Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.387
Filter
1.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823933

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Subject(s)
Achyranthes , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fructans , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Achyranthes/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Male , Fructans/pharmacology , Fructans/chemistry , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Streptozocin , Kidney/drug effects , Kidney/pathology , Fatty Acids, Volatile/metabolism
2.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832497

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
3.
J Diabetes Res ; 2024: 1222395, 2024.
Article in English | MEDLINE | ID: mdl-38725443

ABSTRACT

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Inflammation , Inulin , Kidney , Metabolomics , Mice, Inbred ICR , Oxidative Stress , Animals , Inulin/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Mice , Male , Blood Glucose/metabolism , Blood Glucose/drug effects , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Oxidative Stress/drug effects , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Fatty Acids, Volatile/metabolism , Diet, High-Fat , Blood Urea Nitrogen
4.
Pharm Biol ; 62(1): 447-455, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38753370

ABSTRACT

CONTEXT: Menhaden fish oil (FO) is widely recognized for inhibiting neuroinflammatory responses and preserving brain function. Nevertheless, the mechanisms of FO influencing brain cognitive function in diabetic states remain unclear. OBJECTIVE: This study examines the potential role of FO in suppressing LPS-induced neuroinflammation and cognitive impairment in diabetic animals (DA). MATERIALS AND METHODS: Thirty male Wistar rats were divided into 5 groups: i) DA received LPS induction (DA-LPS); ii) DA received LPS induction and 1 g/kg FO (DA-LPS-1FO); iii) DA received LPS induction and 3 g/kg FO (DA-LPS-3FO); iv) animals received normal saline and 3 g/kg FO (NS-3FO) and v) control animals received normal saline (CTRL). Y-maze test was used to measure cognitive performance, while brain samples were collected for inflammatory markers and morphological analysis. RESULTS: DA received LPS induction, and 1 or 3 g/kg FO significantly inhibited hyperglycaemia and brain inflammation, as evidenced by lowered levels of pro-inflammatory mediators. Additionally, both DA-LPS-1FO and DA-LPS-3FO groups exhibited a notable reduction in neuronal damage and glial cell migration compared to the other groups. These results were correlated with the increasing number of entries and time spent in the novel arm of the Y-maze test. DISCUSSION AND CONCLUSION: This study indicates that supplementation of menhaden FO inhibits the LPS signaling pathway and protects against neuroinflammation, consequently maintaining cognitive performance in diabetic animals. Thus, the current study suggested that fish oil may be effective as a supporting therapy option for diabetes to avoid diabetes-cognitive impairment.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Dietary Supplements , Fish Oils , Lipopolysaccharides , Neuroinflammatory Diseases , Rats, Wistar , Animals , Male , Fish Oils/pharmacology , Fish Oils/administration & dosage , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Rats , Cognitive Dysfunction/drug therapy , Neuroinflammatory Diseases/drug therapy , Maze Learning/drug effects , Dose-Response Relationship, Drug
5.
Cell Commun Signal ; 22(1): 275, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755602

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major cause of blindness and is characterized by dysfunction of the retinal microvasculature. Neutrophil stasis, resulting in retinal inflammation and the occlusion of retinal microvessels, is a key mechanism driving DR. These plugging neutrophils subsequently release neutrophil extracellular traps (NETs), which further disrupts the retinal vasculature. Nevertheless, the primary catalyst for NETs extrusion in the retinal microenvironment under diabetic conditions remains unidentified. In recent studies, cellular communication network factor 1 (CCN1) has emerged as a central molecule modulating inflammation in pathological settings. Additionally, our previous research has shed light on the pathogenic role of CCN1 in maintaining endothelial integrity. However, the precise role of CCN1 in microvascular occlusion and its potential interaction with neutrophils in diabetic retinopathy have not yet been investigated. METHODS: We first examined the circulating level of CCN1 and NETs in our study cohort and analyzed related clinical parameters. To further evaluate the effects of CCN1 in vivo, we used recombinant CCN1 protein and CCN1 overexpression for gain-of-function, and CCN1 knockdown for loss-of-function by intravitreal injection in diabetic mice. The underlying mechanisms were further validated on human and mouse primary neutrophils and dHL60 cells. RESULTS: We detected increases in CCN1 and neutrophil elastase in the plasma of DR patients and the retinas of diabetic mice. CCN1 gain-of-function in the retina resulted in neutrophil stasis, NETs extrusion, capillary degeneration, and retinal leakage. Pre-treatment with DNase I to reduce NETs effectively eliminated CCN1-induced retinal leakage. Notably, both CCN1 knockdown and DNase I treatment rescued the retinal leakage in the context of diabetes. In vitro, CCN1 promoted adherence, migration, and NETs extrusion of neutrophils. CONCLUSION: In this study, we uncover that CCN1 contributed to retinal inflammation, vessel occlusion and leakage by recruiting neutrophils and triggering NETs extrusion under diabetic conditions. Notably, manipulating CCN1 was able to hold therapeutic promise for the treatment of diabetic retinopathy.


