Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.466
Filter
1.
Iran J Allergy Asthma Immunol ; 23(2): 197-220, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38822514

ABSTRACT

Systemic sclerosis (SSc) is an autoimmune systemic disease that is characterized by immune dysregulation, inflammation, vasculopathy, and fibrosis. Tissue fibrosis plays an important role in SSc and can affect several organs such as the dermis, lungs, and heart. Dysregulation of interferon (IFN) signaling contributes to the SSc pathogenesis and interferon regulatory factor 1 (IRF1) has been indicated as the main regulator of type I IFN. This study aimed to clarify the effect of IFN-gamma (-γ) and dexamethasone (DEX) on the IRF1, extracellular signal-regulated kinase 1/2 (ERK1/2), and the expression of alpha-smooth muscle actin (α-SMA) in myofibroblasts and genes involved in the inflammation and fibrosis processes in early diffuse cutaneous systemic sclerosis (dcSSc). A total of 10 early dcSSc patients (diffuse cutaneous form) and 10 unaffected control dermis biopsies were obtained to determine IFNγ and DEX effects on inflammation and fibrosis. Fibroblasts were treated with IFNγ and DEX at optimum time and dose. The expression level of genes and proteins involved in the fibrosis and inflammation processes have been quantified by quantitative real-time PCR (RT-qPCR) and western blot, respectively. IFNγ could up-regulate some of the inflammation-related genes (Interleukin-6; IL6) and down-regulate some of the fibrosis-related genes (COL1A1) in cultured fibroblasts of patients with early dcSSc compared to the untreated group. Besides, it has been revealed that IFNγ can induce fibroblast differentiation to the myofibroblast that expresses α-SMA. Concerning the inhibitory effect of IFNγ on some fibrotic genes and its positive effect on the inflammatory genes and myofibroblast differentiation, it seems that IFNγ may play a dual role in SSc.


Subject(s)
Actins , Fibroblasts , Interferon-gamma , Interleukin-6 , Scleroderma, Systemic , Adult , Female , Humans , Male , Middle Aged , Actins/metabolism , Actins/genetics , Cells, Cultured , Dexamethasone/pharmacology , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Fibrosis , Gene Expression Regulation/drug effects , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factor-1/genetics , Interferon-gamma/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , Myofibroblasts/metabolism , Myofibroblasts/pathology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/pathology , Scleroderma, Systemic/immunology
2.
Stress ; 27(1): 2353781, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38823417

ABSTRACT

Hypothalamic-pituitary-adrenal (HPA)-axis hyperactivity measured by the combined dexamethasone-CRH test (DEX-CRH test) has been found in patients with major depressive disorder (MDD), whereas hypoactivity has been found in patients with work-related stress. We aimed to investigate the DEX-CRH test as a biomarker to distinguish between MDD and work-related stress (exhaustion disorder - ED). We hypothesized that there would be lower cortisol and ACTH response in participants with ED compared to MDD and healthy controls (HC). Also, we explored if the cortisol response of those patients interacted with robust markers of oxidative stress. Thirty inpatients with MDD and 23 outpatients with ED were recruited. Plasma cortisol and ACTH were sampled during a DEX-CRH test. The main outcome measure, area under the curve (AUC) for cortisol and ACTH, was compa-red between MDD vs. ED participants and a historical HC group. Secondary markers of oxidative stress urinary 8-oxodG and 8-oxoGuo; quality of sleep and psychometrics were obtained. Cortisol concentrations were higher in MDD and ED participants compared to HC, and no differences in AUC cortisol and ACTH were found between ED vs. MDD. Compared to ED, MDD participants had higher stress symptom severity and a lower sense of well-being. No differences in oxidative stress markers or quality of sleep between the groups were found. The result indicates that the patients with ED, like patients with MDD, are non-suppressors in DEX-CRH test and not hypocortisolemic as suggested.


Subject(s)
Adrenocorticotropic Hormone , Biomarkers , Depressive Disorder, Major , Dexamethasone , Hydrocortisone , Oxidative Stress , Humans , Depressive Disorder, Major/blood , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnosis , Female , Male , Hydrocortisone/blood , Adult , Oxidative Stress/physiology , Adrenocorticotropic Hormone/blood , Biomarkers/blood , Dexamethasone/pharmacology , Middle Aged , Corticotropin-Releasing Hormone/blood , Occupational Stress/physiopathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/physiopathology
3.
Int Immunopharmacol ; 136: 112395, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38833845

