Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Perinatol ; 37(11): 1094-1101, 2020 09.
Article in English | MEDLINE | ID: mdl-32120424

ABSTRACT

OBJECTIVE: In this study, we assess the impact of obesity and diabetes on maternal brain and periphery, as well as fetal exposure to insulin and leptin, and two hormones that play an important role in regulating energy homeostasis. STUDY DESIGN: Fasting maternal plasma, fetal cord vein and artery plasma, and maternal cerebrospinal fluid (CSF) were collected in 37 women (12 lean, nondiabetic [prepregnancy body mass index (BMI): 22.9 ± 1.7 kg/m2]; 12 overweight/obese nondiabetic [BMI: 37.8 ± 7.3 kg/m2]; 13 gestational/type 2 diabetes mellitus [BMI: 29.8 ± 7.3 kg/m2]) with uncomplicated singleton pregnancies undergoing elective Cesarean delivery. HbA1C, insulin, glucose, and leptin levels were measured. RESULTS: Compared with lean mothers, mothers with obesity and diabetes mellitus (DM) had significantly lower CSF-to-plasma ratios of insulin. Moreover, mothers with obesity and DM had significantly lower cord arterial and cord venous to maternal plasma ratios of insulin, but not leptin, compared with lean mothers. There were no differences in CSF and cord blood insulin and leptin levels between obese and DM mothers. CONCLUSION: Compared with lean individuals, mothers with obesity and DM have relative deficiencies in insulin exposure. The patterns observed in mothers with obesity and diabetes were similar highlighting the importance of the maternal metabolic environment in obesity and suggesting obese patients warrant further clinical focus.


Subject(s)
Diabetes, Gestational/metabolism , Insulin/metabolism , Leptin/metabolism , Obesity/metabolism , Adult , Birth Weight , Blood Glucose/metabolism , Body Mass Index , Diabetes, Gestational/blood , Diabetes, Gestational/cerebrospinal fluid , Female , Fetal Blood/metabolism , Glycated Hemoglobin/metabolism , Humans , Infant, Newborn , Obesity/blood , Obesity/cerebrospinal fluid , Pregnancy , Pregnancy Complications
2.
PLoS One ; 10(6): e0128582, 2015.
Article in English | MEDLINE | ID: mdl-26035307

ABSTRACT

BACKGROUND: Fructose, unlike glucose, promotes feeding behavior in rodents and its ingestion exerts differential effects in the human brain. However, plasma fructose is typically 1/1000 th of glucose levels and it is unclear to what extent fructose crosses the blood-brain barrier. We investigated whether local endogenous central nervous system (CNS) fructose production from glucose via the polyol pathway (glucose → sorbitol → fructose) contributes to brain exposure to fructose. METHODS: In this observational study, fasting glucose, sorbitol and fructose concentrations were measured using gas-chromatography-liquid mass spectroscopy in cerebrospinal fluid (CSF), maternal plasma, and venous cord blood collected from 25 pregnant women (6 lean, 10 overweight/obese, and 9 T2DM/gestational DM) undergoing spinal anesthesia and elective cesarean section. RESULTS: As expected, CSF glucose was ~ 60% of plasma glucose levels. In contrast, fructose was nearly 20-fold higher in CSF than in plasma (p < 0.001), and CSF sorbitol was ~ 9-times higher than plasma levels (p < 0.001). Moreover, CSF fructose correlated positively with CSF glucose (ρ 0.45, p = 0.02) and sorbitol levels (ρ 0.75, p < 0.001). Cord blood sorbitol was also ~ 7-fold higher than maternal plasma sorbitol levels (p = 0.001). There were no differences in plasma, CSF, and cord blood glucose, fructose, or sorbitol levels between groups. CONCLUSIONS: These data raise the possibility that fructose may be produced endogenously in the human brain and that the effects of fructose in the human brain and placenta may extend beyond its dietary consumption.


Subject(s)
Biomarkers/blood , Biomarkers/cerebrospinal fluid , Blood Glucose/analysis , Fructose/blood , Fructose/cerebrospinal fluid , Plasma/chemistry , Sorbitol/analysis , Adult , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/cerebrospinal fluid , Diabetes Mellitus, Type 2/pathology , Diabetes, Gestational/blood , Diabetes, Gestational/cerebrospinal fluid , Diabetes, Gestational/pathology , Female , Gas Chromatography-Mass Spectrometry/methods , Humans , Obesity/blood , Obesity/cerebrospinal fluid , Obesity/pathology , Overweight/blood , Overweight/cerebrospinal fluid , Overweight/pathology , Pregnancy , Thinness/blood , Thinness/cerebrospinal fluid , Thinness/pathology
3.
Am J Physiol Endocrinol Metab ; 306(5): E512-8, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24398403

