Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.520
Filter
1.
Pak J Pharm Sci ; 37(2(Special)): 459-462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38822550

ABSTRACT

The purpose of this study was to examine the potential hypoglycemic effects of administering ginger (Zingiber officinale) and garlic (Allium sativum) to rats with induced type 2 diabetes. A total of forty-five male adult albino rats were randomly assigned to five groups. The groups were named Normal Control, Diabetic Control, Ginger group, Garlic group and a combination group of ginger and garlic. Diabetes was produced in all groups, except the normal control group, using an intraperitoneal injection of streptozotocin at a dosage of 60 mg/body weight. During the course of two months, rats were administered varying amounts of ginger and garlic powders as part of their treatment After the experiment concluded, measurements were taken for glycated hemoglobin, serum glucose, insulin, cholesterol, high density protein, low density protein and liver glycogen levels. These groups exhibited considerably greater serum insulin and high-density lipoprotein concentrations (P<0.05) compared to the diabetic control group. Conversely, body weight, fasting blood glucose, total cholesterol, low density lipoprotein, and glycated hemoglobin levels were significantly lower (P<0.05) in all groups compared to the diabetic control group. A statistically significant increase (P<0.05) increase shown in liver glycogen levels. This study proposes that the utilization of ginger and garlic powders improve the condition of type 2 diabetes and maybe reduce the risk of subsequent diabetic complications.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Garlic , Hypoglycemic Agents , Insulin , Powders , Zingiber officinale , Animals , Garlic/chemistry , Zingiber officinale/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats , Insulin/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/metabolism , Plant Extracts/pharmacology , Phytotherapy , Liver Glycogen/metabolism , Streptozocin
2.
Pak J Pharm Sci ; 37(1): 71-78, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741402

ABSTRACT

Diabetes mellitus, recognized by elevated glucose level in the body fluids is commonly caused by less insulin production or its action. To overcome the complications of diabetes, chemical drugs are never preferred over herbal medicines. Present study was designed to find out the anti-diabetic and health-promoting effects of ethanolic leaf extracts of Cucumis melo and Citrullus lanatus in induced-diabetic albino rats. Thirty male albino rats were bought from the animal house of the university and divided randomly into five feeding groups (n=6). Diabetes was induced in rats of groups A, B, C & D by a single dose of intra-peritoneal injection of streptozotocin (55 mg/Kg), whereas, the rats of group E were considered as control. The rats of groups A, B & C were fed basal diet supplemented with plant extracts (150mg/Kg body weight), whereas; only basal diet was offered to rats of groups D & E. After 28 days of the experiment, blood was collected for biochemical analysis. Results revealed that body weight, glucose, AST, ALB, GGT, HDL, cholesterol, triglyceride, urea and creatinine level differed significantly among treatment groups. It was therefore concluded that ethanolic leaf extracts of Cucumis melo and Citrullus lanatus can be used separately or in combination for the management of diabetes.


Subject(s)
Blood Glucose , Citrullus , Cucumis melo , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Lipids , Plant Extracts , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Plant Extracts/pharmacology , Cucumis melo/chemistry , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Citrullus/chemistry , Rats , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Lipids/blood , Plant Leaves/chemistry , Kidney/drug effects , Kidney/metabolism , Liver/drug effects , Liver/metabolism , Streptozocin
3.
Pak J Pharm Sci ; 37(1): 163-171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741413

ABSTRACT

Medicinal plants contain a wide variety of bioactive phytoconstituents which can serve as new therapeutic agents for several diseases. This study examines the antidiabetic potential of Aitchisonia rosea in alloxan-induced diabetic rats and identifies its bioactive phytoconstituents using GC-MS. In vitro, antidiabetic potential was established using the α-amylase inhibition assay. In vivo, antidiabetic potential was investigated by employing the oral glucose tolerance test (OGTT). GC-MS analysis was used to identify the bioactive phytoconstituents. The in vitro and in vivo tests showed that the aqueous extract of A. rosea possesses better antidiabetic potential. The α-amylase inhibition assay highlighted an IC50 value of 134.87µg/ml. In an oral glucose tolerance test, rats given an aqueous A. rosea extract significantly lowered their blood sugar levels significant reduction in the blood glucose concentration was observed in the oral glucose tolerance test in rats treated with the aqueous A. rosea extract. GC-MS investigation revealed many phytoconstituents, with serverogenin acetate and cycloheptasiloxane tetradecamethyl being important antidiabetic agents. This study found anti-diabetic properties in A. rosea extract. The phytochemical and GC-MS investigation also found serverogenin acetate and cycloheptasiloxane tetradecamethyl, which could be used to develop new antidiabetic drugs.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Gas Chromatography-Mass Spectrometry , Hypoglycemic Agents , Plant Components, Aerial , Plant Extracts , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Plant Components, Aerial/chemistry , Male , Blood Glucose/drug effects , Rats , Glucose Tolerance Test , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Rats, Wistar , Phytochemicals/pharmacology , Phytochemicals/analysis , Alloxan
4.
Pak J Pharm Sci ; 37(2): 291-296, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767095

