Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.928
Filter
1.
JAMA Netw Open ; 7(6): e2415084, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38837156

ABSTRACT

Importance: Global developmental delay (GDD) is characterized by a complex etiology, diverse phenotypes, and high individual heterogeneity, presenting challenges for early clinical etiologic diagnosis. Cognitive impairment is the core symptom, and despite the pivotal role of genetic factors in GDD development, the understanding of them remains limited. Objectives: To assess the utility of genetic detection in patients with GDD and to examine the potential molecular pathogenesis of GDD to identify targets for early intervention. Design, Setting, and Participants: This multicenter, prospective cohort study enrolled patients aged 12 to 60 months with GDD from 6 centers in China from July 4, 2020, to August 31, 2023. Participants underwent trio whole exome sequencing (trio-WES) coupled with copy number variation sequencing (CNV-seq). Bioinformatics analysis was used to unravel pathogenesis and identify therapeutic targets. Main Outcomes and Measures: The main outcomes of this study involved enhancing the rate of positive genetic diagnosis for GDD, broadening the scope of genetic testing indications, and investigating the underlying pathogenesis. The classification of children into levels of cognitive impairment was based on the developmental quotient assessed using the Gesell scale. Results: The study encompassed 434 patients with GDD (262 [60%] male; mean [SD] age, 25.75 [13.24] months) with diverse degrees of cognitive impairment: mild (98 [23%]), moderate (141 [32%]), severe (122 [28%]), and profound (73 [17%]). The combined use of trio-WES and CNV-seq resulted in a 61% positive detection rate. Craniofacial abnormalities (odds ratio [OR], 2.27; 95% CI, 1.45-3.56), moderate or severe cognitive impairment (OR, 1.69; 95% CI, 1.05-2.70), and age between 12 and 24 months (OR, 1.57; 95% CI, 1.05-2.35) were associated with a higher risk of carrying genetic variants. Additionally, bioinformatics analysis suggested that genetic variants may induce alterations in brain development and function, which may give rise to cognitive impairment. Moreover, an association was found between the dopaminergic pathway and cognitive impairment. Conclusions and Relevance: In this cohort study of patients with GDD, combining trio-WES with CNV-seq was a demonstrable, instrumental strategy for advancing the diagnosis of GDD. The close association among genetic variations, brain development, and clinical phenotypes contributed valuable insights into the pathogenesis of GDD. Notably, the dopaminergic pathway emerged as a promising focal point for potential targets in future precision medical interventions for GDD.


Subject(s)
Developmental Disabilities , Genetic Testing , Humans , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis , Male , Female , Child, Preschool , Genetic Testing/methods , Genetic Testing/statistics & numerical data , Infant , Prospective Studies , Exome Sequencing/methods , China/epidemiology , DNA Copy Number Variations/genetics , Cognitive Dysfunction/genetics , Cognitive Dysfunction/diagnosis
2.
Orphanet J Rare Dis ; 19(1): 205, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764027