ABSTRACT

Asthma is a long-term disease that causes airways swelling and inflammation and in turn airway narrowing. AdipoRonis an orally active synthetic small molecule that acts as a selective agonist at theadiponectin receptor 1 and 2. The aim of the current study is to delineate the protective effect and the potential underlying mechanism ofadipoRon inairway inflammationinduced byovalbumin (OVA) in comparison withdexamethasone. Adult maleSwiss Albino micewere sensitized to OVA on days 0 and 7, then challenged with OVA on days 14, 15 and 16. AdipoRon was administered orally for 6 days starting from the 11th day till the 16th and 1 h prior to OVA in the challenge days. Obtained results from asthmatic control group showed a significant decrease in serum adiponectin concentration, an increase in inflammatory cell counts inthe bronchoalveolar lavage fluid(BALF), CD68 protein expression, inflammatory cytokine concentration and oxidative stress as well. Administration of adipoRon enhanced antioxidant mechanisms limiting oxidative stress by significantly increasing reduced glutathione (GSH) pulmonary content, decreasing serum lactate dehydrogenase (LDH) together with malondialdehyde (MDA) significant reduction in lung tissue. In addition, it modulated the levels of serum immunoglobulin E (IgE), pro-inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-4, IL-13, nuclear factor kappa B (NF-κB) and the anti-inflammatory one IL-10 improving lung inflammation as revealed by histopathological evaluation. Furthermore, lung tissue expression of nuclear factor erythroid 2-related factor (Nrf2) and 5'AMP-activated protein kinase (AMPK) were significantly increased adipoRon. Notably, results of adipoRon received group were comparable to those of dexamethasone group. In conclusion, our study demonstrates that adipoRon can positively modulate adiponectin expression with activation of AMPK pathway and subsequent improvement in inflammatory and oxidative signaling.


Subject(s)
AMP-Activated Protein Kinases , Asthma , Disease Models, Animal , Ovalbumin , Receptors, Adiponectin , Signal Transduction , Animals , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Asthma/metabolism , Mice , Receptors, Adiponectin/agonists , Receptors, Adiponectin/metabolism , Ovalbumin/immunology , Male , Signal Transduction/drug effects , AMP-Activated Protein Kinases/metabolism , Lung/pathology , Lung/drug effects , Lung/immunology , Cytokines/metabolism , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Oxidative Stress/drug effects , Adiponectin , Anti-Asthmatic Agents/therapeutic use , Anti-Asthmatic Agents/pharmacology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Immunoglobulin E/blood , Humans , Dexamethasone/therapeutic use , Dexamethasone/pharmacology , Piperidines
4.
Res Vet Sci ; 175: 105318, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38851053

ABSTRACT

A retrospective cross-sectional study was conducted to assess the frequency of low-dose dexamethasone suppression test (LDDST) patterns in canine patients that had clinicopathologic signs consistent with Cushing's syndrome (CS). Medical records for patients of interest (N = 128) were reviewed between January 2014 and December 2020 to analyse and classify LDDST results based upon the following patterns: lack of suppression, partial suppression, complete suppression, escape, or inverse. Complete suppression, lack of suppression, partial suppression, escape, and inverse patterns were identified in 39.1%, 31.2%, 14.1%, 10.1% and 5.5% of cases respectively. LDDST results were also evaluated with respect to clinical signs, serum alkaline phosphatase (ALP) activity, urine specific gravity (USG) and adrenal ultrasonographic findings. There was no association between LDDST patterns and clinical signs (p = 0.11), increased ALP (p = 0.32), USG (p = 0.33) or adrenal ultrasonographic findings (p = 0.19). In all dogs that demonstrated complete suppression or an inverse pattern, CS was excluded by the attending clinician. The diagnosis of CS was also excluded without further exploration in 23.1%, 7.5% and 5.6% of dogs that demonstrated an escape pattern, lack of suppression and partial suppression pattern, respectively. These results suggest that the clinical significance of LDDST patterns, particularly escape and inverse patterns, are misunderstood by some clinicians, leading them to prematurely exclude the diagnosis of CS.


Subject(s)
Cushing Syndrome , Dexamethasone , Dog Diseases , Dogs , Animals , Retrospective Studies , Dog Diseases/diagnostic imaging , Cushing Syndrome/veterinary , Cushing Syndrome/pathology , Dexamethasone/administration & dosage , Dexamethasone/pharmacology , Male , Cross-Sectional Studies , Female , Ultrasonography/veterinary
5.
Drug Des Devel Ther ; 18: 2043-2061, 2024.
Article in English | MEDLINE | ID: mdl-38863767

ABSTRACT

Background: Despite its extensive utilization in Chinese hospitals for treating acute pancreatitis (AP) and related acute respiratory distress syndrome (ARDS), the active components and mechanisms underlying the action of Qingyi Granule (QYKL) remain elusive. Methods: This study consists of four parts. First, we used Mendelian randomization (MR) to investigate the causal relationship between AP, cytokine, and ARDS. Next, 321 patients were collected to evaluate the efficacy of QYKL combined with dexamethasone (DEX) in treating AP. In addition, we used UHPLC-QE-MS to determine the chemical constituents of QYKL extract and rat serum after the oral administration of QYKL. The weighted gene coexpression network analysis (WGCNA) method was used to find the main targets of AP-related ARDS using the GSE151572 dataset. At last, a AP model was established by retrograde injection of 5% sodium taurocholate. Results: MR showed that AP may have a causal relationship with ARDS by mediating cytokine storms. Retrospective study results showed early administration of QYKL was associated with a lower incidence of ARDS, mortality, admissions to the intensive care unit, and length of stay in AP patients compared to the Control group. Furthermore, we identified 23 QYKL prototype components absorbed into rat serum. WGCNA and differential expression analysis identified 1558 APALI-related genes. The prototype components exhibited strong binding activity with critical targets. QYKL has a significant protective effect on pancreatic and lung injury in AP rats, and the effect is more effective after combined treatment with DEX, which may be related to the regulation of the IL-6/STAT3 signaling pathway. Conclusion: By integrating MR, retrospective analysis, and systematic pharmacological methodologies, this study systematically elucidated the therapeutic efficacy of QYKL in treating AP-related ARDS, establishing a solid foundation for its medicinal use.