Subject(s)
Cysteine-Rich Protein 61 , Diabetic Retinopathy , Extracellular Traps , Mice, Inbred C57BL , Neutrophils , Diabetic Retinopathy/pathology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/genetics , Extracellular Traps/metabolism , Animals , Neutrophils/metabolism , Humans , Cysteine-Rich Protein 61/metabolism , Cysteine-Rich Protein 61/genetics , Mice , Male , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Retina/pathology , Retina/metabolism , Female , Middle Aged
6.
Int J Med Sci ; 21(6): 1144-1154, 2024.
Article in English | MEDLINE | ID: mdl-38774757

ABSTRACT

Objectives: To examine time-dependent functional and structural changes of the lower urinary tract in streptozotocin-induced diabetic rats with or without low-dose insulin treatment and explore the pathophysiological characteristics of insulin therapy on lower urinary tract dysfunction (LUTD) caused by diabetes mellitus (DM). Methods: Female Sprague-Dawley rats were divided into five groups: normal control (NC) group, 4 weeks insulin-treated DM (4-DI) group, 4 weeks DM (4-DM) group, 8 weeks insulin-treated DM (8-DI) group and 8 weeks DM (8-DM) group. DM was initially induced by i.p. injection of streptozotocin (65 mg/kg), and then the DI groups received subcutaneous implantation of insulin pellets under the mid dorsal skin. Voiding behavior was evaluated in metabolic cages. The function of bladder and urethra in vivo were evaluated by simultaneous recordings of the cystometrogram and urethral perfusion pressure (UPP) under urethane anesthesia. The function of bladder and urethra in vitro were tested by organ bath techniques. The morphologic changes of the bladder and urethra were investigated using Hematoxylin-Eosin and Masson's staining. Results: Both 4-and 8-weeks diabetic rats have altered micturition patterns, including increased 12-h urine volume, urinary frequency/12 hours and voided volume. In-vivo urodynamics showed the EUS bursting activity duration is longer in 4-DM group and shorter in 8-DM group compared to NC group. UPP change in 8-DM were significantly lower than NC group. While none of these changes were found between DI and NC groups. Organ bath showed the response to Carbachol and EFS in bladder smooth muscle per tissue weights was decreased significantly in 4- and 8-weeks DM groups compared with insulin-treated DM or NC groups. In contrast, the contraction of urethral muscle and maximum urethral muscle contraction per gram of the tissue to EFS stimulation were significantly increased in 4- and 8-weeks DM groups. The thickness of bladder smooth muscle was time-dependently increased, but the thickness of the urethral muscle had no difference. Conclusions: DM-induced LUTD is characterized by time-dependent functional and structural remodeling in the bladder and urethra, which shows the hypertrophy of the bladder smooth muscle, reduced urethral smooth muscle relaxation and EUS dysfunction. Low-dose insulin can protect against diuresis-induced bladder over-distention, preserve urethral relaxation and protect EUS bursting activity, which would be helpful to study the slow-onset, time-dependent progress of DM-induced LUTD.