ABSTRACT

BACKGROUND: Trio-based whole-exome sequencing (trio-WES) enables identification of pathogenic variants, including copy-number variants (CNVs), in children with unexplained neurodevelopmental delay (NDD) and neurodevelopmental comorbidities (NDCs), including autism spectrum disorder (ASD), epilepsy, and attention deficit hyperactivity disorder. Further phenotypic and genetic analysis on trio-WES-tested NDD-NDCs cases may help to identify key phenotypic factors related to higher diagnostic yield of using trio-WES and novel risk genes associated with NDCs in clinical settings. METHODS: In this study, we retrospectively performed phenotypic analysis on 163 trio-WES-tested NDD-NDCs children to determine the phenotypic differences between genetically diagnosed and non-genetically diagnosed groups. Additionally, we conducted genetic analysis of ASD genes with the help of Simons Foundation for Autism Research Institute (SFARI) Gene database to identify novel possible ASD-risk genes underlying genetic NDD conditions. RESULTS: Among these 163 patients, pathogenic variants were identified in 82 cases (82/163, 50.3%), including 20 cases with CNVs. By comparing phenotypic variables between genetically diagnosed group (82 cases) and non-genetically diagnosed group (81 cases) with multivariate binary logistic regression analysis, we revealed that NDD-NDCs cases presenting with severe-profound NDD [53/82 vs 17/81, adjusted-OR (95%CI): 4.865 (2.213 - 10.694), adjusted-P < 0.001] or having multiple NDCs [26/82 vs 8/81, adjusted-OR (95%CI): 3.731 (1.399 - 9.950), adjusted-P = 0.009] or accompanying ASD [64/82 vs 35/81, adjusted-OR (95%CI): 3.256 (1.479 - 7.168), adjusted-P = 0.003] and head circumference abnormality [33/82 vs 11/81, adjusted-OR (95%CI): 2.788 (1.148 - 6.774), adjusted-P = 0.024] were more likely to have a genetic diagnosis using trio-WES. Moreover, 37 genes with monogenetic variants were identified in 48 patients genetically diagnosed with NDD-ASD, and 15 dosage-sensitive genes were identified in 16 individuals with NDD-ASD carrying CNVs. Most of those genes had been proven to be ASD-related genes. However, some of them (9 genes) were not proven sufficiently to correlate with ASD. By literature review and constructing protein-protein interaction networks among these 9 candidate ASD-risk genes and 102 established ASD genes obtained from the SFARI Gene database, we identified CUL4B, KCNH1, and PLA2G6 as novel possible ASD-risk genes underlying genetic NDD conditions. CONCLUSIONS: Trio-WES testing is recommended for patients with unexplained NDD-NDCs that have severe-profound NDD or multiple NDCs, particularly those with accompanying ASD and head circumference abnormality, as these independent factors may increase the likelihood of genetic diagnosis using trio-WES. Moreover, NDD patients with pathogenic variants in CUL4B, KCNH1 and PLA2G6 should be aware of potential risks of developing ASD during their disease courses.


Subject(s)
Autism Spectrum Disorder , Exome Sequencing , Neurodevelopmental Disorders , Humans , Exome Sequencing/methods , Female , Male , Child , Child, Preschool , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/epidemiology , Autism Spectrum Disorder/genetics , Retrospective Studies , DNA Copy Number Variations/genetics , Phenotype , Adolescent , Infant , Developmental Disabilities/genetics , Developmental Disabilities/epidemiology , East Asian People
3.
Mol Genet Genomic Med ; 12(5): e2420, 2024 May.
Article in English | MEDLINE | ID: mdl-38773911

ABSTRACT

OBJECTIVE: This study aims to report a severe phenotype of Arboleda-Tham syndrome in a 20-month-old girl, characterized by global developmental delay, distinct facial features, intellectual disability. Arboleda-Tham syndrome is known for its wide phenotypic spectrum and is associated with truncating variants in the KAT6A gene. METHODS: To diagnose this case, a combination of clinical phenotype assessment and whole-exome sequencing technology was employed. The genetic analysis involved whole-exome sequencing, followed by confirmation of the identified variant through Sanger sequencing. RESULTS: The whole-exome sequencing revealed a novel de novo frameshift mutation c.3048del (p.Leu1017Serfs*17) in the KAT6A gene, which is classified as likely pathogenic. This mutation was not found in the ClinVar and HGMD databases and was not present in her parents. The mutation leads to protein truncation or activation of nonsense-mediated mRNA degradation. The mutation is located within exon 16, potentially leading to protein truncation or activation of nonsense-mediated mRNA degradation. Protein modeling suggested that the de novo KAT6A mutation might alter hydrogen bonding and reduce protein stability, potentially damaging the protein structure and function. CONCLUSION: This study expands the understanding of the genetic basis of Arboleda-Tham syndrome, highlighting the importance of whole-exome sequencing in diagnosing cases with varied clinical presentations. The discovery of the novel KAT6A mutation adds to the spectrum of known pathogenic variants and underscores the significance of this gene in the syndrome's pathology.