Subject(s)
Drugs, Chinese Herbal , Pancreatitis , Respiratory Distress Syndrome , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Respiratory Distress Syndrome/drug therapy , Pancreatitis/drug therapy , Pancreatitis/metabolism , Animals , Rats , Humans , Retrospective Studies , Male , Rats, Sprague-Dawley , Dexamethasone/pharmacology , Dexamethasone/administration & dosage , Acute Disease , Female , Middle Aged
6.
Crit Care ; 28(1): 185, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38807178

ABSTRACT

BACKGROUND: Streptococcus pneumoniae is the most common bacterial cause of community acquired pneumonia and the acute respiratory distress syndrome (ARDS). Some clinical trials have demonstrated a beneficial effect of corticosteroid therapy in community acquired pneumonia, COVID-19, and ARDS, but the mechanisms of this benefit remain unclear. The primary objective of this study was to investigate the effects of corticosteroids on the pulmonary biology of pneumococcal pneumonia in a mouse model. A secondary objective was to identify shared transcriptomic features of pneumococcal pneumonia and steroid treatment in the mouse model and clinical samples. METHODS: We carried out comprehensive physiologic, biochemical, and histological analyses in mice to identify the mechanisms of lung injury in Streptococcus pneumoniae with and without adjunctive steroid therapy. We also studied lower respiratory tract gene expression from a cohort of 15 mechanically ventilated patients (10 with Streptococcus pneumoniae and 5 controls) to compare with the transcriptional studies in the mice. RESULTS: In mice with pneumonia, dexamethasone in combination with ceftriaxone reduced (1) pulmonary edema formation, (2) alveolar protein permeability, (3) proinflammatory cytokine release, (4) histopathologic lung injury score, and (5) hypoxemia but did not increase bacterial burden. Transcriptomic analyses identified effects of steroid therapy in mice that were also observed in the clinical samples. CONCLUSIONS: In combination with appropriate antibiotic therapy in mice, treatment of pneumococcal pneumonia with steroid therapy reduced hypoxemia, pulmonary edema, lung permeability, and histologic criteria of lung injury, and also altered inflammatory responses at the protein and gene expression level. The transcriptional studies in patients suggest that the mouse model replicates some of the features of pneumonia in patients with Streptococcus pneumoniae and steroid treatment. Overall, these studies provide evidence for the mechanisms that may explain the beneficial effects of glucocorticoid therapy in patients with community acquired pneumonia from Streptococcus Pneumoniae.


Subject(s)
Adrenal Cortex Hormones , Disease Models, Animal , Pneumonia, Pneumococcal , Animals , Pneumonia, Pneumococcal/drug therapy , Mice , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/pharmacology , Humans , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Female , Male , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/pathogenicity
7.
Biomaterials ; 309: 122602, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38768544

ABSTRACT

Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.


Subject(s)
Dexamethasone , Drug Delivery Systems , Intubation, Intratracheal , RNA, Small Interfering , Animals , Dexamethasone/pharmacology , Coated Materials, Biocompatible/chemistry , Polyesters/chemistry , Swine , Humans
8.
J Bone Miner Metab ; 42(3): 282-289, 2024 May.
Article in English | MEDLINE | ID: mdl-38704516

ABSTRACT

INTRODUCTION: Glucocorticoids delay fracture healing and induce osteoporosis. Angiogenesis plays an important role in bone repair after bone injury. Plasminogen activator inhibitor-1 (PAI-1) is the principal inhibitor of plasminogen activators and an adipocytokine that regulates metabolism. However, the mechanisms by which glucocorticoids delay bone repair remain unclear. MATERIALS AND METHODS: Therefore, we herein investigated the roles of PAI-1 and angiogenesis in glucocorticoid-induced delays in bone repair after femoral bone injury using PAI-1-deficient female mice intraperitoneally administered dexamethasone (Dex). RESULTS: PAI-1 deficiency significantly attenuated Dex-induced decreases in the number of CD31-positive vessels at damaged sites 4 days after femoral bone injury in mice. PAI-1 deficiency also significantly ameliorated Dex-induced decreases in the number of CD31- and endomucin-positive type H vessels and CD31-positive- and endomucin-negative vessels at damaged sites 4 days after femoral bone injury. Moreover, PAI-1 deficiency significantly mitigated Dex-induced decreases in the expression of vascular endothelial growth factor as well as hypoxia inducible factor-1α, transforming growth factor-ß1, and bone morphogenetic protein-2 at damaged sites 4 days after femoral bone injury. CONCLUSION: The present results demonstrate that Dex-reduced angiogenesis at damaged sites during the early bone-repair phase after femoral bone injury partly through PAI-1 in mice.