ABSTRACT

Mangiferin, a key bioactive constituent in Gentiana rhodantha, has a favorable impact on reducing blood sugar. A selective and sensitive UPLC MS/MS approach was developed for determining mangiferin in diabetic rats. Employing acetonitrile protein precipitation, chromatographic separation utilized a 2.1×50 mm, 3.5µm C18 column with a mobile phase of 0.1% formic acid aqueous and 5mM ammonium acetate (A, 45%) and acetonitrile (B, 55%) at a 0.5mL min-1 flow rate. Quantification, employing the multiple reaction monitoring (MRM) mode, focused on precursor-to-product ion transitions at m/z 447.1→271.1 for baicalin m/z and 421.0→301.0 for mangiferin. Calibration curves demonstrated linearity in the 1.00~100ng/mL range, with a lower quantification limit for rat plasma set at 1.00ng/mL. Inter- and intra-day accuracies spanned -9.1% to 8.5% and mangiferin mean recovery varied from 82.3% to 86.7%. The adeptly utilized UPLC-MS/MS approach facilitated the exploration of mangiferin pharmacokinetics in diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental , Gentiana , Plant Extracts , Tandem Mass Spectrometry , Xanthones , Animals , Xanthones/pharmacokinetics , Xanthones/blood , Xanthones/administration & dosage , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Tandem Mass Spectrometry/methods , Male , Chromatography, High Pressure Liquid/methods , Plant Extracts/pharmacokinetics , Plant Extracts/administration & dosage , Plant Extracts/blood , Administration, Oral , Rats , Gentiana/chemistry , Rats, Sprague-Dawley , Streptozocin , Reproducibility of Results , Liquid Chromatography-Mass Spectrometry
5.
Pak J Pharm Sci ; 37(2): 307-314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38767097

ABSTRACT

Long-lasting hyperglycemia can potentially cause damage to organs such as the kidneys, liver and pancreas. Glimepiride (GLIM), as a drug of choice in the treatment of diabetes mellitus (DM), has the risk of decreasing the functioning of organs such as the kidneys, liver and pancreas. Black rice bran ethanol extract (EEBRB) with antioxidant content has been shown to protect the kidney, liver and pancreas organs. The aim of this study was to establish the effect of EEBRB on lowering fasting blood glucose (FBG) and protecting several organs after GLIM administration in alloxan (ALX)-induced hyperglycemic rats. A total of 20 rats were divided into 4 groups and treated for 21 days treatments using following preparations: normal control (NC), diabetic group (DC), GLIM 1 mg/ kgBW and combination of glimepiride 1mg/kgBW and EEBRB 50 mg/KgBW (GLBR). The results showed that the GLBR was able to lower blood glucose levels back to normal (<126 mg/dL) and protect kidney, liver and pancreas cells by increasing the amount in normal cells.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Kidney , Liver , Oryza , Pancreas , Plant Extracts , Sulfonylurea Compounds , Animals , Sulfonylurea Compounds/pharmacology , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Kidney/drug effects , Kidney/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Oryza/chemistry , Liver/drug effects , Liver/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/isolation & purification , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology , Male , Rats , Ethanol/chemistry , Rats, Wistar
6.
Biol Pharm Bull ; 47(5): 1043-1053, 2024.
Article in English | MEDLINE | ID: mdl-38811190

ABSTRACT

Mogroside, the main component of Siraitia grosvenorii (Swingle) C. Jeffrey (Cucurbitaceae) is a natural product with hypoglycemic and intestinal microbiota regulating properties. However, whether the alteration of intestinal microbiota is associated with the antidiabetic effect of mogroside remains poorly understood. This study investigated the mechanism underlying the hypoglycemic effect of mogroside in regulating intestinal flora and attenuating metabolic endotoxemia. Kunming mice with type 2 diabetes mellitus (T2DM) induced by high-fat diet and intraperitoneal injection of streptozotocin were randomly divided into model, pioglitazone (2.57 mg/kg) and mogroside (200, 100, and 50 mg/kg) groups. After 28 d of administration, molecular changes related to glucose metabolism and metabolic endotoxemia in mice were evaluated. The levels of insulin receptor substrate-1 (IRS-1), cluster of differentiation 14 (CD14) and toll-like receptor 4 (TLR4) mRNAs were measured, and the composition of intestinal microflora was determined by 16s ribosomal DNA (rDNA) sequencing. The results showed that mogroside treatment significantly improved hepatic glucose metabolism in T2DM mice. More importantly, mogroside treatment considerably reduced plasma endotoxin (inhibition rate 65.93%, high-dose group) and inflammatory factor levels, with a concomitant decrease in CD14 and TLR4 mRNA levels. Moreover, mogroside treatment reduced the relative abundance of Firmicutes and Proteobacteria (the inhibition rate of Proteobacteria was 85.17% in the low-dose group) and increased the relative abundance of Bacteroidetes (growth rate up to 40.57%, high-dose group) in the intestines of diabetic mice. This study reveals that mogroside can relieve T2DM, regulating intestinal flora and improving intestinal mucosal barrier, indicating that mogroside can be a potential therapeutic agent or intestinal microbiota regulator in the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Hypoglycemic Agents , Animals , Gastrointestinal Microbiome/drug effects , Male , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diet, High-Fat/adverse effects , Blood Glucose/drug effects , Triterpenes/pharmacology , Triterpenes/therapeutic use , Toll-Like Receptor 4/metabolism , Endotoxemia/drug therapy , Liver/drug effects , Liver/metabolism
7.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2783-2797, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812179