Subject(s)
Developmental Disabilities , Exome Sequencing , Humans , Female , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Developmental Disabilities/diagnosis , Infant , Frameshift Mutation , Histone Acetyltransferases/genetics , Phenotype , Intellectual Disability/genetics , Intellectual Disability/pathology , Intellectual Disability/diagnosis
4.
BMC Neurol ; 24(1): 172, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783254

ABSTRACT

BACKGROUND: Epilepsy, a challenging neurological condition, is often present with comorbidities that significantly impact diagnosis and management. In the Pakistani population, where financial limitations and geographical challenges hinder access to advanced diagnostic methods, understanding the genetic underpinnings of epilepsy and its associated conditions becomes crucial. METHODS: This study investigated four distinct Pakistani families, each presenting with epilepsy and a spectrum of comorbidities, using a combination of whole exome sequencing (WES) and Sanger sequencing. The epileptic patients were prescribed multiple antiseizure medications (ASMs), yet their seizures persist, indicating the challenging nature of ASM-resistant epilepsy. RESULTS: Identified genetic variants contributed to a diverse range of clinical phenotypes. In the family 1, which presented with epilepsy, developmental delay (DD), sleep disturbance, and aggressive behavior, a homozygous splice site variant, c.1339-6 C > T, in the COL18A1 gene was detected. The family 2 exhibited epilepsy, intellectual disability (ID), DD, and anxiety phenotypes, a homozygous missense variant, c.344T > A (p. Val115Glu), in the UFSP2 gene was identified. In family 3, which displayed epilepsy, ataxia, ID, DD, and speech impediment, a novel homozygous frameshift variant, c.1926_1941del (p. Tyr643MetfsX2), in the ZFYVE26 gene was found. Lastly, family 4 was presented with epilepsy, ID, DD, deafness, drooling, speech impediment, hypotonia, and a weak cry. A homozygous missense variant, c.1208 C > A (p. Ala403Glu), in the ATP13A2 gene was identified. CONCLUSION: This study highlights the genetic heterogeneity in ASM-resistant epilepsy and comorbidities among Pakistani families, emphasizing the importance of genotype-phenotype correlation and the necessity for expanded genetic testing in complex clinical cases.


Subject(s)
Comorbidity , Epilepsy , Genetic Heterogeneity , Pedigree , Humans , Pakistan/epidemiology , Epilepsy/genetics , Epilepsy/epidemiology , Epilepsy/diagnosis , Male , Female , Child , Child, Preschool , Adolescent , Exome Sequencing , Adult , Developmental Disabilities/genetics , Developmental Disabilities/epidemiology , Young Adult , Intellectual Disability/genetics , Intellectual Disability/epidemiology , Phenotype
6.
Genes (Basel) ; 15(5)2024 May 14.
Article in English | MEDLINE | ID: mdl-38790248

ABSTRACT

The case report by Mabry et al. (1970) of a family with four children with elevated tissue non-specific alkaline phosphatase, seizures and profound developmental disability, became the basis for phenotyping children with the features that became known as Mabry syndrome. Aside from improvements in the services available to patients and families, however, the diagnosis and treatment of this, and many other developmental disabilities, did not change significantly until the advent of massively parallel sequencing. As more patients with features of the Mabry syndrome were identified, exome and genome sequencing were used to identify the glycophosphatidylinositol (GPI) biosynthesis disorders (GPIBDs) as a group of congenital disorders of glycosylation (CDG). Biallelic variants of the phosphatidylinositol glycan (PIG) biosynthesis, type V (PIGV) gene identified in Mabry syndrome became evidence of the first in a phenotypic series that is numbered HPMRS1-6 in the order of discovery. HPMRS1 [MIM: 239300] is the phenotype resulting from inheritance of biallelic PIGV variants. Similarly, HPMRS2 (MIM 614749), HPMRS5 (MIM 616025) and HPMRS6 (MIM 616809) result from disruption of the PIGO, PIGW and PIGY genes expressed in the endoplasmic reticulum. By contrast, HPMRS3 (MIM 614207) and HPMRS4 (MIM 615716) result from disruption of post attachment to proteins PGAP2 (HPMRS3) and PGAP3 (HPMRS4). The GPI biosynthesis disorders (GPIBDs) are currently numbered GPIBD1-21. Working with Dr. Mabry, in 2020, we were able to use improved laboratory diagnostics to complete the molecular diagnosis of patients he had originally described in 1970. We identified biallelic variants of the PGAP2 gene in the first reported HPMRS patients. We discuss the longevity of the Mabry syndrome index patients in the context of the utility of pyridoxine treatment of seizures and evidence for putative glycolipid storage in patients with HPMRS3. From the perspective of the laboratory innovations made that enabled the identification of the HPMRS phenotype in Dr. Mabry's patients, the need for treatment innovations that will benefit patients and families affected by developmental disabilities is clear.