Subject(s)
Diabetes Mellitus, Experimental , Insulin , Rats, Sprague-Dawley , Urethra , Urinary Bladder , Urination , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/chemically induced , Female , Insulin/administration & dosage , Rats , Urinary Bladder/drug effects , Urinary Bladder/physiopathology , Urinary Bladder/pathology , Urethra/drug effects , Urethra/physiopathology , Urethra/pathology , Urination/drug effects , Streptozocin/toxicity , Time Factors , Humans , Lower Urinary Tract Symptoms/drug therapy , Lower Urinary Tract Symptoms/etiology , Lower Urinary Tract Symptoms/physiopathology
7.
Sci Rep ; 14(1): 11718, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38778209

ABSTRACT

Protein misfolding in the endoplasmic reticulum (ER) of podocytes contributes to the pathogenesis of glomerular diseases. Protein misfolding activates the unfolded protein response (UPR), a compensatory signaling network. We address the role of the UPR and the UPR transducer, inositol-requiring enzyme 1α (IRE1α), in streptozotocin-induced diabetic nephropathy in mice. Diabetes caused progressive albuminuria in control mice that was exacerbated in podocyte-specific IRE1α knockout (KO) mice. Compared to diabetic controls, diabetic IRE1α KO mice showed reductions in podocyte number and synaptopodin. Glomerular ultrastructure was altered only in diabetic IRE1α KO mice; the major changes included widening of podocyte foot processes and glomerular basement membrane. Activation of the UPR and autophagy was evident in diabetic control, but not diabetic IRE1α KO mice. Analysis of human glomerular gene expression in the JuCKD-Glom database demonstrated induction of genes associated with the ER, UPR and autophagy in diabetic nephropathy. Thus, mice with podocyte-specific deletion of IRE1α demonstrate more severe diabetic nephropathy and attenuation of the glomerular UPR and autophagy, implying a protective effect of IRE1α. These results are consistent with data in human diabetic nephropathy and highlight the potential for therapeutically targeting these pathways.


Subject(s)
Autophagy , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Endoribonucleases , Mice, Knockout , Podocytes , Protein Serine-Threonine Kinases , Unfolded Protein Response , Animals , Podocytes/metabolism , Podocytes/pathology , Endoribonucleases/metabolism , Endoribonucleases/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Mice , Autophagy/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Humans , Male , Endoplasmic Reticulum Stress , Albuminuria/genetics , Albuminuria/metabolism , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Gene Deletion , Endoplasmic Reticulum/metabolism
8.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786068

ABSTRACT

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Animals , Humans , Proteinuria/metabolism , Rats , Receptor, Adenosine A2B/metabolism , Cell Adhesion/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine/metabolism , Adenosine/pharmacology , Cell Movement/drug effects , Phosphorylation/drug effects , Myosin Light Chains/metabolism
9.
J Cell Mol Med ; 28(10): e18239, 2024 May.
Article in English | MEDLINE | ID: mdl-38774996

ABSTRACT

The occurrence and development of diabetic vascular diseases are closely linked to inflammation-induced endothelial dysfunction. Puerarin (Pue), the primary component of Pueraria lobata, possesses potent anti-inflammatory properties. However, its vasoprotective role remains elusive. Therefore, we investigated whether Pue can effectively protect against vascular damage induced by diabetes. In the study, Pue ameliorated lipopolysaccharide-adenosine triphosphate (LPS-ATP) or HG-primed cytotoxicity and apoptosis, while inhibited reactive oxygen species (ROS)-mediated NLR family pyrin domain containing 3 (NLRP3) inflammasome in HUVECs, as evidenced by significantly decreased ROS level, NOX4, Caspase-1 activity and expression of NLRP3, GSDMD, cleaved caspase-1, IL-1ß and IL-18. Meanwhile, ROS inducer CoCI2 efficiently weakened the effects of Pue against LPS-ATP-primed pyroptosis. In addition, NLRP3 knockdown notably enhanced Pue's ability to suppress pyroptosis in LPS-ATP-primed HUVECs, whereas overexpression of NLRP3 reversed the inhibitory effects of Pue. Furthermore, Pue inhibited the expression of ROS and NLRP3 inflammasome-associated proteins on the aorta in type 2 diabetes mellitus rats. Our findings indicated that Pue might ameliorate LPS-ATP or HG-primed damage in HUVECs by inactivating the ROS-NLRP3 signalling pathway.