ABSTRACT

Dihuang Baoyuan Granules is a prescription endorsed by HU Tianbao, a renowned and elderly Chinese medicine practitioner from Beijing, and has demonstrated definite clinical efficacy. The composition of this prescription is intricate as it includes 7 distinct herbal medicines. This study aims to analyze the chemical composition of Dihuang Baoyuan Granules, evaluate its efficacy in the treatment of diabetes and analyze the distribution of the drug components in the plasma, liver, and kidney after administration. The findings will serve as a reference for future research on pharmacodynamic substances of this prescription. UHPLC-LTQ-Orbitrap MS was employed to analyze the main chemical components of Dihuang Baoyuan Granules. A Waters ACQUITY Premier HSS T3 column(2.1 mm×100 mm, 1.8 µm) was used for chromatographic separation with 0.1% formic acid(A)-acetonitrile(B) as the mobile phases in a gradient elution at a flow rate of 0.3 mL·min~(-1). Electrospray ionization(ESI) source was used to acquire data in positive and negative ion modes. Furthermore, a rat model of diabetes mellitus was established by feeding with a high-sugar high-fat diet, and injection with streptozocin at a dose of 35 mg·kg~(-1), and the modeled rats were then administrated with Dihuang Baoyuan Granules. The fasting blood glucose, hemoglobin A1c, and other relevant indicators were measured, and the substances present in the plasma, liver, and kidney were identified. By reference to quasi-molecular ions, MS/MS fragment ions, MS spectra of reference substances, and compound information in available reports, 191 components were identified in Dihuang Baoyuan Granules, including 29 alkaloids, 24 flavonoids, 22 organic acids, 16 amino acids, 12 terpenes, 11 steroid saponins, 9 sugars, 8 phenylethanoid glycosides, 8 nucleosides, 2 phenylpropanoids, and 49 others compounds. Eighty-three chemical components were identified in rat plasma, 109 in the liver, and 98 in the kidney. Component identification and characterization of Dihuang Baoyuan Granules in vitro and in vivo provide efficacy information and guidance for the basic research on the pharmacodynamic substances and further clinical application of this prescription.


Subject(s)
Drugs, Chinese Herbal , Rats, Sprague-Dawley , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacokinetics , Chromatography, High Pressure Liquid/methods , Animals , Rats , Male , Humans , Liver/drug effects , Liver/chemistry , Liver/metabolism , Mass Spectrometry/methods , Kidney/drug effects , Kidney/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus/drug therapy
8.
Biomed Pharmacother ; 175: 116780, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781864

ABSTRACT

Pueraria lobata, commonly known as kudzu, is a medicinal and food plant widely used in the food, health food, and pharmaceutical industries. It has clinical pharmacological effects, including hypoglycemic, antiinflammatory, and antioxidant effects. However, its mechanism of hypoglycemic effect on type 2 diabetes mellitus (T2DM) has not yet been elucidated. In this study, we prepared a Pueraria lobata oral liquid (POL) and conducted a comparative study in a T2DM rat model to evaluate the hypoglycemic effect of different doses of Pueraria lobata oral liquid. Our objective was to investigate the hypoglycemic effect of Puerarin on T2DM rats and understand its mechanism from the perspective of metabolomics. In this study, we assessed the hypoglycemic effect of POL through measurements of FBG, fasting glucose tolerance test, plasma lipids, and liver injury levels. Furthermore, we examined the mechanism of action of POL using hepatic metabolomics. The study's findings demonstrated that POL intervention led to improvements in weight loss, blood glucose, insulin, and lipid levels in T2DM rats, while also providing a protective effect on the liver. Finally, POL significantly affected the types and amounts of hepatic metabolites enriched in metabolic pathways, providing an important basis for revealing the molecular mechanism of Pueraria lobata intervention in T2DM rats. These findings indicate that POL may regulate insulin levels, reduce liver damage, and improve metabolic uptake in the liver. This provides direction for new applications and research on Pueraria lobata to prevent or improve T2DM.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Metabolomics , Pueraria , Rats, Sprague-Dawley , Animals , Pueraria/chemistry , Male , Rats , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/blood , Liver/metabolism , Liver/drug effects , Administration, Oral , Plant Extracts/pharmacology , Isoflavones/pharmacology , Insulin/blood , Insulin/metabolism , Lipids/blood
9.
J Diabetes Res ; 2024: 1222395, 2024.
Article in English | MEDLINE | ID: mdl-38725443

