Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
Neuropsychopharmacology ; 45(5): 804-810, 2020 04.
Article in English | MEDLINE | ID: mdl-31715617

ABSTRACT

Positron emission tomography (PET) enables non-invasive estimation of neurotransmitter fluctuations in the living human brain. While these methods have been applied to dopamine and some other transmitters, estimation of 5-hydroxytryptamine (5-HT; Serotonin) release has proved to be challenging. Here we demonstrate the utility of the novel 5-HT2A receptor agonist radioligand, [11C]CIMBI-36, and a d-amphetamine challenge to evaluate synaptic 5-HT changes in the living human brain. Seventeen healthy male volunteers received [11C]CIMBI-36 PET scans before and 3 h after an oral dose of d-amphetamine (0.5 mg/kg). Dynamic PET data were acquired over 90 min, and the total volume of distribution (VT) in the frontal cortex and the cerebellum derived from a kinetic analysis using MA1. The frontal cortex binding potential (BPNDfrontal) was calculated as (VTfrontal/VTcerebellum) - 1. ∆BPNDfrontal = 1 - (BPNDfrontal post-dose/BPNDfrontal baseline) was used as an index of 5-HT release. Statistical inference was tested by means of a paired Students t-test evaluating a reduction in post-amphetamine [11C]CIMBI-36 BPNDfrontal. Following d-amphetamine administration, [11C]CIMBI-36 BPNDfrontal was reduced by 14 ± 13% (p = 0.002). Similar effects were observed in other cortical regions examined in an exploratory analysis. [11C]CIMBI-36 binding is sensitive to synaptic serotonin release in the human brain, and when combined with a d-amphetamine challenge, the evaluation of the human brain serotonin system in neuropsychiatric disorders, such as major depression and Parkinson's disease is enabled.


Subject(s)
Brain/metabolism , Positron-Emission Tomography/methods , Serotonin/metabolism , Adult , Benzylamines/pharmacology , Brain/drug effects , Central Nervous System Stimulants/blood , Central Nervous System Stimulants/pharmacology , Dextroamphetamine/blood , Dextroamphetamine/pharmacology , Humans , Male , Phenethylamines/pharmacology , Serotonin 5-HT2 Receptor Agonists/pharmacology , Young Adult
2.
Behav Pharmacol ; 29(6): 551-556, 2018 09.
Article in English | MEDLINE | ID: mdl-29864032

ABSTRACT

Amphetamine is a common therapeutic agent for alleviating the core symptoms associated with attention-deficit hyperactivity disorder (ADHD) in children and adults. The current study used a translational model of attention, the five-choice serial reaction time (5-CSRT) procedure with rats, to examine the time-course effects of d-amphetamine. Effects of different dosages of d-amphetamine were related to drug-plasma concentrations, fashioned after comprehensive pharmacokinetic/pharmacodynamic assessments that have been employed in clinical investigations. We sought to determine whether acute drug-plasma concentrations that enhance performance in the 5-CSRT procedure are similar to those found to be therapeutic in patients diagnosed with ADHD. Results from the pharmacokinetic/pharmacodynamic assessment indicate that d-amphetamine plasma concentrations associated with improved performance on the 5-CSRT procedure overlap with those that have been reported to be therapeutic in clinical trials. The current findings suggest that the 5-CSRT procedure may be a useful preclinical model for predicting the utility of novel ADHD therapeutics and their effective concentrations.


Subject(s)
Attention/drug effects , Conditioning, Operant/drug effects , Dextroamphetamine/blood , Dextroamphetamine/pharmacology , Animals , Choice Behavior/drug effects , Dose-Response Relationship, Drug , Male , Rats , Rats, Sprague-Dawley , Reaction Time/drug effects , Time Factors
3.
J Pharm Biomed Anal ; 156: 263-271, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29729640