Subject(s)
Adenosine Triphosphate , Human Umbilical Vein Endothelial Cells , Inflammasomes , Isoflavones , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Reactive Oxygen Species , Signal Transduction , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Isoflavones/pharmacology , Isoflavones/therapeutic use , Humans , Animals , Signal Transduction/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Rats , Male , Adenosine Triphosphate/metabolism , Inflammasomes/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Pyroptosis/drug effects , Rats, Sprague-Dawley , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Glucose/metabolism , Apoptosis/drug effects
10.
Cardiovasc Toxicol ; 24(6): 587-597, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38691303

ABSTRACT

Vascular lesions frequently arise as complication in patients diagnosed with diabetes mellitus (DM). Presently, percutaneous coronary intervention (PCI) and antithrombotic therapy serve as primary treatments. However, in-stent restenosis persists as a challenging clinical issue following PCI, lacking sustained and effective treatment. Linarin (LN) exhibits diverse pharmacological activities and is regarded as a potential drug for treating various diseases, including DM. But its specific role in restenosis after vascular injury in DM patients remains unclear. A rat model of diabetes-related restenosis was established to evaluate the role of LN on neointimal hyperplasia. Vascular smooth muscle cells (VSMCs) stimulated by high glucose (HG, 30 mM) underwent LN treatment. Additionally, an overexpression plasmid of A disintegrin and metalloproteinases (ADAM10) was constructed to transfect VSMCs. We employed CCK-8, Brdu, wound-healing scratch, and transwell migration assays to evaluate the proliferation and migration of VSMCs. Furthermore, western blot and immunofluorescence assays were utilized to investigate the expressions of ADAM10 and the downstream Notch signaling pathway in vivo and in vitro models. LN notably alleviated intimal hyperplasia after vascular injury in DM rats and reduced the protein expression of ADAM10, alongside its downstream Notch1 signaling pathway-related proteins (Notch1, NICD and Hes1) in rat carotid artery tissues. LN effectively suppressed the proliferation and migration of VSMCs induced by HG, downregulating the protein expression of ADAM10, Notch1, NICD and Hes1. Moreover, our findings indicated that ADAM10 overexpression significantly reversed LN's effects on proliferation, migration, and the expression of Notch1 signaling pathway-related proteins in HG-treated VSMCs. LN demonstrates potential therapeutic efficacy in addressing restenosis after diabetic-related vascular injury, with the ADAM10 mediated Notch signaling pathway playing a pivotal role.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Carotid Artery Injuries , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental , Membrane Proteins , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Rats, Sprague-Dawley , Signal Transduction , Animals , ADAM10 Protein/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/enzymology , Cell Movement/drug effects , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/enzymology , Cell Proliferation/drug effects , Male , Membrane Proteins/metabolism , Membrane Proteins/genetics , Amyloid Precursor Protein Secretases/metabolism , Cells, Cultured , Carotid Artery Injuries/pathology , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/drug therapy , Carotid Artery Injuries/enzymology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Hyperplasia , Receptors, Notch/metabolism , Receptor, Notch1/metabolism , Transcription Factor HES-1/metabolism , Transcription Factor HES-1/genetics , Disease Models, Animal , Rats , Coronary Restenosis/pathology , Coronary Restenosis/etiology , Coronary Restenosis/metabolism , Coronary Restenosis/prevention & control
11.
Pak J Pharm Sci ; 37(1): 65-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38741401

