamination issues only after they acquire the data. There is no existing contaminant assay that is sensitive enough to detect trace amounts of contaminants from a few microliters of samples prior to MS analysis. To address this crucial need in the field, we developed a sensitive, rapid, and cost-effective contaminant spot check and removal assay (ContamSPOT) to detect and quantify trace amounts of contaminants, such as detergents, salts, and other chemicals commonly used in the MS sample preparation workflow. Only 1 µL of the sample was used prior to MS injection to quantify contaminants by ContamSPOT colorimetric or fluorometric assay on a thin layer chromatography (TLC) plate. We also optimized contaminant removal methods to salvage samples with minimal loss when ContamSPOT showed a positive result. ContamSPOT was then successfully applied to evaluate commonly used bottom-up proteomic methods regarding the effectiveness of removing detergent, peptide recovery, reproducibility, and proteome coverage. We expect ContamSPOT to be widely adopted by MS laboratories as a last-step quality checkpoint prior to MS injection. We provided a practical decision tree and a step-by-step protocol with a troubleshooting guide to facilitate the use of ContamSPOT by other researchers. ContamSPOT can also provide a unique readout of sample cleanliness for developing new MS-based sample preparation methods in the future.


Subject(s)
Detergents , Proteomics , Detergents/chemistry , Proteomics/methods , Reproducibility of Results , Salts , Mass Spectrometry/methods
16.
Int J Biol Macromol ; 260(Pt 1): 129507, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244731

ABSTRACT

Halophiles are excellent sources of detergent proteases that are attributed to stability in alkaline pH, salts, surfactants, and hydrophobic solvents. The lower enzymatic yields and tedious downstream processes necessitate the search for newer halophilic sources. We have previously reported a halotolerant Exiguobacterium sp. TBG-PICH-001, which secretes solvent-tolerant alkaline protease/s. The present study describes the heterologous expression of two protease genes, namely, rsep metalloprotease (WP_195864791, 1.23 Kb) and tpa serine protease (WP_195864453, 0.879 Kb) genes. These were cloned into the pET 22b + plasmid vector and expressed in Escherichia coli BL21(DE3). The recombinant proteases rsep and tpa showed respective yields of 6.3 and 6.7 IU/mg, 11 and 12-fold higher than the crude native protease/s from TBG-PICH-001. These showed soluble expression at 46 and 32 KDa, respectively. These were purified to homogeneity through Ni-NTA-affinity chromatography. The purified proteases were characterized for properties like pH & temperature optima and stability, substrate specificity, kinetic parameters, and detergent attributes. They showed affinity towards various substrates with a respective Km of 392 and 301 µM towards casein. The recombinant proteases exhibited stability in the alkaline pH (7-10), surfactants, metal ions, detergents, and hydrophobic solvents, rendering their suitability as detergent additives.


Subject(s)
Detergents , Exiguobacterium , Exiguobacterium/metabolism , Detergents/chemistry , Solvents/chemistry , Enzyme Stability , Serine Proteases/chemistry , Surface-Active Agents , Temperature , Hydrogen-Ion Concentration , Bacterial Proteins/chemistry
17.
J Biomol NMR ; 78(1): 31-37, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38072902

ABSTRACT

For the A2A adenosine receptor (A2AAR), a class A G-protein-coupled receptor (GPCR), reconstituted in n-dodecyl-ß-D-maltoside (DDM)/|||||cholesteryl hemisuccinate (CHS) mixed micelles, previous 19F-NMR studies revealed the presence of multiple simultaneously populated conformational states. Here, we study the influence of a different detergent, lauryl maltose neopentyl glycol (LMNG) in mixed micelles with CHS, and of lipid bilayer nanodiscs on these conformational equilibria. The populations of locally different substates are pronouncedly different in DDM/|||||CHS and LMNG/|||||CHS micelles, whereas the A2AAR conformational manifold in LMNG/|||||CHS micelles is closely similar to that in the lipid bilayer nanodiscs. Considering that nanodiscs represent a closer match of the natural lipid bilayer membrane, these observations support that LMNG/|||||CHS micelles are a good choice for reconstitution trials of class A GPCRs for NMR studies in solution.