Subject(s)
Congenital Disorders of Glycosylation , Developmental Disabilities , Glycosylphosphatidylinositols , Humans , Developmental Disabilities/genetics , Glycosylphosphatidylinositols/genetics , Congenital Disorders of Glycosylation/genetics , Phenotype , Male , Mutation , Female , Membrane Proteins/genetics , Mannosyltransferases
7.
Int J Mol Sci ; 25(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38791237

ABSTRACT

The NR4A2 gene encodes an orphan transcription factor of the steroid-thyroid hormone-retinoid receptor superfamily. This review focuses on the clinical findings associated with the pathogenic variants so far reported, including three unreported cases. Also, its role in neurodegenerative diseases, such as Parkinson's or Alzheimer's disease, is examined, as well as a brief exploration on recent proposals to develop novel therapies for these neurological diseases based on small molecules that could modulate NR4A2 transcriptional activity. The main characteristic shared by all patients is mild to severe developmental delay/intellectual disability. Moderate to severe disorder of the expressive and receptive language is present in at least 42%, while neuro-psychiatric issues were reported in 53% of patients. Movement disorders, including dystonia, chorea or ataxia, are described in 37% patients, although probably underestimated because of its frequent onset in late adolescence-young adulthood. Finally, epilepsy was surprisingly present in 42% of patients, being drug-resistant in three of them. The age at onset varied widely, from five months to twenty-six years, as did the classification of epilepsy, which ranged from focal epilepsy to infantile spasms or Lennox-Gastaut syndrome. Accordingly, we propose that NR4A2 should be considered as a first-tier target gene for the genetic diagnosis of developmental and epileptic encephalopathy.


Subject(s)
Epilepsy , Nuclear Receptor Subfamily 4, Group A, Member 2 , Humans , Epilepsy/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Developmental Disabilities/genetics , Developmental Disabilities/therapy , Intellectual Disability/genetics
8.
Am J Hum Genet ; 111(6): 1222-1238, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38781976

ABSTRACT

Heterozygous variants in SLC6A1, encoding the GAT-1 GABA transporter, are associated with seizures, developmental delay, and autism. The majority of affected individuals carry missense variants, many of which are recurrent germline de novo mutations, raising the possibility of gain-of-function or dominant-negative effects. To understand the functional consequences, we performed an in vitro GABA uptake assay for 213 unique variants, including 24 control variants. De novo variants consistently resulted in a decrease in GABA uptake, in keeping with haploinsufficiency underlying all neurodevelopmental phenotypes. Where present, ClinVar pathogenicity reports correlated well with GABA uptake data; the functional data can inform future reports for the remaining 72% of unscored variants. Surface localization was assessed for 86 variants; two-thirds of loss-of-function missense variants prevented GAT-1 from being present on the membrane while GAT-1 was on the surface but with reduced activity for the remaining third. Surprisingly, recurrent de novo missense variants showed moderate loss-of-function effects that reduced GABA uptake with no evidence for dominant-negative or gain-of-function effects. Using linear regression across multiple missense severity scores to extrapolate the functional data to all potential SLC6A1 missense variants, we observe an abundance of GAT-1 residues that are sensitive to substitution. The extent of this missense vulnerability accounts for the clinically observed missense enrichment; overlap with hypermutable CpG sites accounts for the recurrent missense variants. Strategies to increase the expression of the wild-type SLC6A1 allele are likely to be beneficial across neurodevelopmental disorders, though the developmental stage and extent of required rescue remain unknown.


Subject(s)
GABA Plasma Membrane Transport Proteins , Haploinsufficiency , Mutation, Missense , Humans , GABA Plasma Membrane Transport Proteins/genetics , Haploinsufficiency/genetics , gamma-Aminobutyric Acid/metabolism , Neurodevelopmental Disorders/genetics , Developmental Disabilities/genetics , Autistic Disorder/genetics , HEK293 Cells
9.
Mol Genet Metab ; 142(2): 108472, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703411