ABSTRACT

Diabetic nephropathy (DN), a micro vascular complication of diabetes, is the main cause of end-stage renal disease, with a morbidity over 40% of diabetes. High glucose and lipid metabolism dysfunction are the leading cause of the development of DN. Previous study demonstrated that increased expression or activation of SREBPs in models of DN. Leonuride (LE), as an active constituent of Leonurus japonicus Houttuyn, has multiple biological activities, including antioxidant and anti-inflammatory effects. Previous studies showed that increasing the degradation of mature SREBPs is a robust way of lowering lipids and improve lipid metabolism dysfunction. However, effective regulation method of SREBPs degradation are still lacking. Herein, this study indicated that LE can effectively improve glucose and lipid metabolism disorders. In addition, the kidney function was also improved by inhibition of SREBPs activities in streptozocin (STZ)-induced type II diabetic mice. To our knowledge, this is the first time to describe the detailed mechanism of LE on the inhibition of precursor SREBPs, which would present a new direction for diabetic nephropathy treatment.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Male , Mice , Lipid Metabolism/drug effects , Blood Glucose/drug effects , Blood Glucose/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Signal Transduction/drug effects , Mice, Inbred C57BL , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications
12.
Mol Med ; 30(1): 58, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720283

ABSTRACT

BACKGROUND: Vascular calcification (VC) is a complication in diabetes mellitus (DM) patients. Osteogenic phenotype switching of vascular smooth muscle cells (VSMCs) plays a critical role in diabetes-related VC. Mitophagy can inhibit phenotype switching in VSMCs. This study aimed to investigate the role of the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin 4 (EX4) in mitophagy-induced phenotype switching. MATERIALS AND METHODS: The status of VC in T2DM mice was monitored using Von Kossa and Alizarin Red S (ARS) staining in mouse aortic tissue. Human aortic smooth muscle cells were cultured in high glucose (HG) and ß-glycerophosphate (ß-GP) conditioned medium. Accumulation of LC3B and p62 was detected in the mitochondrial fraction. The effect of EX4 in vitro and in vivo was investigated by knocking down AMPKα1. RESULTS: In diabetic VC mice, EX4 decreased the percentage of von Kossa/ARS positive area. EX4 inhibited osteogenic differentiation of HG/ß-GP-induced VSMCs. In HG/ß-GP-induced VSMCs, the number of mitophagosomes was increased, whereas the addition of EX4 restored mitochondrial function, increased the number of mitophagosome-lysosome fusions, and reduced p62 in mitochondrial frictions. EX4 increased the phosphorylation of AMPKα (Thr172) and ULK1 (Ser555) in HG/ß-GP-induced VSMCs. After knockdown of AMPKα1, ULK1 could not be activated by EX4. The accumulation of LC3B and p62 could not be reduced after AMPKα1 knockdown. Knockdown of AMPKα1 negated the therapeutic effects of EX4 on VC of diabetic mice. CONCLUSION: EX4 could promote mitophagy by activating the AMPK signaling pathway, attenuate insufficient mitophagy, and thus inhibit the osteogenic phenotype switching of VSMCs.


Subject(s)
AMP-Activated Protein Kinases , Exenatide , Glucagon-Like Peptide-1 Receptor , Mitophagy , Signal Transduction , Vascular Calcification , Animals , Mitophagy/drug effects , Vascular Calcification/etiology , Vascular Calcification/metabolism , Vascular Calcification/drug therapy , Signal Transduction/drug effects , Mice , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Male , AMP-Activated Protein Kinases/metabolism , Humans , Exenatide/pharmacology , Exenatide/therapeutic use , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal , Mice, Inbred C57BL
13.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745191

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
14.
Eur J Pharmacol ; 975: 176642, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754538

ABSTRACT

The effective treatment of diabetes with comorbid depression is a big challenge so far. Honokiol, a bioactive compound from the dietary supplement Magnolia officinalis extract, possesses multiple health benefits. The present study aims to propose a network pharmacology-based method to elucidate potential targets of honokiol in treating diabetes with comorbid depression and related mechanisms. The antidepressant-like efficacy of honokiol was evaluated in high-fat diet (HFD) induced diabetic mice using animal behavior testing, immuno-staining and western blotting assay. Through network pharmacology analysis, retinoid X receptor alpha (RXRα) and vitamin D receptor (VDR) were identified as potential targets related to diabetes and depression. The stable binding conformation between honokiol and RXR/VDR was determined by molecular docking simulation. Moreover, hononkiol effectively alleviated depression-like behaviors in HFD diabetic mice, presented anti-diabetic and anti-neuroinflammatory functions, and protected the hippocampal neuroplasticity. Importantly, honokiol could activate RXR/VDR heterodimer in vivo. The beneficial effects of honokiol on HFD mice were significantly suppressed by UVI3003 (a RXR antagonist), while enhanced by calcitriol (a VDR agonist). Additionally, the disruption of autophagy in the hippocampus of HFD mice was ameliorated by honokiol, which was attenuated by UVI3003 but strengthened by calcitriol. Taken together, the data provide new evidence that honokiol exerts the antidepressant-like effect in HFD diabetic mice via activating RXR/VDR heterodimer to restore the balance of autophagy. Our findings indicate that the RXR/VDR-mediated signaling might be a potential target for treating diabetes with comorbid depression.