Subject(s)
Dexamethasone , Glucocorticoids , Neovascularization, Physiologic , Plasminogen Activator Inhibitor 1 , Animals , Mice , Plasminogen Activator Inhibitor 1/metabolism , Female , Glucocorticoids/pharmacology , Neovascularization, Physiologic/drug effects , Dexamethasone/pharmacology , Femur/drug effects , Femur/metabolism , Femur/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism , Fracture Healing/drug effects , Mice, Knockout , Mice, Inbred C57BL , Bone Morphogenetic Protein 2/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Angiogenesis
9.
Nat Commun ; 15(1): 4557, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811530

ABSTRACT

Glucocorticoid (GC) resistance in childhood relapsed B-cell acute lymphoblastic leukemia (B-ALL) represents an important challenge. Despite decades of clinical use, the mechanisms underlying resistance remain poorly understood. Here, we report that in B-ALL, GC paradoxically induce their own resistance by activating a phospholipase C (PLC)-mediated cell survival pathway through the chemokine receptor, CXCR4. We identify PLC as aberrantly activated in GC-resistant B-ALL and its inhibition is able to induce cell death by compromising several transcriptional programs. Mechanistically, dexamethasone (Dex) provokes CXCR4 signaling, resulting in the activation of PLC-dependent Ca2+ and protein kinase C signaling pathways, which curtail anticancer activity. Treatment with a CXCR4 antagonist or a PLC inhibitor improves survival of Dex-treated NSG mice in vivo. CXCR4/PLC axis inhibition significantly reverses Dex resistance in B-ALL cell lines (in vitro and in vivo) and cells from Dex resistant ALL patients. Our study identifies how activation of the PLC signalosome in B-ALL by Dex limits the upfront efficacy of this chemotherapeutic agent.


Subject(s)
Dexamethasone , Drug Resistance, Neoplasm , Glucocorticoids , Receptors, CXCR4 , Signal Transduction , Type C Phospholipases , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Humans , Animals , Signal Transduction/drug effects , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Dexamethasone/pharmacology , Type C Phospholipases/metabolism , Cell Line, Tumor , Glucocorticoids/pharmacology , Mice , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Mice, Inbred NOD , Cell Survival/drug effects
10.
Respir Res ; 25(1): 227, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812021

ABSTRACT

BACKGROUND: Steroid insensitivity in Chronic Obstructive Pulmonary Disease (COPD) presents a problem for controlling the chronic inflammation of the airways. The glucocorticoid receptor (GR) mediates the intracellular signaling of inhaled corticosteroids (ICS) by interacting with transcription factors and histone deacetylases (HDACs). The aim of this study was to assess if COPD patients' response to ICS in vivo, may be associated with the expression of GR, the complex of GR with transcription factors, and the expression of various HDACs in vitro. METHODS: Primary airway smooth muscle cells (ASMC) were established from endobronchial biopsies obtained from patients with asthma (n = 10), patients with COPD (n = 10) and subjects that underwent diagnostic bronchoscopy without pathological findings and served as controls (n = 6). ASMC were also established from 18 COPD patients, 10 responders and 8 non-responders to ICS, who participated in the HISTORIC study, an investigator-initiated and driven clinical trial that proved the hypothesis that COPD patients with high ASMC in their endobronchial biopsies respond better to ICS than patients with low ASMC. Expression of GR and its isoforms GRα and GRß and HDACs was investigated in primary ASMC in the absence or in the presence of dexamethasone (10- 8M) by western blotting. The complex formation of GR with transcription factors was assessed by co-immunoprecipitation. RESULTS: Expression of GR and its isoform GRα but not GRß was significantly reduced in ASMC from COPD patients as compared to controls. There were no significant differences in the expression of GR, GRα and GRß between responders and non-responders to ICS. However, treatment with dexamethasone upregulated the expression of total GR (p = 0.004) and GRα (p = 0.005) after 30 min in responders but not in non-responders. Τhe formation of the complex GR-c-Jun was increased 60 min after treatment with dexamethasone only in responders who exhibited significantly lower expression of HDAC3 (p = 0.005) and HDAC5 (p < 0.0001) as compared to non-responders. CONCLUSIONS: These data suggest that ASMC from COPD patients who do not respond to treatment with ICS, are characterized by reduced GR-c-Jun complex formation and increased expression of HDAC3 and HDAC5. TRIAL REGISTRATION: ISRCTN11017699 (Registration date: 15/11/2016).


Subject(s)
Histone Deacetylases , Myocytes, Smooth Muscle , Pulmonary Disease, Chronic Obstructive , Receptors, Glucocorticoid , Humans , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/pathology , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/biosynthesis , Histone Deacetylases/metabolism , Histone Deacetylases/biosynthesis , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Male , Middle Aged , Female , Aged , Cells, Cultured , Adrenal Cortex Hormones/therapeutic use , Glucocorticoids/pharmacology , Dexamethasone/pharmacology , Treatment Outcome , Administration, Inhalation , Bronchi/drug effects , Bronchi/metabolism , Bronchi/pathology , Bronchi/enzymology
11.
J Hazard Mater ; 473: 134685, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38797075