ABSTRACT

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Inflammation , Inulin , Kidney , Metabolomics , Mice, Inbred ICR , Oxidative Stress , Animals , Inulin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Fatty Acids, Volatile/metabolism , Diet, High-Fat , Blood Urea Nitrogen
10.
J Med Life ; 17(2): 217-225, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38813352

ABSTRACT

Insulin is the cornerstone of treatment in type 1 diabetes mellitus. However, because of its protein structure, insulin has to be administered via injection, and many attempts have been made to create oral formulations, especially using nanoparticles (NPs). The aim of this study was to compare the hypoglycemic effect of insulin-loaded NPs to that of subcutaneous insulin in an in vivo rat model of diabetes. We used biodegradable D-α-tocopherol polyethylene glycol succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose of 20 IU/kg body weight, and examined the physical characteristics of NPs in vivo and in vitro. Serum glucose levels were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a potential carrier for oral insulin delivery.


Subject(s)
Diabetes Mellitus, Experimental , Hyperglycemia , Insulin , Nanoparticles , Streptozocin , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Insulin/blood , Insulin/administration & dosage , Rats , Administration, Oral , Male , Hyperglycemia/drug therapy , Chitosan/chemistry , Blood Glucose , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Disease Models, Animal , Rats, Sprague-Dawley
11.
Biomed Pharmacother ; 174: 116525, 2024 May.
Article in English | MEDLINE | ID: mdl-38599057

ABSTRACT

PURPOSE: We previously showed the beneficial effect of L-Lysine (Lys), a chemical chaperone, on reducing diabetic complications in diabetic rats and type 2 diabetic patients. Herein, we evaluated the effect of Lys co-administration with Vitamin C and Zinc (Lys+VC+Zn), in diabetic rats. METHODS: The streptozotocin (50 mg/Kg) was injected into male adult Wistar rats to induce diabetes. Then, different groups of normal and diabetic rats were treated with Lys and Lys+VC+Zn for five months. So, there were 0.1 % Lys in the drinking water of both groups. The control groups received water alone. During the experiment, the body weight, and various parameters were determined in the blood, serum/plasma, and urine of the rats. RESULTS: The determination of biochemical indexes confirmed diabetes induction and its complications in rats. Treatment with either Lys or Lys+VC+Zn resulted in reduced blood glucose and protein glycation (decreasing AGEs and HbA1c), increased insulin secretion, alleviated insulin resistance and HOMA-IR, improved lipid profile and HDL functionality (LCAT and PON1), enhanced antioxidant status (FRAP and AOPP), improved kidney function (decreased microalbuminuria, serum urea, and creatinine), and increased chaperone capacity (HSP70). Lys+VC+Zn showed better effects on these parameters than Lys alone. CONCLUSIONS: The results of this study indicated that co-administration of Lys, a chemical chaperone, with two antioxidants (VC and Zn) potentiates its antidiabetic effects and prevent diabetic complications in rat model of diabetes.


Subject(s)
Antioxidants , Ascorbic Acid , Blood Glucose , Diabetes Mellitus, Experimental , Insulin Resistance , Lipids , Lysine , Rats, Wistar , Zinc , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Ascorbic Acid/pharmacology , Ascorbic Acid/administration & dosage , Lysine/pharmacology , Lysine/administration & dosage , Zinc/pharmacology , Antioxidants/pharmacology , Antioxidants/administration & dosage , Rats , Lipids/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Streptozocin , Insulin/blood , Drug Therapy, Combination
12.
ACS Appl Mater Interfaces ; 16(17): 21400-21414, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38640094

ABSTRACT

Morin, a naturally occurring bioactive compound shows great potential as an antioxidant, anti-inflammatory agent, and regulator of blood glucose levels. However, its low water solubility, poor lipid solubility, limited bioavailability, and rapid clearance in vivo hinder its application in blood glucose regulation. To address these limitations, we report an enzymatically synthesized nanosized morin particle (MNs) encapsulated in sodium alginate microgels (M@SA). This approach significantly enhances morin's delivery efficiency and therapeutic efficacy in blood glucose regulation. Utilizing horseradish peroxidase, we synthesized MNs averaging 305.7 ± 88.7 nm in size. These MNs were then encapsulated via electrohydrodynamic microdroplet spraying to form M@SA microgels. In vivo studies revealed that M@SA microgels demonstrated prolonged intestinal retention and superior efficacy compared with unmodified morin and MNs alone. Moreover, MNs notably improved glucose uptake in HepG2 cells. Furthermore, M@SA microgels effectively regulated blood glucose, lipid profiles, and oxidative stress in diabetic mice while mitigating liver, kidney, and pancreatic damage and enhancing anti-inflammatory responses. Our findings propose a promising strategy for the oral administration of natural compounds for blood glucose regulation, with implications for broader therapeutic applications.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Flavones , Flavonoids , Nanoparticles , Animals , Humans , Blood Glucose/drug effects , Blood Glucose/metabolism , Mice , Flavonoids/chemistry , Flavonoids/pharmacology , Hep G2 Cells , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Alginates/chemistry , Oxidative Stress/drug effects , Antioxidants/chemistry , Antioxidants/pharmacology , Male , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/pharmacokinetics , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology
13.
Endokrynol Pol ; 75(2): 183-191, 2024.
Article in English | MEDLINE | ID: mdl-38646988