Subject(s)
Biphenyl Compounds , Depression , Diabetes Mellitus, Experimental , Lignans , Molecular Docking Simulation , Network Pharmacology , Receptors, Calcitriol , Animals , Lignans/pharmacology , Lignans/therapeutic use , Biphenyl Compounds/pharmacology , Biphenyl Compounds/therapeutic use , Mice , Male , Depression/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/agonists , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Retinoid X Receptor alpha/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Autophagy/drug effects , Behavior, Animal/drug effects , Comorbidity , Allyl Compounds , Phenols
15.
Eur J Pharmacol ; 975: 176643, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754539

ABSTRACT

Chronic diabetes mellitus is reported to be associated with acute kidney injury. The enzyme histone deacetylase-2 (HDAC-2) was found to be upregulated in diabetes-related kidney damage. Alpha-cyperone (α-CYP) is one of the active ingredients of Cyperus rotundus that possesses antioxidant and anti-inflammatory effects. We evaluated the effect of α-CYP on improving oxidative stress and tissue inflammation following renal ischemia/reperfusion (I/R) injury in diabetic rats. The effect of α-CYP on HDAC-2 expression in renal homogenates and in the NRK-52 E cell line was evaluated following renal I/R injury and high glucose conditions, respectively. Molecular docking was used to investigate the binding of α-CYP with the HDAC-2 active site. Both renal function and oxidative stress were shown to be impaired in diabetic rats due to renal I/R injury. Significant improvements in kidney/body weight ratio, creatinine clearance, serum creatinine, blood urea nitrogen (BUN), and uric acid were observed in diabetic rats treated with α-CYP (50 mg/kg) two weeks prior to renal I/R injury. α-CYP treatment also improved histological alterations in renal tissue and lowered levels of malondialdehyde, myeloperoxidase, and hydroxyproline. Treatment with α-CYP suppressed the increased HDAC-2 expression in the renal tissue of diabetic rats and in the NRK-52 E cell line. The molecular docking reveals that α-CYP binds to HDAC-2 with good affinity, ascertained by molecular dynamics simulations and binding free energy analysis. Overall, our data suggest that α-CYP can effectively prevent renal injury in diabetic rats by regulating oxidative stress, tissue inflammation, fibrosis and inhibiting HDAC-2 activity.


Subject(s)
Diabetes Mellitus, Experimental , Histone Deacetylase 2 , Kidney , Molecular Docking Simulation , Molecular Dynamics Simulation , Reperfusion Injury , Animals , Histone Deacetylase 2/metabolism , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , Oxidative Stress/drug effects , Cell Line , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Diabetic Nephropathies/metabolism , Rats, Wistar
16.
Article in English | MEDLINE | ID: mdl-38754696