ABSTRACT

Inflammation is the most common disease in humans. Alcohol has been part of human culture throughout history. To avoid alcohol prompting inflammation to develop into a more serious disease, it is important for human health to explore the effects of alcohol on the development of inflammation.Endogenous sulfur dioxide (SO2) is considered an important regulator of the development of inflammation and is involved in the entire development process of inflammation. Taken together, it is of great significance to explore the impact of alcohol on the development process of inflammation through changes in SO2 concentration in the inflammatory microenvironment. Herein, we report the development of a molecular tool (Nu-SO2) with rapid (5 s) response to the important inflammatory modulator sulfur dioxide (SO2) for the diagnosis of inflammation, assessment of therapeutic effects, and evaluation of the development process of alcohol-induced inflammation. The rationality of Nu-SO2 was confirmed through molecular docking calculations, density functional theory (DFT) theoretical calculations, DNA/RNA titration experiments and co-localization experiments. Furthermore, Nu-SO2 was effectively applied for specific response and highly sensitive visualization imaging of SO2 in solution, cells and mice. Importantly, Nu-SO2 was successfully used to diagnose lipopolysaccharide-induced inflammation in cells and mice and evaluate the efficacy of dexamethasone in treating inflammation. More significantly, based on the excellent performance of Nu-SO2 in dynamically reporting the further development of inflammation in mice triggered by alcohol, we successfully elucidated the "anti-inflammatory and pro-inflammatory" trend in the development of inflammation caused by alcohol stimulation. Thus, this work not only advances the research on the relationship between alcohol, inflammation and SO2, but also provides a new non-invasive assessment method for the development mechanism of inflammation induced by external stimuli and the precise diagnosis and treatment of drug efficacy evaluation.


Subject(s)
Ethanol , Inflammation , Sulfur Dioxide , Inflammation/chemically induced , Animals , Mice , Ethanol/toxicity , Ethanol/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Molecular Docking Simulation , Humans , RAW 264.7 Cells , Lipopolysaccharides/toxicity , Male , Dexamethasone/pharmacology
12.
Biomed Pharmacother ; 175: 116788, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772153

ABSTRACT

AIMS: Penicilazaphilone C (PAC) is hypothesized to potentially serve as a therapeutic treatment for allergic airway inflammation by inhibiting the NLRP3 inflammasome and reducing oxidative stress. METHODS: An allergic asthma model was induced in female BALB/c mice of the OVA, OVA+PAC, OVA+PAC+LPS, and OVA+Dex groups by sensitizing and subsequently challenging them with OVA. The OVA+PAC and Normal+PAC groups were treated with PAC, while the OVA+PAC+LPS group also received LPS. The OVA+Dex group was given dexamethasone (Dex). Samples of serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected for histological and cytological analysis. RESULTS: Allergic mice treated with PAC or Dex showed inhibited inflammation and mucus production in the lungs. There was a decrease in the number of inflammatory cells in the BALF, lower levels of inflammatory cytokines in the serum and BALF, and a reduction in the protein expression of NLRP3, ASC, cleaved caspase-1, IL-1ß, activated gasdermin D, MPO, Ly6G, and ICAM-1. Additionally, oxidative stress was reduced, as shown by a decrease in MDA and DCF, but an increase in SOD and GSH. Treatment with PAC also resulted in a decrease in pulmonary memory CD4+ T cells and an increase in regulatory T cells. However, the positive effects seen in the PAC-treated mice were reversed when the NLRP3 inflammasome was activated by LPS, almost returning to the levels of the Sham-treated mice. SIGNIFICANCE: PAC acts in a similar way to anti-allergic inflammation as Dex, suggesting it may be a viable therapeutic option for managing allergic asthma inflammation.


Subject(s)
Asthma , Bronchoalveolar Lavage Fluid , Inflammasomes , Mice, Inbred BALB C , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Female , Inflammasomes/metabolism , Inflammasomes/drug effects , Asthma/drug therapy , Asthma/immunology , Asthma/chemically induced , Mice , Lung/drug effects , Lung/pathology , Lung/metabolism , Lung/immunology , Oxidative Stress/drug effects , Ovalbumin , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/pathology , Disease Models, Animal , Dexamethasone/pharmacology , Anti-Inflammatory Agents/pharmacology
13.
ACS Nano ; 18(20): 13249-13265, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38720584

ABSTRACT

The therapeutic application of mesenchymal stem cells (MSCs) has good potential as a treatment strategy for systemic lupus erythematosus (SLE), but traditional MSC therapy still has limitations in effectively modulating immune cells. Herein, we present a promising strategy based on dexamethasone liposome-integrated MSCs (Dexlip-MSCs) for treating SLE via multiple immunomodulatory pathways. This therapeutic strategy prolonged the circulation time of dexamethasone liposomes in vivo, restrained CD4+T-cell proliferation, and inhibited the release of proinflammatory mediators (IFN-γ and TNF-α) by CD4+T cells. In addition, Dexlip-MSCs initiated cellular reprogramming by activating the glucocorticoid receptor (GR) signaling pathway to upregulate the expression of anti-inflammatory factors such as cysteine-rich secretory protein LCCL-containing domain 2 (CRISPLD2) and downregulate the expression of proinflammatory factors. In addition, Dexlip-MSCs synergistically increased the anti-inflammatory inhibitory effect of CD4+T cells through the release of dexamethasone liposomes or Dex-integrated MSC-derived exosomes (Dex-MSC-EXOs). Based on these synergistic biological effects, we demonstrated that Dexlip-MSCs alleviated disease progression in MRL/lpr mice more effectively than Dexlip or MSCs alone. These features indicate that our stem cell delivery strategy is a promising therapeutic approach for clinical SLE treatment.