ABSTRACT

ALG13-Congenital Disorder of Glycosylation (CDG), is a rare X-linked CDG caused by pathogenic variants in ALG13 (OMIM 300776) that affects the N-linked glycosylation pathway. Affected individuals present with a predominantly neurological manifestation during infancy. Epileptic spasms are a common presenting symptom of ALG13-CDG. Other common phenotypes include developmental delay, seizures, intellectual disability, microcephaly, and hypotonia. Current management of ALG13-CDG is targeted to address patients' symptoms. To date, less than 100 individuals have been reported with ALG13-CDG. In this article, an international group of experts in CDG reviewed all reported individuals affected with ALG13-CDG and suggested diagnostic and management guidelines for ALG13-CDG. The guidelines are based on the best available data and expert opinion. Neurological symptoms dominate the phenotype of ALG13-CDG where epileptic spasm is confirmed to be the most common presenting symptom of ALG13-CDG in association with hypotonia and developmental delay. We propose that ACTH/prednisolone treatment should be trialed first, followed by vigabatrin, however ketogenic diet has been shown to have promising results in ALG13-CDG. In order to optimize medical management, we also suggest early cardiac, gastrointestinal, skeletal, and behavioral assessments in affected patients.


Subject(s)
Congenital Disorders of Glycosylation , Humans , Congenital Disorders of Glycosylation/genetics , Congenital Disorders of Glycosylation/therapy , Congenital Disorders of Glycosylation/diagnosis , Congenital Disorders of Glycosylation/complications , Glycosylation , Phenotype , Mutation , Muscle Hypotonia/genetics , Muscle Hypotonia/therapy , Muscle Hypotonia/diagnosis , Practice Guidelines as Topic , Developmental Disabilities/genetics , Developmental Disabilities/therapy , Infant , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Seizures/genetics , Seizures/therapy , Seizures/diagnosis , N-Acetylglucosaminyltransferases
11.
Nat Genet ; 56(5): 861-868, 2024 May.
Article in English | MEDLINE | ID: mdl-38637616

ABSTRACT

Rare damaging variants in a large number of genes are known to cause monogenic developmental disorders (DDs) and have also been shown to cause milder subclinical phenotypes in population cohorts. Here, we show that carrying multiple (2-5) rare damaging variants across 599 dominant DD genes has an additive adverse effect on numerous cognitive and socioeconomic traits in UK Biobank, which can be partially counterbalanced by a higher educational attainment polygenic score (EA-PGS). Phenotypic deviators from expected EA-PGS could be partly explained by the enrichment or depletion of rare DD variants. Among carriers of rare DD variants, those with a DD-related clinical diagnosis had a substantially lower EA-PGS and more severe phenotype than those without a clinical diagnosis. Our results suggest that the overall burden of both rare and common variants can modify the expressivity of a phenotype, which may then influence whether an individual reaches the threshold for clinical disease.


Subject(s)
Developmental Disabilities , Multifactorial Inheritance , Phenotype , Humans , Multifactorial Inheritance/genetics , Developmental Disabilities/genetics , Female , Male , Genetic Predisposition to Disease , Genetic Variation , United Kingdom , Genes, Modifier , Middle Aged , Genome-Wide Association Study
12.
Genes (Basel) ; 15(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38674365

ABSTRACT

O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.


Subject(s)
DNA-Binding Proteins , Developmental Disabilities , Child , Humans , Male , Autistic Disorder/genetics , Developmental Disabilities/genetics , Developmental Disabilities/pathology , DNA-Binding Proteins/genetics , Intellectual Disability/genetics , Intellectual Disability/pathology , Megalencephaly/genetics , Phenotype , RNA Splicing/genetics , Silent Mutation
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 591-595, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684307

ABSTRACT

OBJECTIVE: To explore the clinical characteristics and genetic etiology for a Chinese pedigree affected with Dyschromatosis symmetrica hereditaria (DSH) in conjunct with developmental delay. METHODS: A child who had presented at the First Affiliated Hospital of Zhengzhou University on May 28 2021 for abnormal skin pigmentation of the extremities and growth retardation for over 2 years was selected as the study subject. Clinical data of the child and his pedigree (11 individuals from three generations) was collected. The child was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing. RESULTS: The child, a two-year-and-seven-month-old male, had hyper- and hypopigmentation on his hands, feet and face, in addition with delayed development. All members of his pedigree had typical presentation of DSH. A heterozygous c.2657G>A variant was found in exon 8 of the ADAR gene in the child, his mother, and elder sister. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as likely pathogenic (PM1+PM2_Supporting+PP1+PP3). CONCLUSION: The c.2657G>A variant of the ADAR gene probably underlay the DSH in this pedigree.