ABSTRACT

Protectin DX (PDX), a specialized pro-resolving lipid mediator, presents potential therapeutic applications across various medical conditions due to its anti-inflammatory and antioxidant properties. Since type-1 diabetes mellitus (T1DM) is a disease with an inflammatory and oxidative profile, exploring the use of PDX in addressing T1DM and its associated comorbidities, including diabetic neuropathic pain, depression, and anxiety becomes urgent. Thus, in the current study, after 2 weeks of T1DM induction with streptozotocin (60 mg/kg) in Wistar rats, PDX (1, 3, and 10 ng/animal; i.p. injection of 200 µl/animal) was administered specifically on days 14, 15, 18, 21, 24, and 27 after T1DM induction. We investigated the PDX's effectiveness in alleviating neuropathic pain (mechanical allodynia; experiment 1), anxiety-like and depressive-like behaviors (experiment 2). Also, we studied whether the PDX treatment would induce antioxidant effects in the blood plasma, hippocampus, and prefrontal cortex (experiment 3), brain areas involved in the modulation of emotions. For evaluating mechanical allodynia, animals were repeatedly submitted to the Von Frey test; while for studying anxiety-like responses, animals were submitted to the elevated plus maze (day 26) and open field (day 28) tests. To analyze depressive-like behaviors, the animals were tested in the modified forced swimming test (day 28) immediately after the open field test. Our data demonstrated that PDX consistently increased the mechanical threshold throughout the study at the two highest doses, indicative of antinociceptive effect. Concerning depressive-like and anxiety-like behavior, all PDX doses effectively prevented these behaviors when compared to vehicle-treated T1DM rats. The PDX treatment significantly protected against the increased oxidative stress parameters in blood plasma and in hippocampus and prefrontal cortex. Interestingly, treated animals presented improvement on diabetes-related parameters by promoting weight gain and reducing hyperglycemia in T1DM rats. These findings suggest that PDX improved diabetic neuropathic pain, and induced antidepressant-like and anxiolytic-like effects, in addition to improving parameters related to the diabetic condition. It is worth noting that PDX also presented a protective action demonstrated by its antioxidant effects. To conclude, our findings suggest PDX treatment may be a promising candidate for improving the diabetic condition per se along with highly disabling comorbidities such as diabetic neuropathic pain and emotional disturbances associated with T1DM.


Subject(s)
Anxiety , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Docosahexaenoic Acids , Rats, Wistar , Animals , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/psychology , Rats , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/psychology , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , Anxiety/drug therapy , Anxiety/etiology , Depression/drug therapy , Depression/etiology , Antioxidants/pharmacology , Antioxidants/therapeutic use , Hyperalgesia/drug therapy , Behavior, Animal/drug effects , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Diabetic Neuropathies/drug therapy
17.
Life Sci ; 349: 122722, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38754814

ABSTRACT

AIMS: Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes. METHODS: In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays. KEY FINDINGS: Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis. SIGNIFICANCE: STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.


Subject(s)
Cholesterol , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Mitochondria , Podocytes , Podocytes/metabolism , Podocytes/pathology , Animals , Cholesterol/metabolism , Mitochondria/metabolism , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Male , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Biological Transport , Mice, Inbred C57BL , Humans
18.
Biomed Pharmacother ; 175: 116729, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776676

ABSTRACT

BACKGROUND: Type 2 diabetes (T2D) with depression causes severe cognitive impairments. The devastating conditions will further compromise the overall quality of life. The overconsumption of high-fat and high-sucrose (HFS) diet is one of the modifiable risk factors for T2D, depression, and cognitive impairments. Thus, it is essential to identify effective therapeutic strategies to overcome the cognitive impairments in T2D with depression. We proposed environmental enrichment (EE) which encompasses social, cognitive, and physical components as the alternative treatment for such impairments. We also investigated the potential neuroprotective properties of the antidiabetic drug metformin. This study aimed to investigate the effects of EE and metformin interventions on hippocampal neuronal death, and hippocampal-dependent memory impairment in T2D rats under stress. METHODS: Thirty-two male rats (200-250 g) were divided into four groups: C group (standard diet + conventional cage), DS group [HFS-induced T2D + restraint stress (RS)], DSE group [HFS-induced T2D + RS + EE] and DSEM group [HFS + RS + EE + metformin]. Serum corticosterone (CORT) was measured to evaluate stress levels. The serum Free Oxygen Radicals Testing (FORT) and Free Oxygen Radicals Defence Test (FORD) were measured to evaluate the systemic oxidative status (OS). Serum brain-derived neurotrophic factor (BDNF) and T-maze tasks were performed to evaluate cognitive functions. Rats were humanely sacrificed to collect brains for histological, morphometric, and hippocampal gene expression studies. RESULTS: The CORT and the serum FORT levels in the DSE and DSEM groups were lower than in the DS group. Meanwhile, the serum BDNF, T-maze scores, histological, and morphometric analysis were improved in the DSE and DSEM groups than in the DS group. These findings supported that EE and the combined interventions of EE and metformin had neuroprotective properties. The hippocampal gene expression analysis revealed that the DSE and DSEM groups showed improved regulation of BDNF-TrkB signalling pathways, including the BDNF/TrkB binding, PI3K - Akt pathway, Ras-MAPK pathway, PLCγ-Ca2+ pathway, and CREB transcription. CONCLUSION: EE and the combined interventions of EE and metformin improved hippocampal neuron survival and hippocampal-dependent memory in T2D rats under stress by enhancing gene expression regulation of neurogenesis and synaptic plasticity.