Subject(s)
Dexamethasone , Lupus Erythematosus, Systemic , Mesenchymal Stem Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Dexamethasone/pharmacology , Dexamethasone/chemistry , Lupus Erythematosus, Systemic/therapy , Lupus Erythematosus, Systemic/immunology , Mice , Liposomes/chemistry , Mesenchymal Stem Cell Transplantation , Cell Proliferation/drug effects , Female , Mice, Inbred MRL lpr , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
14.
Bull Exp Biol Med ; 176(5): 617-619, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38730108

ABSTRACT

We studied the effect of the HSP27 inhibitor, 5-(5-ethyl-2-hydroxy-4-methoxyphenyl)-4-(4-methoxyphenyl)-isoxazole, at a final concentration of 0.1 µM and/or the apoptosis inducer dexamethasone at a final concentration of 10 µM on the content of hydroxyl radical, reduced and oxidized glutathione, HSP27, activity of glutathione reductase, glutathione peroxidase, caspase-3, and the number of Annexin+ Jurkat tumor cells. The involvement of HSP27 in apoptosis of Jurkat tumor cells was demonstrated. Simultaneous exposure to the HSP27 inhibitor and dexamethasone resulted in an increase in the level of HSP27 against the background of developing oxidative stress (increase in the concentration of hydroxyl radicals and changes in the state of the glutathione system).


Subject(s)
Apoptosis , Caspase 3 , Dexamethasone , Glutathione , HSP27 Heat-Shock Proteins , Oxidative Stress , Humans , Dexamethasone/pharmacology , Jurkat Cells , Apoptosis/drug effects , HSP27 Heat-Shock Proteins/metabolism , HSP27 Heat-Shock Proteins/genetics , Glutathione/metabolism , Caspase 3/metabolism , Caspase 3/genetics , Oxidative Stress/drug effects , Glutathione Reductase/metabolism , Glutathione Peroxidase/metabolism , Hydroxyl Radical/metabolism
15.
Food Funct ; 15(12): 6475-6487, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38804652

ABSTRACT

Ginsenoside compound K (GCK) possesses a glucocorticoid (GC)-like structure and functions as an agonist of the glucocorticoid receptor (GR), thereby exerting anti-inflammatory effects through GR activation. However, it remains unclear whether GCK leads to hyperglycemia, which is a known adverse reaction associated with classical GCs. In this study, we have successfully demonstrated that GCK exerts its anti-inflammatory effects in a rat model of adjuvant arthritis without impacting gluconeogenesis and pentose phosphate pathways, thus avoiding any glucose metabolism disorders. By employing the GR mutant plasmid, we have identified the binding site between GCK and GR as GRM560T, which differs from the binding site shared by dexamethasone (DEX) and GR. Notably, compared to DEX, GCK induces distinct levels of phosphorylation at S211 on GR upon binding to activate steroid receptor coactivator 1 (SRC1)-a co-factor responsible for mediating anti-inflammatory effects-while not engaging peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-an associated coactivator involved in gluconeogenesis.


Subject(s)
Anti-Inflammatory Agents , Arthritis, Experimental , Ginsenosides , Rats, Sprague-Dawley , Receptors, Glucocorticoid , Animals , Ginsenosides/pharmacology , Rats , Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Male , Receptors, Glucocorticoid/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Gluconeogenesis/drug effects , Glucose/metabolism , Humans , Dexamethasone/pharmacology
16.
Sci Immunol ; 9(95): eabq1558, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701190

ABSTRACT

Steroid resistance poses a major challenge for the management of autoimmune neuroinflammation. T helper 17 (TH17) cells are widely implicated in the pathology of steroid resistance; however, the underlying mechanisms are unknown. In this study, we identified that interleukin-1 receptor (IL-1R) blockade rendered experimental autoimmune encephalomyelitis (EAE) mice sensitive to dexamethasone (Dex) treatment. Interleukin-1ß (IL-1ß) induced a signal transducer and activator of transcription 5 (STAT5)-mediated steroid-resistant transcriptional program in TH17 cells, which promoted inflammatory cytokine production and suppressed Dex-induced anti-inflammatory genes. TH17-specific deletion of STAT5 ablated the IL-1ß-induced steroid-resistant transcriptional program and rendered EAE mice sensitive to Dex treatment. IL-1ß synergized with Dex to promote the STAT5-dependent expression of CD69 and the development of central nervous system (CNS)-resident CD69+ TH17 cells. Combined IL-1R blockade and Dex treatment ablated CNS-resident TH17 cells, reduced EAE severity, and prevented relapse. CD69+ tissue-resident TH17 cells were also detected in brain lesions of patients with multiple sclerosis. These findings (i) demonstrate that IL-1ß-STAT5 signaling in TH17 cells mediates steroid resistance and (ii) identify a therapeutic strategy for reversing steroid resistance in TH17-mediated CNS autoimmunity.