Subject(s)
Adenosine Deaminase , Developmental Disabilities , Pedigree , Pigmentation Disorders , RNA-Binding Proteins , Adult , Child, Preschool , Female , Humans , Male , Adenosine Deaminase/genetics , China , Developmental Disabilities/genetics , East Asian People/genetics , Exome Sequencing , Mutation , Pigmentation Disorders/genetics , Pigmentation Disorders/congenital , RNA-Binding Proteins/genetics
14.
BMC Genomics ; 25(1): 391, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649797

ABSTRACT

Developmental delay (DD), or intellectual disability (ID) is a very large group of early onset disorders that affects 1-2% of children worldwide, which have diverse genetic causes that should be identified. Genetic studies can elucidate the pathogenesis underlying DD/ID. In this study, whole-exome sequencing (WES) was performed on 225 Chinese DD/ID children (208 cases were sequenced as proband-parent trio) who were classified into seven phenotype subgroups. The phenotype and genomic data of patients with DD/ID were further retrospectively analyzed. There were 96/225 (42.67%; 95% confidence interval [CI] 36.15-49.18%) patients were found to have causative single nucleotide variants (SNVs) and small insertions/deletions (Indels) associated with DD/ID based on WES data. The diagnostic yields among the seven subgroups ranged from 31.25 to 71.43%. Three specific clinical features, hearing loss, visual loss, and facial dysmorphism, can significantly increase the diagnostic yield of WES in patients with DD/ID (P = 0.005, P = 0.005, and P = 0.039, respectively). Of note, hearing loss (odds ratio [OR] = 1.86%; 95% CI = 1.00-3.46, P = 0.046) or abnormal brainstem auditory evoked potential (BAEP) (OR = 1.91, 95% CI = 1.02-3.50, P = 0.042) was independently associated with causative genetic variants in DD/ID children. Our findings enrich the variation spectrums of SNVs/Indels associated with DD/ID, highlight the value genetic testing for DD/ID children, stress the importance of BAEP screen in DD/ID children, and help to facilitate early diagnose, clinical management and reproductive decisions, improve therapeutic response to medical treatment.


Subject(s)
Developmental Disabilities , Exome Sequencing , Intellectual Disability , Child , Child, Preschool , Female , Humans , Infant , Male , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis , East Asian People/genetics , INDEL Mutation , Intellectual Disability/genetics , Phenotype , Polymorphism, Single Nucleotide
15.
Mol Biol Rep ; 51(1): 577, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664339

ABSTRACT

BACKGROUND: Chromosomal microarray analysis is an essential tool for copy number variants detection in patients with unexplained developmental delay/intellectual disability, autism spectrum disorders, and multiple congenital anomalies. The study aims to determine the clinical significance of chromosomal microarray analysis in this patient group. Another crucial aspect is the evaluation of copy number variants detected in terms of the diagnosis of patients. METHODS AND RESULTS: A Chromosomal microarray analysis was was conducted on a total of 1227 patients and phenotype-associated etiological diagnosis was established in 135 patients. Phenotype-associated copy number variants were detected in 11% of patients. Among these, 77 patients 77 (57%, 77/135) were diagnosed with well-recognized genetic syndromes and phenotype-associated copy number variants were found in 58 patients (42.9%, 58/135). The study was designed to collect data of patients in Kocaeli Derince Training and Research Hospital retrospectively. In our study, we examined 135 cases with clinically significant copy number variability among all patients. CONCLUSIONS: In this study, chromosomal microarray analysis revealed pathogenic de novo copy number variants with new clinical features. Chromosomal microarray analysis in the Turkish population has been reported in the largest patient cohort to date.


Subject(s)
Abnormalities, Multiple , Autism Spectrum Disorder , DNA Copy Number Variations , Developmental Disabilities , Humans , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/diagnosis , Turkey/epidemiology , DNA Copy Number Variations/genetics , Female , Male , Child , Child, Preschool , Developmental Disabilities/genetics , Developmental Disabilities/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/diagnosis , Adolescent , Phenotype , Infant , Intellectual Disability/genetics , Intellectual Disability/diagnosis , Chromosome Aberrations , Microarray Analysis/methods , Retrospective Studies , Adult
16.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 709-716, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38655615