ABSTRACT

INTRODUCTION: Obesity, type 1 diabetes mellitus (T1DM), and type 2 diabetes mellitus (T2DM) are metabolic diseases that continue to be a global problem. Testosterone levels in men are affected by several factors, including obesity and DM. Although the relationship between diabetes and testosterone is not fully understood, oxidative stress is thought to play a major role. The aim of this study was to compare serum testosterone levels and oxidative stress markers [total antioxidant status (TAS), total oxidant capacity (TOS), oxidative stress index (OSI), and ischaemic modified albumin (IMA)] among the control group and experimentally induced obese, T1DM, and T2DM rats. MATERIAL AND METHODS: The study included 28 male Sprague-Dawley rats divided into 4 groups: the obesity group were fed a high-fat diet (HFD), the T2DM group received a HFD plus a single dose of streptozocin (STZ), the T1DM group received only STZ, and there was a control group. Serum testosterone, TAS, TOS, OSI, and IMA were analysed. RESULTS: Serum testosterone levels were lower in the T1DM and T2DM groups compared to the control and obesity groups. The TOS levels were highest in the T2DM group, followed by the T1DM group, the obesity group, and finally the control group. No significant difference was found between the obesity group and the control group in terms of TOS levels. Regarding TAS levels, the order observed was control group > obesity group > T2DM > T1DM. Testosterone was positively correlated with TAS and negatively correlated with TOS and OSI. CONCLUSIONS: Increased oxidative stress in diabetes may be an important factor that decreases serum testosterone levels.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Obesity , Oxidative Stress , Rats, Sprague-Dawley , Testosterone , Testosterone/blood , Male , Diabetes Mellitus, Type 2/blood , Animals , Obesity/blood , Rats , Diabetes Mellitus, Type 1/blood , Biomarkers/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism
14.
Biomed Pharmacother ; 175: 116630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677247

ABSTRACT

Recent advances in diabetes treatment have primarily focused on insulin and hypoglycemic agents; however, there is growing interest in exploring herbal and synthetic alternatives. Numerous studies have highlighted the preventive effectiveness of regular plant consumption in managing chronic conditions, particularly diabetes. Hibiscus, a medicinal plant recognized in various cultures, is known for its diverse health benefits. This study investigated the impact of Hibiscus trionum on glycemic control and assessed its influence on glucose and insulin levels in diabetes-induced rats. The concentrations of antioxidant enzymes, particularly superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), were scrutinized across multiple body tissues (plasma, heart, muscle, liver, and kidney). The malondialdehyde (MDA) concentration, an indicator of lipid peroxidation, was examined in both plasma and tissue samples. Serum total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) levels were evaluated. Diabetic Group (D) exhibited a significant decrease in body weight, increased fluid and food consumption, elevated blood glucose levels, and increased antioxidant enzyme activity. Moreover, the diabetic group also showed increased levels of MDA, TC, TG, AST, and ALT, along with reduced insulin levels, compared to the control group. A substantial improvement in all parameters impaired by diabetes was observed following the application of Hibiscus trionum (HTT) in the Diabetes+HTT group. The antioxidative stress-reducing, lipid peroxidation-improving, and hepatoprotective potential of Hibiscus trionum in mitigating diabetes-induced oxidative stress is noteworthy. These findings indicate that HTT supplementation has valuable beneficial effects in protecting against the harmful impacts of diabetes.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Hibiscus , Hypoglycemic Agents , Lipid Peroxidation , Liver , Plant Extracts , Animals , Hibiscus/chemistry , Antioxidants/pharmacology , Antioxidants/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Lipid Peroxidation/drug effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Plant Extracts/pharmacology , Rats , Blood Glucose/metabolism , Blood Glucose/drug effects , Liver/drug effects , Liver/metabolism , Rats, Wistar , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/blood , Insulin/blood , Oxidative Stress/drug effects , Malondialdehyde/metabolism , Malondialdehyde/blood
15.
J Trace Elem Med Biol ; 84: 127450, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643593