Subject(s)
Dexamethasone , Encephalomyelitis, Autoimmune, Experimental , Interleukin-1beta , STAT5 Transcription Factor , Th17 Cells , Animals , Th17 Cells/immunology , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/immunology , Mice , Interleukin-1beta/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Mice, Inbred C57BL , Drug Resistance , Signal Transduction/immunology , Mice, Knockout , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/drug therapy , Female , Humans
17.
J Virol ; 98(6): e0042324, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38771044

ABSTRACT

Bovine alphaherpesvirus 1 (BoHV-1) infection causes respiratory tract disorders and immune suppression and may induce bacterial pneumonia. BoHV-1 establishes lifelong latency in sensory neurons after acute infection. Reactivation from latency consistently occurs following stress or intravenous injection of the synthetic corticosteroid dexamethasone (DEX), which mimics stress. The immediate early transcription unit 1 (IEtu1) promoter drives expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators necessary for productive infection and reactivation from latency. The IEtu1 promoter contains two glucocorticoid receptor (GR) responsive elements (GREs) that are transactivated by activated GR. GC-rich motifs, including consensus binding sites for specificity protein 1 (Sp1), are in the IEtu1 promoter sequences. E2F family members bind a consensus sequence (TTTCCCGC) and certain specificity protein 1 (Sp1) sites. Consequently, we hypothesized that certain E2F family members activate IEtu1 promoter activity. DEX treatment of latently infected calves increased the number of E2F2+ TG neurons. GR and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivate a 436-bp cis-regulatory module in the IEtu1 promoter that contains both GREs. A luciferase reporter construct containing a 222-bp fragment downstream of the GREs was transactivated by E2F2 unless two adjacent Sp1 binding sites were mutated. Chromatin immunoprecipitation studies revealed that E2F2 occupied IEtu1 promoter sequences when the BoHV-1 genome was transfected into mouse neuroblastoma (Neuro-2A) or monkey kidney (CV-1) cells. In summary, these findings revealed that GR and E2F2 cooperatively transactivate IEtu1 promoter activity, which is predicted to influence the early stages of BoHV-1 reactivation from latency. IMPORTANCE: Bovine alpha-herpesvirus 1 (BoHV-1) acute infection in cattle leads to establishment of latency in sensory neurons in the trigeminal ganglia (TG). A synthetic corticosteroid dexamethasone consistently initiates BoHV-1 reactivation in latently infected calves. The BoHV-1 immediate early transcription unit 1 (IEtu1) promoter regulates expression of infected cell protein 0 (bICP0) and bICP4, two viral transcriptional regulators. Hence, the IEtu1 promoter must be activated for the reactivation to occur. The number of TG neurons expressing E2F2, a transcription factor and cell cycle regulator, increased during early stages of reactivation from latency. The glucocorticoid receptor (GR) and E2F2, but not E2F1, E2F3a, or E2F3b, cooperatively transactivated a 436-bp cis-regulatory module (CRM) in the IEtu1 promoter that contains two GR responsive elements. Chromatin immunoprecipitation studies revealed that E2F2 occupies IEtu1 promoter sequences in cultured cells. GR and E2F2 mediate cooperative transactivation of IEtu1 promoter activity, which is predicted to stimulate viral replication following stressful stimuli.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 1, Bovine , Promoter Regions, Genetic , Receptors, Glucocorticoid , Herpesvirus 1, Bovine/genetics , Herpesvirus 1, Bovine/physiology , Animals , Receptors, Glucocorticoid/metabolism , Receptors, Glucocorticoid/genetics , Cattle , Transcriptional Activation , Viral Proteins/metabolism , Viral Proteins/genetics , Dexamethasone/pharmacology , Virus Activation , Virus Latency , Cell Line , Herpesviridae Infections/virology , Herpesviridae Infections/metabolism , Herpesviridae Infections/veterinary , Herpesviridae Infections/genetics , Mice , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Response Elements , Binding Sites , Trans-Activators , Ubiquitin-Protein Ligases
18.
Acta Trop ; 256: 107251, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38763319

ABSTRACT

Angiostrongylus cantonensis is the major cause of eosinophilic meningitis worldwide. The imbalance of neurotoxic and neuroprotective metabolites in the kynurenine pathway (KP) have been suggested to contribute to the pathogenesis of central nervous system (CNS) infection. We hypothesized that KP may also be involved in parasitic eosinophilic meningitis. BALB/c mice were orally infected with 40 A. cantonensis L3, intraperitoneal dexamethasone at a dose of 500 µg/kg/day was administered from the seventh day of infection until the end of the study. The Evans blue method was used to analyze blood-brain barrier (BBB) dysfunction, and indoleamine 2,3-dioxygenase (IDO) proteins levels was measured by Western blot, immunohistochemistry (IHC), and immunofluorescence. Tryptophan and kynurenine concentrations were analyzed by IHC and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The concentrations of Evans blue, IDO, tryptophan and kynurenine in the different groups of mice were compared using the nonparametric Kruskal-Wallis test. BBB dysfunction was found in mice with eosinophilic meningitis. The administration of dexamethasone significantly decreased the amount of Evans blue. An increased IDO expression was shown in Western blot, IHC and immunofluorescence following 2-3 weeks infection. Increased tryptophan and kynurenine expressions in the brain and cerebrospinal fluid (CSF) were also found in IHC and LC-MS/MS studies. The administration of dexamethasone significantly decreased the amount of IDO, tryptophan and kynurenine. In conclusion, A. cantonensis infection inducing BBB damage, then increased the influx of tryptophan into CSF. The administration of dexamethasone significantly decreased the amount of IDO, tryptophan and kynurenine.