ABSTRACT

This paper describes a method for quantification of d-amphetamine and diphenhydramine in beagle dog plasma by organic solvent field-amplified sample stacking (FASS)-capillary zone electrophoresis (CZE), using amlodipine as the internal standard. The separation was carried out at 25 °C in a 40.2 cm × 75 µm fused-silica capillary with an applied voltage of 20 kV using 25 mM phosphate-18.75 mM borate (pH 3.5). The detection wavelength was 200 nm. Clean-up and preconcentration of plasma biosamples were developed by 96-well formatted liquid- liquid extraction (LLE). In this study, the peak areas of d-amphetamine, diphenhydramine and amlodipine in the plasma sample increased by the factor of 48, 67 and 43 compared to the CZE without sample stacking. The method was suitably validated with respect to stability, specificity, linearity, lower limit of quantitation, accuracy, precision and extraction recovery. The calibration graph was linear from 2 to 500 ng/ml for d-amphetamine and 2-5000 ng/ml for diphenhydramine. All the validation data were within the required limits. Compared with the LC/MS/MS method that we previously established, there was no significant difference between the two methods in validation characteristics, except the LLOQs. The developed method was successfully applied to the evaluation of pharmacokinetic study of the Quick-Acting Anti-Motion Capsules (QAAMC) in beagle dogs.


Subject(s)
Dextroamphetamine/blood , Diphenhydramine/blood , Histamine H1 Antagonists/blood , Sympathomimetics/blood , Animals , Calibration , Capsules , Chromatography, High Pressure Liquid/methods , Dextroamphetamine/pharmacokinetics , Dextroamphetamine/therapeutic use , Diphenhydramine/pharmacokinetics , Diphenhydramine/therapeutic use , Dogs , Drug Combinations , Electrophoresis, Capillary/methods , Female , Histamine H1 Antagonists/pharmacokinetics , Histamine H1 Antagonists/therapeutic use , Liquid-Liquid Extraction/methods , Male , Models, Animal , Motion Sickness/drug therapy , Reproducibility of Results , Sensitivity and Specificity , Sympathomimetics/pharmacokinetics , Sympathomimetics/therapeutic use , Tandem Mass Spectrometry/methods
4.
J Pharm Biomed Anal ; 148: 259-264, 2018 Jan 30.
Article in English | MEDLINE | ID: mdl-29059615

ABSTRACT

Dexamphetamine is registered for the treatment of attention deficit hyperactivity disorder and narcolepsy. Current research has highlighted the possible application of dexamphetamine in the treatment of cocaine addiction. To support clinical pharmacologic trials a new simple, fast, and sensitive assay for the quantification of dexamphetamine in human plasma using liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed. Additionally, it is the first reported LC-MS assay with these advantages to be fully validated according to current US FDA and EMA guidelines. Human plasma samples were collected on an outpatient basis and stored at nominally -20°C. The analyte and the internal standard (stable isotopically labeled dexamphetamine) were extracted using double liquid-liquid extraction (plasma-organic and organic-water) combined with snap-freezing. The aqueous extract was filtered and 2µL was injected on a C18-column with isocratic elution and analyzed with triple quadrupole mass spectrometry in positive ion mode. The validated concentration range was from 2.5-250ng/mL and the calibration model was linear. A weighting factor of 1 over the squared concentration was applied and correlation coefficients of 0.997 or better were obtained. At all concentrations the bias was within ±15% of the nominal concentrations and imprecision was ≤15%. All results were within the acceptance criteria of the latest US FDA guidance and EMA guidelines on method validation. In conclusion, the developed method to quantify dexamphetamine in human plasma was fit to support a clinical study with slow-release dexamphetamine.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dextroamphetamine/blood , Dextroamphetamine/chemistry , Plasma/chemistry , Tandem Mass Spectrometry/methods , Calibration , Humans , Limit of Detection , Liquid-Liquid Extraction/methods , Reproducibility of Results
5.
Transl Psychiatry ; 6(9): e884, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27598968

ABSTRACT

Stimulant treatment is highly effective in mitigating symptoms associated with attention-deficit/hyperactivity disorder (ADHD), though the neurobiological underpinnings of this effect have not been established. Studies using anatomical magnetic resonance imaging (MRI) in children with ADHD have suggested that long-term stimulant treatment may improve symptoms of ADHD in part by stimulating striatal hypertrophy. This conclusion is limited, however, as these studies have either used cross-sectional sampling or did not assess the impact of treatment length on their dependent measures. We therefore used longitudinal anatomical MRI in a vehicle-controlled study design to confirm causality regarding stimulant effects on striatal morphology in a rodent model of clinically relevant long-term stimulant treatment. Sprague Dawley rats were orally administered either lisdexamfetamine (LDX, 'Vyvanse') or vehicle (N=12 per group) from postnatal day 25 (PD25, young juvenile) until PD95 (young adult), and imaged one day before and one day after the 70-day course of treatment. Our LDX dosing regimen yielded blood levels of dextroamphetamine comparable to those documented in patients. Longitudinal analysis of striatal volume revealed significant hypertrophy in LDX-treated animals when compared to vehicle-treated controls, with a significant treatment by time point interaction. These findings confirm a causal link between long-term stimulant treatment and striatal hypertrophy, and support utility of longitudinal MRI in rodents as a translational approach for bridging preclinical and clinical research. Having demonstrated comparable morphological effects in both humans and rodents using the same imaging technology, future studies may now use this rodent model to identify the underlying cellular mechanisms and behavioral consequences of stimulant-induced striatal hypertrophy.