ABSTRACT

Diabetes mellitus (DM) is a complex, chronic metabolic disorder characterized by impaired regulation of blood glucose levels. Zinc (Zn) is an essential trace elements that plays a role in various physiological processes within the body, including those related to diabetes. The current study was investigated the effect of Zn supplementation on hemorheological parameters in a rat model of DM. After induction of DM, 32 male Wistar albino rats were divided into four groups: control, Zn, DM, and Zn+DM. Whole blood viscosity (WBV) was determined by using digital cone and plate viscometer and plasma viscosity (PV) was determined by a Coulter Harkness capillary viscometer. The rats in the DM Group showed a decrease in both Zn levels and body weight, as well as an increase in glucose levels when compared to the control group. Diabetic rats supplemented with Zn displayed lower blood glucose levels and higher concentrations of Zn compared to the DM Group. The higher PV and lower hematocrit level were measured in DM Group than control group and lower PV, higher hematocrit level were measured in Zn+DM group than DM Group. The WBV was measured at four different shear rates (57.6-115.2 - 172.8-230.4 s -1). A statistically significant increase was observed in the DM group compared to the control group. Additionally, a statistically significant decrease was observed in the Zn+DM Group compared to the DM Group at a shear rate of 230.4 s-1. Erythrocyte rigidity index (Tk) and oxygen delivery index (ODI) were computed under conditions of high shear rate. The rats in the DM group exhibited a reduction in ODI and an elevation in Tk in comparison to the control group. Conversely, the diabetic rats supplemented with Zn exhibited decreased Tk and increased ODI compared to the DM Group. Zn supplementation seems to have a potential beneficial effect for protecting adverse affect of diabetes on hemorheogical parameters and for maintaining vascular health.


Subject(s)
Diabetes Mellitus, Experimental , Hemorheology , Rats, Wistar , Zinc , Animals , Zinc/blood , Zinc/pharmacology , Male , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Rats , Hemorheology/drug effects , Blood Glucose/metabolism , Blood Viscosity/drug effects , Disease Models, Animal , Body Weight/drug effects , Dietary Supplements
16.
Fundam Clin Pharmacol ; 38(3): 511-522, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38149676

ABSTRACT

BACKGROUND: Type 2 diabetes, a metabolic disease that involves extended treatment, is rapidly increasing in humans and animals worldwide. OBJECTIVES: This study aimed to compare monotherapy and combined therapy of exenatide, empagliflozin, and quercetin in 67 Wistar Albino male rats. METHODS: The animals were divided into the following seven groups: healthy control, diabetes control, diabetes + sham, diabetes + exenatide (10 µg/kg), diabetes + empagliflozin (50 mg/kg), diabetes + quercetin (50 mg/kg), and diabetes + combination treatment. The treatments were continued for 8 weeks. RESULTS: At the end of the experiment, glucose and HbA1c levels decreased with all monotherapy treatments and the combination treatments, while insulin levels increased with exenatide and combined treatments. Adiponectin levels increased with empagliflozin, quercetin, and combined treatments, while leptin levels decreased only with combined treatments. All monotherapies caused an increase in total antioxidant levels. Exenatide and quercetin treatments reduced low-density lipoprotein (LDL) levels; therewithal, exenatide and combined treatments increased high-density lipoprotein (HDL) levels. Triglyceride levels decreased in all treatment groups. The homeostatic model assessment for insulin resistance (HOMA-IR) level decreased with the combined treatment; on the contrary, the homeostatic model assessment for ß-cell activity (HOMA-ß) level increased with empagliflozin, exenatide, and combined treatments. CONCLUSION: In conclusion, the antidiabetic effects of exenatide were more pronounced than empagliflozin and quercetin, however, the combined treatment had better antidiabetic and antihyperlipidemic effects than monotherapies. Quercetin could be a supportive or food supplement antidiabetic agent. The exenatide treatment can be recommended for monotherapy in type 2 patients, and the combination of empagliflozin, exenatide, and quercetin may be effective in diabetic patients who need combined therapy.


Subject(s)
Benzhydryl Compounds , Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Drug Therapy, Combination , Exenatide , Glucosides , Hypoglycemic Agents , Quercetin , Rats, Wistar , Exenatide/pharmacology , Benzhydryl Compounds/pharmacology , Animals , Quercetin/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Glucosides/pharmacology , Glucosides/administration & dosage , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Rats , Blood Glucose/drug effects , Insulin/blood , Glycated Hemoglobin/metabolism , Insulin Resistance
17.
Nat Commun ; 13(1): 942, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35177603