ABSTRACT

SLC45A1 encodes a glucose transporter protein highly expressed in the brain. Mutations in SLC45A1 may lead to neurological diseases and developmental disorders, but its exact role is poorly understood. DNA G-quadruplexes (DNA G4s) are stable structures formed by four guanine bases and play a role in gene regulation and genomic stability. Changes in DNA G4s may affect brain development and function. The mechanism linking alterations in DNA G-quadruplex structures to SLC45A1 pathogenicity remains unknown. In this study, we identify a functional DNA G-quadruplex and its key binding site on SLC45A1 (NM_001080397.3: exon 2: c.449 G>A: p.R150K). This variant results in the upregulation of mRNA and protein expression, which may lead to intellectual developmental disorder with neuropsychiatric features. Mechanistically, the mutation is found to disrupt DNA G-quadruplex structures on SLC45A1, leading to transcriptional enhancement and a gain-of-function mutation, which further causes increased expression and function of the SLC45A1 protein. The identification of the functional DNA G-quadruplex and its effects on DNA G4s may provide new insights into the genetic basis of SLC45A1 pathogenicity and highlight the importance of DNA G4s of SLC45A1 in regulating gene expression and brain development.


Subject(s)
Developmental Disabilities , G-Quadruplexes , Humans , Developmental Disabilities/genetics , Gain of Function Mutation , HEK293 Cells , Binding Sites/genetics
17.
Mol Genet Metab ; 142(1): 108469, 2024 May.
Article in English | MEDLINE | ID: mdl-38564972

ABSTRACT

The trafficking protein particle (TRAPP) complex is a multisubunit protein complex that functions as a tethering factor involved in intracellular trafficking. TRAPPC11, a crucial subunit of this complex, is associated with pathogenic variants that cause a spectrum of disease, which can range from a limb girdle muscular dystrophy (LGMD) to developmental disability with muscle disease, movement disorder and global developmental delay (GDD)/intellectual disability (ID), or even a congenital muscular dystrophy (CMD). We reviewed the phenotype of all reported individuals with TRAPPC11-opathies, including an additional Mexican patient with novel compound heterozygous missense variants in TRAPPC11 (c.751 T > C and c.1058C > G), restricted to the Latino population. In these 54 patients muscular dystrophy signs are common (early onset muscle weakness, increased serum creatine kinase levels, and dystrophic changes in muscle biopsy). They present two main phenotypes, one with a slowly progressive LGMD with or without GDD/ID (n = 12), and another with systemic involvement characterized by short stature, GDD/ID, microcephaly, hypotonia, poor speech, seizures, cerebral atrophy, cerebellar abnormalities, movement disorder, scoliosis, liver disease, and cataracts (n = 42). In 6 of them CMD was identified. Obstructive hydrocephaly, retrocerebellar cyst, and talipes equinovarus found in the individual reported here has not been described in TRAPPC11 deficiency. As in previous patients, membrane trafficking assays in our patient showed defective abnormal endoplasmic reticulum-Golgi transport as well as decreased expression of LAMP2, and ICAM-1 glycoproteins. This supports previous statements that TRAPPC11-opathies are in fact a congenital disorder of glycosylation (CDG) with muscular dystrophy.


Subject(s)
Vesicular Transport Proteins , Adolescent , Child , Child, Preschool , Female , Humans , Male , Developmental Disabilities/genetics , Developmental Disabilities/pathology , Muscular Dystrophies, Limb-Girdle/genetics , Muscular Dystrophies, Limb-Girdle/pathology , Muscular Dystrophies, Limb-Girdle/diagnosis , Mutation, Missense , Phenotype , Vesicular Transport Proteins/genetics , Case Reports as Topic
18.
Pediatr Neurol ; 155: 8-17, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569228