Subject(s)
Detergents , Lipid Bilayers , Lipid Bilayers/chemistry , Detergents/chemistry , Micelles , Nuclear Magnetic Resonance, Biomolecular , Receptors, Purinergic P1 , Receptor, Adenosine A2A/chemistry
18.
Biotechnol J ; 19(1): e2300441, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38010865

ABSTRACT

This study focused on the isolation and identification of a novel alkaline protease-producing strain from Lake Van, the largest soda lake on Earth. The objective was to purify, characterize, and investigate the potential application of protease in the detergent industry. Through a combination of classical and molecular methods, the most potent protease producer was identified as Exiguobacterium alkaliphilum VLP1. The purification process, involving ammonium sulfate precipitation, ultrafiltration, and anion exchange chromatography, resulted in a 45-fold purification with a yield of 6.4% and specific activity of 1169 U mg-1 protein. The enzyme exhibited a molecular weight of 69 kDa, a Km value of 0.4 mm, and a maximal velocity (Vmax ) value of 2000 U mg-1 . The optimum activity was observed at 40°C and potential of hydrogen (pH) 9, while the enzyme also exhibited remarkable stability in the ranges of 30-60°C and pH 9-12. Notably, this study represents the first report of an alkaline protease isolated and characterized from E. alkaliphilum. This study also highlighted the potential of the enzyme as a detergent additive, as it showed compatibility with commercial detergents and effectively removed blood and chocolate stains from fabrics.


Subject(s)
Detergents , Extremophiles , Detergents/chemistry , Extremophiles/metabolism , Endopeptidases/chemistry , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Enzyme Stability , Hydrogen-Ion Concentration , Temperature , Exiguobacterium
19.
Chempluschem ; 89(1): e202300386, 2024 01.
Article in English | MEDLINE | ID: mdl-37668309

ABSTRACT

Detergents are amphiphilic molecules that serve as enabling steps for today's world applications. The increasing diversity of the detergentome is key to applications enabled by detergent science. Regardless of the application, the optimal design of detergents is determined empirically, which leads to failed preparations, and raising costs. To facilitate project planning, here we review synthesis strategies that drive the diversification of the detergentome. Synthesis strategies relevant for industrial and academic applications include linear, modular, combinatorial, bio-based, and metric-assisted detergent synthesis. Scopes and limitations of individual synthesis strategies in context with industrial product development and academic research are discussed. Furthermore, when designing detergents, the selection of molecular building blocks, i. e., head, linker, tail, is as important as the employed synthesis strategy. To facilitate the design of safe-to-use and tailor-made detergents, we provide an overview of established head, linker, and tail groups and highlight selected scopes and limitations for applications. It becomes apparent that most recent contributions to the increasing chemical diversity of detergent building blocks originate from the development of detergents for membrane protein studies. The overview of synthesis strategies and molecular blocks will bring us closer to the ability to predictably design and synthesize optimal detergents for challenging future applications.


Subject(s)
Detergents , Membrane Proteins , Detergents/chemistry , Membrane Proteins/chemistry
20.
Allergy ; 79(1): 128-141, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37766519

ABSTRACT

BACKGROUND: Epithelial barrier impairment is associated with many skin and mucosal inflammatory disorders. Laundry detergents have been demonstrated to affect epithelial barrier function in vitro using air-liquid interface cultures of human epithelial cells. METHODS: Back skin of C57BL/6 mice was treated with two household laundry detergents at several dilutions. Barrier function was assessed by electric impedance spectroscopy (EIS) and transepidermal water loss (TEWL) measurements after the 4 h of treatments with detergents. RNA sequencing (RNA-seq) and targeted multiplex proteomics analyses in skin biopsy samples were performed. The 6-h treatment effect of laundry detergent and sodium dodecyl sulfate (SDS) was investigated on ex vivo human skin. RESULTS: Detergent-treated skin showed a significant EIS reduction and TEWL increase compared to untreated skin, with a relatively higher sensitivity and dose-response in EIS. The RNA-seq showed the reduction of the expression of several genes essential for skin barrier integrity, such as tight junctions and adherens junction proteins. In contrast, keratinization, lipid metabolic processes, and epidermal cell differentiation were upregulated. Proteomics analysis showed that the detergents treatment generally downregulated cell adhesion-related proteins, such as epithelial cell adhesion molecule and contactin-1, and upregulated proinflammatory proteins, such as interleukin 6 and interleukin 1 beta. Both detergent and SDS led to a significant decrease in EIS values in the ex vivo human skin model. CONCLUSION: The present study demonstrated that laundry detergents and its main component, SDS impaired the epidermal barrier in vivo and ex vivo human skin. Daily detergent exposure may cause skin barrier disruption and may contribute to the development of atopic diseases.


Subject(s)
Detergents , Skin , Humans , Mice , Animals , Detergents/adverse effects , Detergents/chemistry , Detergents/metabolism , Mice, Inbred C57BL , Skin/metabolism , Epidermis/metabolism , Inflammation/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...