ABSTRACT

Insulin analogs have been developed to treat diabetes with focus primarily on improving the time action profile without affecting ligand-receptor interaction or functional selectivity. As a result, inherent liabilities (e.g. hypoglycemia) of injectable insulin continue to limit the true therapeutic potential of related agents. Insulin dimers were synthesized to investigate whether partial agonism of the insulin receptor (IR) tyrosine kinase is achievable, and to explore the potential for tissue-selective systemic insulin pharmacology. The insulin dimers induced distinct IR conformational changes compared to native monomeric insulin and substrate phosphorylation assays demonstrated partial agonism. Structurally distinct dimers with differences in conjugation sites and linkers were prepared to deliver desirable IR partial agonist (IRPA). Systemic infusions of a B29-B29 dimer in vivo revealed sharp differences compared to native insulin. Suppression of hepatic glucose production and lipolysis were like that attained with regular insulin, albeit with a distinctly shallower dose-response. In contrast, there was highly attenuated stimulation of glucose uptake into muscle. Mechanistic studies indicated that IRPAs exploit tissue differences in receptor density and have additional distinctions pertaining to drug clearance and distribution. The hepato-adipose selective action of IRPAs is a potentially safer approach for treatment of diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/drug therapy , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Receptor, Insulin/agonists , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Alloxan/administration & dosage , Alloxan/toxicity , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , CHO Cells , Cricetulus , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 1/metabolism , HEK293 Cells , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Lipolysis/drug effects , Liver/drug effects , Liver/metabolism , Male , Mice , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Signal Transduction/drug effects , Swine , Swine, Miniature
18.
Molecules ; 27(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35164238

ABSTRACT

Natural products continue to provide inspiring moieties for the treatment of various diseases. In this regard, investigation of wild plants, which have not been previously explored, is a promising strategy for reaching medicinally useful drugs. The present study aims to investigate the antidiabetic potential of nine Amaranthaceae plants: Agathophora alopecuroides, Anabasis lachnantha, Atriplex leucoclada, Cornulaca aucheri, Halothamnus bottae, Halothamnus iraqensis, Salicornia persia, Salsola arabica, and Salsola villosa, growing in the Qassim area, the Kingdom of Saudi Arabia. The antidiabetic activity of the hydroalcoholic extracts was assessed using in vitro testing of α-glucosidase and α-amylase inhibitory effects. Among the nine tested extracts, A. alopecuroides extract (AAE) displayed potent inhibitory activity against α-glucosidase enzyme with IC50 117.9 µg/mL noting better activity than Acarbose (IC50 191.4 µg/mL). Furthermore, AAE displayed the highest α- amylase inhibitory activity among the nine tested extracts, with IC50 90.9 µg/mL. Based upon in vitro testing results, the antidiabetic activity of the two doses (100 and 200 mg/kg) of AAE was studied in normoglycemic and streptozotocin (STZ)-induced diabetic mice. The effects of the extract on body weight, food and water intakes, random blood glucose level (RBGL), fasting blood glucose level (FBGL), insulin, total cholesterol, and triglycerides levels were investigated. Results indicated that oral administration of the two doses of AAE showed a significant dose-dependent increase (p < 0.05) in the body weight and serum insulin level, as well as a significant decrease in food and water intake, RBGL, FBGL, total cholesterol, and triglyceride levels, in STZ-induced diabetic mice, compared with the diabetic control group. Meanwhile, no significant differences of both extract doses were observed in normoglycemic mice when compared with normal control animals. This study revealed a promising antidiabetic activity of the wild plant A. alopecuroides.


Subject(s)
Amaranthaceae/chemistry , Diabetes Mellitus, Experimental/drug therapy , Glycemic Control/methods , Hypoglycemic Agents/therapeutic use , Plant Extracts/therapeutic use , Animals , Blood Glucose/metabolism , Cholesterol/blood , Diabetes Mellitus, Experimental/blood , Insulin/blood , Male , Mice , Mice, Inbred BALB C , Streptozocin , Triglycerides/blood
19.
Mol Med Rep ; 25(3)2022 Mar.
Article in English | MEDLINE | ID: mdl-35039874

ABSTRACT

Type­2 diabetes mellitus (T2DM) causes several complications that affect the quality of life and life span of patients. Hyperbaric oxygen therapy (HBOT) has been used to successfully treat several diseases, including carbon monoxide poisoning, ischemia, infections and diabetic foot ulcer, and increases insulin sensitivity in T2DM. The present study aimed to determine the effect of HBOT on ß­cell function and hepatic gluconeogenesis in streptozotocin (STZ)­induced type­2 diabetic mice. To establish a T2DM model, 7­week­old male C57BL/6J mice were fed a high­fat diet (HFD) and injected once daily with low­dose STZ for 3 days after 1­week HFD feeding. At the 14th week, HFD+HBOT and T2DM+HBOT groups received 1­h HBOT (2 ATA; 100% pure O2) daily from 5:00 to 6:00 p.m. for 7 days. The HFD and T2DM groups were maintained under normobaric oxygen conditions and used as controls. During HBOT, the 12­h nocturnal food intake and body weight were measured daily. Moreover, blood glucose was measured by using a tail vein prick and a glucometer. After the final HBO treatment, all mice were sacrificed to conduct molecular biology experiments. Fasting insulin levels of blood samples of sacrificed mice were measured by an ultrasensitive ELISA kit. Pancreas and liver tissues were stained with hematoxylin and eosin, while immunohistochemistry was performed to determine the effects of HBOT on insulin resistance. TUNEL was used to determine the effects of HBOT on ß­cell apoptosis, and immunoblotting was conducted to determine the ß­cell apoptosis pathway. HBOT notably reduced fasting blood glucose and improved insulin sensitivity in T2DM mice. After HBOT, ß­cell area and ß­cell mass in T2DM mice were significantly increased. HBOT significantly decreased the ß­cell apoptotic rate in T2DM mice via the pancreatic Bcl­2/caspase­3/poly(ADP­ribose) polymerase (PARP) apoptosis pathway. Moreover, HBOT improved the morphology of the liver tissue and increased hepatic glycogen storage in T2DM mice. These findings suggested that HBOT ameliorated the insulin sensitivity of T2DM mice by decreasing the ß­cell apoptotic rate via the pancreatic Bcl­2/caspase­3/PARP apoptosis pathway.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/metabolism , Gluconeogenesis/physiology , Hyperbaric Oxygenation/methods , Insulin-Secreting Cells/metabolism , Liver/metabolism , Animals , Apoptosis/physiology , Blood Glucose/metabolism , Blotting, Western , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/etiology , Diet, High-Fat/adverse effects , Disease Models, Animal , Fasting/blood , Glucose Tolerance Test/methods , Humans , Insulin/blood , Insulin-Secreting Cells/cytology , Male , Mice, Inbred C57BL
20.
Pathol Res Pract ; 230: 153756, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35032832