ABSTRACT

BACKGROUND: TRAF7-related cardiac, facial, and digital anomalies with developmental delay (CAFDADD), a multisystemic neurodevelopmental disorder caused by germline missense variants in the TRAF7 gene, exhibits heterogeneous clinical presentations. METHODS: We present a detailed description of 11 new TRAF7-related CAFDADD cases, featuring eight distinct variants, including a novel one. RESULTS: Phenotypic analysis and a comprehensive review of the 58 previously reported cases outline consistent clinical presentations, emphasizing dysmorphic features, developmental delay, endocrine manifestations, and cardiac defects. In this enlarged collection, novelties include a wider range of cognitive dysfunction, with some individuals exhibiting normal development despite early psychomotor delay. Communication challenges, particularly in expressive language, are prevalent, necessitating alternative communication methods. Autistic traits, notably rigidity, are observed in the cohort. Also, worth highlighting are hearing loss, sleep disturbances, and endocrine anomalies, including growth deficiency. Cardiac defects, frequently severe, pose early-life complications. Facial features, including arched eyebrows, contribute to the distinct gestalt. A novel missense variant, p.(Arg653Leu), further underscores the complex relationship between germline TRAF7 variants and somatic changes linked to meningiomas. CONCLUSIONS: Our comprehensive analysis expands the phenotypic spectrum, emphasizing the need for oncological evaluations and proposing an evidence-based schedule for clinical management. This study contributes to a better understanding of TRAF7-related CAFDADD, offering insights for improved diagnosis, intervention, and patient care.


Subject(s)
Developmental Disabilities , Heart Defects, Congenital , Phenotype , Humans , Developmental Disabilities/genetics , Male , Female , Child , Child, Preschool , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Infant , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Mutation, Missense , Adolescent
19.
Clin Genet ; 106(1): 109-113, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38665048

ABSTRACT

Usmani-Riazuddin syndrome (USRISR, MIM# 619548; USRISD, MIM#619467) is a very rare genetic condition. recently associated with deleterious variants in AP1G1 (MIM* 603533). It is characterized by multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, muscular tone disorders, seizures, limb defects, and unspecified facial gestalt. In this report, we describe this syndrome for the second time, in association to a novel AP1G1 variant identified in a toddler with multisystemic involvement including intellectual disability, speech and developmental delay, behavioral anomalies, arrhythmias, hearing loss, skin changes, and limb defects. Next generation sequencing (NGS) analysis through clinical exome disclosed AP1G1: c.1969C>G (p.Leu657Val), de novo, likely pathogenic variant, according to ACMG classification criteria. Proband's facial features resembled the spectrum of chromatinopathies. Clinical pictures were analyzed and a clinical overlap was supported by DeepGestalt analysis (www.face2gene.com). The system identified 6 chromatin disorders out of 30 possible diagnoses. The remaining 24 included 9 miscellaneous cryptic chromosomal abnormalities (excluded due to normal microarray study). To the best of our knowledge, this is the first description of likely distinctive facial features in a patient with Usmani-Riazuddin syndrome. Further multicentric analyses are needed for a better definition of this aspect.


Subject(s)
Intellectual Disability , Phenotype , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , High-Throughput Nucleotide Sequencing , Mutation/genetics , Child, Preschool , Female , Developmental Disabilities/genetics , Developmental Disabilities/pathology
20.
Genet Test Mol Biomarkers ; 28(5): 213-217, 2024 May.
Article in English | MEDLINE | ID: mdl-38613467

ABSTRACT

DeSanto-Shinawi syndrome (DESSH, OMIM #616708) is a rare genetic disorder caused by pathogenic variants in the WAC gene. This syndrome is characterized by a wide range of physical and neurological symptoms including dysmorphic features, developmental delay, intellectual disability, and behavioral abnormalities. DESSH was described by DeSanto in 2015, and since then, only a few dozen cases have been reported worldwide. Recent research has focused on identifying the underlying genetic cause of the syndrome as well as exploring potential treatments. In this report, we describe a female case who had dysmorphic features including long palpebral fissures, depressed nasal root, mild bulbous nasal tip, thin upper lip, hypertrichosis, short fingers, and intellectual disability, speech delay, and motor retardation. In addition, she had behavioral abnormalities such as agitation, anxiety, and attention deficit hyperactivity disorder (ADHD). Clinical exome sequencing showed a pathogenic heterozygous nonsense variant in exon 13 of the WAC gene c.1837C>T, p.(Arg613Ter) with de novo inheritance. To the best of our knowledge, this is the first case of DESSH reported from Turkey. We aimed to report this rare syndrome and compare the clinical findings of our case with previously reported cases in the literature.


Subject(s)
Intellectual Disability , Phenotype , Humans , Female , Turkey , Intellectual Disability/genetics , Developmental Disabilities/genetics , Exome Sequencing/methods , Codon, Nonsense , Attention Deficit Disorder with Hyperactivity/genetics , Child , Abnormalities, Multiple/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...