Subject(s)
Central Nervous System Stimulants/pharmacology , Lisdexamfetamine Dimesylate/pharmacology , Neostriatum/drug effects , Animals , Body Weight/drug effects , Dextroamphetamine/blood , Hypertrophy , Longitudinal Studies , Magnetic Resonance Imaging , Male , Neostriatum/diagnostic imaging , Neostriatum/pathology , Organ Size , Rats , Rats, Sprague-Dawley
6.
Ther Drug Monit ; 38(4): 546-55, 2016 08.
Article in English | MEDLINE | ID: mdl-26926668

ABSTRACT

BACKGROUND: Lisdexamfetamine (LDX) and D-amphetamine pharmacokinetics were assessed in individuals with normal and impaired renal function after a single LDX dose; LDX and D-amphetamine dialyzability was also examined. METHODS: Adults (N = 40; 8/group) were enrolled in 1 of 5 renal function groups [normal function, mild impairment, moderate impairment, severe impairment/end-stage renal disease (ESRD) not requiring hemodialysis, and ESRD requiring hemodialysis] as estimated by glomerular filtration rate (GFR). Participants with normal and mild to severe renal impairment received 30 mg LDX; blood samples were collected predose and serially for 96 hours. Participants with ESRD requiring hemodialysis received 30 mg LDX predialysis and postdialysis separated by a washout period of 7-14 days. Predialysis blood samples were collected predose, serially for 72 hours, and from the dialyzer during hemodialysis; postdialysis blood samples were collected predose and serially for 48 hours. Pharmacokinetic end points included maximum plasma concentration (Cmax) and area under the plasma concentration versus time curve from time 0 to infinity (AUC0-∞) or to last assessment (AUClast). RESULTS: Mean LDX Cmax, AUClast, and AUC0-∞ in participants with mild to severe renal impairment did not differ from those with normal renal function; participants with ESRD had higher mean Cmax and AUClast than those with normal renal function. D-amphetamine exposure (AUClast and AUC0-∞) increased and Cmax decreased as renal impairment increased. Almost no LDX and little D-amphetamine were recovered in the dialyzate. CONCLUSIONS: There seems to be prolonged D-amphetamine exposure after 30 mg LDX as renal impairment increases. In individuals with severe renal impairment (GFR: 15 ≤ 30 mL·min·1.73 m), the maximum LDX dose is 50 mg/d; in patients with ESRD (GFR: <15 mL·min·1.73 m), the maximum LDX dose is 30 mg/d. Neither LDX nor D-amphetamine is dialyzable.


Subject(s)
Lisdexamfetamine Dimesylate/adverse effects , Lisdexamfetamine Dimesylate/pharmacokinetics , Renal Insufficiency/blood , Adult , Aged , Area Under Curve , Dextroamphetamine/adverse effects , Dextroamphetamine/blood , Dextroamphetamine/pharmacokinetics , Female , Glomerular Filtration Rate/drug effects , Humans , Kidney/drug effects , Lisdexamfetamine Dimesylate/blood , Male , Middle Aged , Renal Dialysis
7.
J Psychopharmacol ; 30(4): 330-43, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26880226

ABSTRACT

Rate of delivery of psychostimulants has been associated with their positive euphoric effects and potential addiction liability. However, information on individual differences in onset of d-amphetamine's effects remains scarce. We examined individual differences in the time to peak subjective and physiological effects and the pharmacokinetics/pharmacodynamics of oral d-amphetamine. We considered two independent studies that used different dosing regimens where subjects completed the drug effects questionnaire at multiple time points post d-amphetamine. Based on the observation of distinct individual differences in time course of drug effects questionnaire "feel", "high", and "like" ratings (DEQH+L+F) in Study 1, subjects in both studies were categorized as early peak responders (peak within 60 minutes), late peak responders (peak > 60 minutes) or nonresponders; 20-25% of participants were categorized as early peak responders, 50-55% as late peak responders and 20-30% as nonresponders. Physiological (both studies) and plasma d-amphetamine (Study 1) were compared among these groups. Early peak responders exhibited an earlier rise in plasma d-amphetamine levels and more sustained elevation in heart rate compared to late peak responders. The present data illustrate the presence of significant individual differences in the temporal pattern of responses to oral d-amphetamine, which may contribute to heightened abuse potential.