ABSTRACT

BACKGROUND: Mesenchymal stromal cells (MSC) have demonstrated ability to improve diabetic nephropathy (DN) in experimental models, as well as by improving kidney endogenous progenitor cells proliferation and differentiation. Many studies have demonstrated the effect of hypoxia on MSC improving their functionality but the potential enhancement of the nephroprotective properties of MSC cultured under low oxygen concentration has been explored in few studies, none of them in the context of DN. On the other hand, diabetes is associated with abnormalities in MSCs functionality. These findings related to the hypoxia preconditioning ability to enhance adipose-tissue derived-MSC (ASC) performance have led us to wonder if hypoxia could increase the known beneficial effect of normal ASC in DN and if it could correct the expected inability of diabetic rat-derived ASC to exert this effect in vivo. To answer these questions, in the present study we have used ASC from healthy and diabetic-induced rats, cultured under standard conditions or hypoxia preconditioned, in a DN rat model induced by streptozotocin (STZ). METHODS: Diabetes was induced in Wistar-rats by 60 mg/kg streptozotocin (STZ) intraperitoneal injection. Fifteen days thereafter, five diabetic-induced rats and five healthy, previously injected with saline, were sacrificed and used as ASC donors . Both healthy and diabetic rat-derived ASC (cASC and dASC, respectively) were cultured under standard conditions (21%O2)(N) or were subjected to a 48 h conditioning period in hypoxia (3%O2)(H). Thus, four types of cells were generated depending on their origin (healthy or diabetic-induced rats) and the culture conditions(N or H):cASC-N, cASC-H, dASC-N and dASC-H. DN experimental study were carried out fifteen days after STZ induction of diabetes in fifty-two healthy rats. DN-induced-animals were randomly assigned to be injected with 200 µL saline as placebo or with 3 × 106 cASC-N, cASC-H, dASC-N or dASC-H, according to the study group. Serum glucose, urea and creatinine, and urine albumin levels were measured at 2-weeks intervals until day+ 45 after ND-induction.Animals were sacrificed and kidneys extracted for histopathological and transmission electron microcopy analysis RESULTS: None of the four study groups that received cell treatment showed significant changes in serum glucose, urea and creatinine levels, urine albumin concentration and body weight compared to placebo ND-induced group. Interestingly, only the group that received cASC-H showed a reduction in glucose and creatinine levels although it did not reach statistical significance.All DN-induced groups treated with ASC reduced significantly renal lesions such as mesangial expansion, mesangiolysis, microaneurysms and acute tubular necrosis compared to ND-induced placebo group (p ≤ 0.05). Renal injuries such as clear tubular cell changes, thickening of tubular basement membrane, tubular cysts and interstitial fibrosis significantly showed reduction in ND-induced rats treated with cASC-H regarding to their received cASCN (p ≤ 0.05). Non statistical differences were observed in the improvement capacity of cASC and dASC culture under standard condition.However, hypoxia preconditioning reduces the presence of tubular cysts (p ≤ 0.01). CONCLUSIONS: Hypoxia preconditioning enhances the ability of healthy rat-derived ASC to improve kidney injury in a rat model of DN. Moreover, diabetic-derived ASC exhibits a similar ability to healthy ASC which is clearly more than expected, but it is not significantly modified by hypoxia preconditioning.


Subject(s)
Diabetes Mellitus, Experimental/surgery , Diabetic Nephropathies/surgery , Kidney/pathology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Adipose Tissue/cytology , Albuminuria/chemically induced , Albuminuria/surgery , Albuminuria/urine , Animals , Blood Glucose/metabolism , Cell Hypoxia , Cell Proliferation , Cells, Cultured , Creatinine/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/chemically induced , Diabetic Nephropathies/pathology , Fibrosis , Kidney/metabolism , Male , Rats, Wistar , Streptozocin , Urea/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...