Subject(s)
Angiostrongylus cantonensis , Blood-Brain Barrier , Dexamethasone , Kynurenine , Meningitis , Mice, Inbred BALB C , Strongylida Infections , Tryptophan , Animals , Kynurenine/metabolism , Strongylida Infections/parasitology , Meningitis/parasitology , Meningitis/metabolism , Meningitis/cerebrospinal fluid , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/metabolism , Tryptophan/metabolism , Mice , Dexamethasone/pharmacology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tandem Mass Spectrometry , Chromatography, Liquid , Male , Disease Models, Animal , Eosinophilia/parasitology , Immunohistochemistry , Metabolic Networks and Pathways , Female , Blotting, Western
19.
Nutrients ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794746

ABSTRACT

BACKGROUND: Cytokine storm and oxidative stress are present in chronic obstructive pulmonary disease (COPD). Individuals with COPD present high levels of NF-κB-associated cytokines and pro-oxidant agents as well as low levels of Nrf2-associated antioxidants. This condition creates a steroid-resistant inflammatory microenvironment. Lacticaseibacillus rhamnosus (Lr) is a known anti-cytokine in lung diseases; however, the effect of Lr on lung inflammation and oxidative stress in steroid-resistant COPD mice remains unknown. OBJECTIVE: Thus, we investigated the Lr effect on lung inflammation and oxidative stress in mice and macrophages exposed to cigarette smoke extract (CSE) and unresponsive to steroids. METHODS: Mice and macrophages received dexamethasone or GLPG-094 (a GPR43 inhibitor), and only the macrophages received butyrate (but), all treatments being given before CSE. Lung inflammation was evaluated from the leukocyte population, airway remodeling, cytokines, and NF-κB. Oxidative stress disturbance was measured from ROS, 8-isoprostane, NADPH oxidase, TBARS, SOD, catalase, HO-1, and Nrf2. RESULTS: Lr attenuated cellularity, mucus, collagen, cytokines, ROS, 8-isoprostane, NADPH oxidase, and TBARS. Otherwise, SOD, catalase, HO-1, and Nrf2 were upregulated in Lr-treated COPD mice. Anti-cytokine and antioxidant effects of butyrate also occurred in CSE-exposed macrophages. GLPG-094 rendered Lr and butyrate less effective. CONCLUSIONS: Lr attenuates lung inflammation and oxidative stress in COPD mice, suggesting the presence of a GPR43 receptor-dependent mechanism also found in macrophages.


Subject(s)
Lacticaseibacillus rhamnosus , Macrophages , Oxidative Stress , Pulmonary Disease, Chronic Obstructive , Receptors, G-Protein-Coupled , Animals , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/metabolism , Oxidative Stress/drug effects , Receptors, G-Protein-Coupled/metabolism , Mice , Humans , Macrophages/drug effects , Macrophages/metabolism , Male , Cytokines/metabolism , Inflammation Mediators/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Smoke/adverse effects , Dexamethasone/pharmacology , Butyrates/pharmacology , Lung/drug effects , Lung/metabolism
20.
J Nanobiotechnology ; 22(1): 276, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778385

ABSTRACT

With the increasing trend of global aging, sarcopenia has become a significant public health issue. Goji berry, also known as "Gou qi zi" in China, is a traditional Chinese herb that can enhance the structure and function of muscles and bones. Otherwise, previous excellent publications illustrated that plant-derived exosome-like nanoparticles can exert good bioactive functions in different aging or disease models. Thus, we issued the hypothesis that Gouqi-derived nanovesicles (GqDNVs) may also have the ability to improve skeletal muscle health, though the effect and its mechanism need to be explored. Hence, we have extracted GqDNVs from fresh berries of Lycium barbarum L. (goji) and found that the contents of GqDNVs are rich in saccharides and lipids. Based on the pathway annotations and predictions in non-targeted metabolome analysis, GqDNVs are tightly associated with the pathways in metabolism. In muscle atrophy model mice, intramuscular injection of GqDNVs improves the cross-sectional area of the quadriceps muscle, grip strength and the AMPK/SIRT1/PGC1α pathway expression. After separately inhibiting AMPK or PGC1α in C2C12 cells with dexamethasone administration, we have found that the activated AMPK plays the chief role in improving cell proliferation induced by GqDNVs. Furthermore, the energy-targeted metabolome analysis in the quadriceps muscle demonstrates that the GqDNVs up-regulate the metabolism of amino sugar and nucleotide sugar, autophagy and oxidative phosphorylation process, which indicates the activation of muscle regeneration. Besides, the Spearman rank analysis shows close associations between the quality and function of skeletal muscle, metabolites and expression levels of AMPK and SIRT1. In this study, we provide a new founding that GqDNVs can improve the quality and function of skeletal muscle accompanying the activated AMPK/SIRT1/PGC1α signaling pathway. Therefore, GqDNVs have the effect of anti-aging skeletal muscle as a potential adjuvant or complementary method or idea in future therapy and research.


Subject(s)
AMP-Activated Protein Kinases , Dexamethasone , Muscular Atrophy , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Signal Transduction , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Mice , Signal Transduction/drug effects , Dexamethasone/pharmacology , AMP-Activated Protein Kinases/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/chemically induced , Cell Line , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Mice, Inbred C57BL , Nanoparticles/chemistry , Exosomes/metabolism , Exosomes/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...