Subject(s)
Central Nervous System Stimulants/pharmacology , Central Nervous System Stimulants/pharmacokinetics , Dextroamphetamine/pharmacology , Dextroamphetamine/pharmacokinetics , Individuality , Adult , Behavior, Addictive/blood , Behavior, Addictive/chemically induced , Behavior, Addictive/metabolism , Central Nervous System Stimulants/blood , Dextroamphetamine/blood , Dose-Response Relationship, Drug , Female , Heart Rate/drug effects , Humans , Male , Substance-Related Disorders/blood , Substance-Related Disorders/etiology , Substance-Related Disorders/metabolism , Surveys and Questionnaires , Young Adult
8.
Clin Drug Investig ; 35(10): 633-43, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26329917

ABSTRACT

BACKGROUND AND OBJECTIVE: Hair is an attractive matrix for amphetamine drug testing; however, little is known about the rate at which amphetamines are deposited into hair. Therefore, the purpose of this study was to determine the pharmacokinetics of oral dextroamphetamine in plasma and quantify the rate of deposition into hair in healthy adults using a linked population pharmacokinetic model. METHODS: Healthy adults >18 years of age received dextroamphetamine 10 mg orally for 7 days. Plasma samples were collected over 48 h following the final dose, and hair was collected 5 weeks following the first dose. NONMEM 7.2 was used to estimate dextroamphetamine oral absorption rate constant, apparent clearance and volume of distribution of the plasma compartment, the plasma to hair incorporation rate constant, and the apparent volume of distribution in the hair compartment. RESULTS: Dextroamphetamine pharmacokinetics were well-described by a one-compartment model with combined additive and proportional error for the plasma compartment, which was linked to a single compartment for the hair. Apparent clearance and volume of distribution in the plasma compartment were scaled by current body weight (centered on the mean). Melanin hair concentration was included as a significant covariate on the hair compartment. Absorption rate constant, clearance, and volume of distribution for the plasma compartment were estimated as 0.527 h(-1) (95% CI 0.467-0.586), 28.7 L/h (95% CI 27.1-30.3), and 377 L (95% CI 326-428), respectively. The incorporation rate constant from plasma to hair was 1.60e(-6) h(-1) (95% CI 1.06e(-6)-2.14e(-6)) and apparent volume of distribution in hair was 17.7 mg (95% CI 12.5-22.8). CONCLUSIONS: A one-compartment plasma model linked to a single compartment for hair successfully described the pharmacokinetics of dextroamphetamine in healthy adults. The volume of distribution and clearance of dextroamphetamine increased with weight, and the volume of distribution of the hair compartment increased with greater melanin concentrations.


Subject(s)
Dextroamphetamine/blood , Dextroamphetamine/pharmacokinetics , Hair/metabolism , Adult , Female , Healthy Volunteers , Humans , Male , Melanins/metabolism , Models, Biological , Substance Abuse Detection/methods , Young Adult
9.
J Clin Psychopharmacol ; 34(6): 682-9, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25310201

ABSTRACT

To assess the safety and pharmacokinetics of lisdexamfetamine dimesylate (LDX), a d-amphetamine prodrug, this double-blind study enrolled adults with clinically stable schizophrenia who were adherent (≥12 weeks) to antipsychotic pharmacotherapy. The participants received placebo or ascending LDX doses (50, 70, 100, 150, 200, and 250 mg) daily for 5 days at each dose (dose periods, 1-6; days, 1-5). Of the 31 enrolled participants, 27 completed the study (placebo, n = 6; LDX, n = 21). Treatment-emergent adverse events (AEs) were reported by 4 participants receiving placebo and by 23 participants receiving LDX (all doses) with no serious AEs while on active treatment. For all periods, the mean postdose change on day 5 (up to 12 hours postdose) in systolic and diastolic blood pressure and pulse, respectively, ranged from -4.62 to 8.05 mm Hg, -3.67 to 4.43 mm Hg, and -3.57 to 14.43 beats per minute for placebo and -3.83 to 11.25 mm Hg, -1.55 to 5.80 mm Hg, and -0.36 to 21.26 beats per minute for LDX. With ascending LDX dose, the mean (SD) maximum plasma concentration for LDX-derived d-amphetamine ranged from 51.68 (10.28) to 266.27 (56.55) ng/mL. The area under the plasma concentration-time curve for 24 hours ranged from 801.8 (170.2) to 4397.9 (1085.9) ng[BULLET OPERATOR]h/mL. The d-amphetamine maximum plasma concentration and area under the plasma concentration-time curve increased linearly with ascending LDX dose. Antipsychotic agents did not markedly affect d-amphetamine pharmacokinetics. Over a wide range of ascending doses, LDX safety profile in adults with schizophrenia was consistent with previous findings with no unexpected treatment-emergent AEs. Pulse tended to increase with LDX dose; overall, blood pressure did not increase with LDX dose. Consistent with previous studies, pharmacokinetic parameters increased linearly with increasing LDX dose.