ABSTRACT

Peripheral action of irisin improves glucose homeostasis and increases energy expenditure, with no data on a central role of irisin in metabolism. These studies sought to examine 1) presence of irisin in human cerebrospinal fluid (CSF) and banked human hypothalamic tissue, 2) serum irisin in maternal subjects across varying adiposities with or without gestational diabetes (GDM), and 3) their respective neonate offspring. CSF, serum, and neonatal cord serum were collected from 91 pregnant women with and without GDM attending for an elective cesarean section [body mass index (BMI): 37.7 ± 7.6 kg/m(2); age: 32 ± 8.3 yr]. Irisin was assessed by ELISA and correlated with biochemical and anthropometric data. Irisin expression was examined in human hypothalamus by immunohistochemical staining. Serum irisin in pregnant women was significantly lower in nonobese compared with obese and GDM subjects, after adjusting for BMI, lipids, and glucose. Irisin was present in neonatal cord serum (237 ± 8 ng/ml) and maternal CSF (32 ± 1.5 ng/ml). CSF irisin correlated positively with serum irisin levels from nonobese and obese pregnant women (P < 0.01), with CSF irisin significantly raised in GDM subjects (P < 0.05). Irisin was present in human hypothalamic sections in the paraventricular neurons, colocalized with neuropeptide Y. Irisin was detectable in CSF and in paraventricular neurons. Maternal serum irisin was lower in nonobese pregnant women after adjusting for BMI and a number of metabolic parameters. These studies indicate that irisin may have a central role in metabolism in addition to the known peripheral role. Further studies investigating the central action of irisin in human metabolic disease are required.


Subject(s)
Adiposity/physiology , Diabetes, Gestational/metabolism , Fibronectins/metabolism , Hypothalamus/metabolism , Obesity/metabolism , Adult , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Diabetes, Gestational/cerebrospinal fluid , Female , Fibronectins/cerebrospinal fluid , Humans , Neurons/metabolism , Neuropeptide Y/metabolism , Obesity/cerebrospinal fluid , Pregnancy
4.
PLoS One ; 8(6): e65254, 2013.
Article in English | MEDLINE | ID: mdl-23755203

ABSTRACT

OBJECTIVES: Circulating Fibroblast Growth Factor 21 (FGF21) levels are increased in insulin resistant states such as obesity, type 2 diabetes mellitus and gestational diabetes mellitus (GDM). In addition, GDM is associated with serious maternal and fetal complications. We sought to study human cerebrospinal fluid (CSF) and corresponding circulating FGF21 levels in women with gestational diabetes mellitus (GDM) and in age and BMI matched control subjects. We also assessed FGF21 secretion from GDM and control human placental explants. DESIGN: CSF and corresponding plasma FGF21 levels of 24 women were measured by ELISA [12 GDM (age: 26-47 years, BMI: 24.3-36.3 kg/m(2)) and 12 controls (age: 22-40 years, BMI: 30.1-37.0 kg/m(2))]. FGF21 levels in conditioned media were secretion from GDM and control human placental explants were also measured by ELISA. RESULTS: Glucose, HOMA-IR and circulating NEFA levels were significantly higher in women with GDM compared to control subjects. Plasma FGF21 levels were significantly higher in women with GDM compared to control subjects [234.3 (150.2-352.7) vs. 115.5 (60.5-188.7) pg/ml; P<0.05]. However, there was no significant difference in CSF FGF21 levels in women with GDM compared to control subjects. Interestingly, CSF/Plasma FGF21 ratio was significantly lower in women with GDM compared to control subjects [0.4 (0.3-0.6) vs. 0.8 (0.5-1.6); P<0.05]. FGF21 secretion into conditioned media was significantly lower in human placental explants from women with GDM compared to control subjects (P<0.05). CONCLUSIONS: The central actions of FGF21 in GDM subjects maybe pivotal in the pathogenesis of insulin resistance in GDM subjects. The significance of FGF21 produced by the placenta remains uncharted and maybe crucial in our understanding of the patho-physiology of GDM and its associated maternal and fetal complications. Future research should seek to elucidate these points.


Subject(s)
Diabetes, Gestational/blood , Diabetes, Gestational/cerebrospinal fluid , Fibroblast Growth Factors , Insulin Resistance , Adult , Blood Glucose/metabolism , Diabetes, Gestational/physiopathology , Enzyme-Linked Immunosorbent Assay , Female , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/cerebrospinal fluid , Humans , Insulin/blood , Middle Aged , Placenta/metabolism , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...