Subject(s)
Dextroamphetamine/administration & dosage , Dextroamphetamine/blood , Schizophrenia/blood , Schizophrenia/drug therapy , Adult , Cross-Over Studies , Dextroamphetamine/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , Lisdexamfetamine Dimesylate , Male , Middle Aged
10.
J Pharmacol Toxicol Methods ; 70(3): 295-309, 2014.
Article in English | MEDLINE | ID: mdl-24632211

ABSTRACT

OBJECTIVES: Preclinical abuse liability assessment of novel clinical CNS-active candidates involves several tests, addressing different aspects characteristic for abuse potential, which are considered predictive for substance abuse of these candidates, thus ensuring an appropriate translational approach. To demonstrate how such a strategy could work, a known drug of abuse, methylphenidate was evaluated in a full rodent test battery, comprising four test models, and in accordance with the requirements of the FDA, ICH and EMA guidelines. METHODS: Methylphenidate was tested orally at 2.5, 5 or 10mg/kg for its physical dependence potential in a repeated dose non-precipitated withdrawal test, for its drug profiling in a drug discrimination learning procedure (single escalating doses), and for its reinforcing properties in a conditioned place preference test (alternate dosing days) and an intravenous self-administration procedure (0.05 to 1mg/kg/IV infusion during 5 daily 1-h test sessions). The stimulant d-amphetamine served as positive control and was administered subcutaneously at 0.8mg/kg in the first three test models. In the intravenous self-administration procedure rats were habituated to intravenously self-administer d-amphetamine at 0.06mg/kg/IV infusion prior to methylphenidate substitution. RESULTS: Cessation of subchronic dosing up to 10mg/kg methylphenidate led to sustained or even exacerbated effects on locomotion and behavior, body temperature, body weight, food consumption, and alteration of the diurnal rhythm during withdrawal. Clear generalization to d-amphetamine was obtained in the drug discrimination test at 5 and 10mg/kg. Distinct reinforcing properties were present in the conditioned place preference test at 10mg/kg and in the intravenous self-administration study from 0.05mg/kg/IV infusion onwards. The maximum plasma exposure after oral administration of methylphenidate over the dose ranges tested in the present rat studies covered at least 1.9-fold to 18.9-fold the recommended human therapeutic exposure of 10ng/ml, a plasma level that is considered representative of the human efficacious methylphenidate dose. The ratio Cmax Hu/rat calculated from the intravenous self-administration data ranged from 14.9 to 576.5. Consequently the regulatory requirements, stating that preclinical drug abuse liability studies should include high doses that produce plasma levels that are multiples of the therapeutic dose were fulfilled (FDA, EMA, ICH). DISCUSSION: The presented preclinical models, implemented within a drug development environment, were considered highly predictive to assess the abuse potential of methylphenidate, and in accordance with the regulatory requirements of drug licensing authorities in terms of appropriate methods, dose selection and subsequent plasma exposure.


Subject(s)
Central Nervous System Stimulants/toxicity , Dextroamphetamine/toxicity , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Methylphenidate/toxicity , Risk Assessment/methods , Substance-Related Disorders/etiology , Animals , Central Nervous System Stimulants/administration & dosage , Central Nervous System Stimulants/blood , Dextroamphetamine/administration & dosage , Dextroamphetamine/blood , Dose-Response Relationship, Drug , Humans , Male , Methylphenidate/administration & dosage , Methylphenidate/blood , Rats , Rats, Sprague-Dawley , Self Administration
SELECTION OF CITATIONS
SEARCH DETAIL