Subject(s)
Brain-Derived Neurotrophic Factor , Cell Survival , Diabetes Mellitus, Type 2 , Hippocampus , Memory , Metformin , Neurons , Receptor, trkB , Signal Transduction , Stress, Psychological , Animals , Metformin/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Male , Hippocampus/drug effects , Hippocampus/metabolism , Signal Transduction/drug effects , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/complications , Rats , Neurons/drug effects , Neurons/metabolism , Memory/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Cell Survival/drug effects , Receptor, trkB/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Environment , Memory Disorders/drug therapy , Rats, Wistar
19.
Medicina (Kaunas) ; 60(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38792935

ABSTRACT

Objective: Lower extremity ischemia-reperfusion injury (IRI) may occur with trauma-related vascular injury and various vascular diseases, during the use of a tourniquet, in temporary clamping of the aorta in aortic surgery, or following acute or bilateral acute femoral artery occlusion. Mitochondrial dysfunction and increased basal oxidative stress in diabetes may cause an increase in the effects of increased reactive oxygen species (ROS) and mitochondrial dysfunction due to IRI. It is of great importance to examine therapeutic approaches that can minimize the effects of IRI, especially for patient groups under chronic oxidative stress such as DM. Cerium oxide (CeO2) nanoparticles mimic antioxidant enzymes and act as a catalyst that scavenges ROS. In this study, it was aimed to investigate whether CeO2 has protective effects on skeletal muscles in lower extremity IRI in mice with streptozocin-induced diabetes. Methods: A total of 38 Swiss albino mice were divided into six groups as follows: control group (group C, n = 6), diabetes group (group D, n = 8), diabetes-CeO2 (group DCO, n = 8), diabetes-ischemia/reperfusion (group DIR, n = 8), and diabetes-ischemia/reperfusion-CeO2 (group DIRCO, n = 8). The DCO and DIRCO groups were given doses of CeO2 of 0.5 mg/kg intraperitoneally 30 min before the IR procedure. A 120 min ischemia-120 min reperfusion period with 100% O2 was performed. At the end of the reperfusion period, muscle tissues were removed for histopathological and biochemical examinations. Results: Total antioxidant status (TAS) levels were found to be significantly lower in group DIR compared with group D (p = 0.047 and p = 0.022, respectively). In group DIRCO, total oxidant status (TOS) levels were found to be significantly higher than in group DIR (p < 0.001). The oxidative stress index (OSI) was found to be significantly lower in group DIR compared with group DCO (p < 0.001). Paraoxanase (PON) enzyme activity was found to be significantly increased in group DIR compared with group DCO (p < 0.001). The disorganization and degeneration score for muscle cells, inflammatory cell infiltration score, and total injury score in group DIRCO were found to be significantly lower than in group DIR (p = 0.002, p = 0.034, and p = 0.001, respectively). Conclusions: Our results confirm that CeO2, with its antioxidative properties, reduces skeletal muscle damage in lower extremity IRI in diabetic mice.


Subject(s)
Cerium , Diabetes Mellitus, Experimental , Muscle, Skeletal , Oxidative Stress , Reperfusion Injury , Animals , Cerium/pharmacology , Cerium/therapeutic use , Mice , Muscle, Skeletal/drug effects , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Male , Streptozocin , Antioxidants/pharmacology , Antioxidants/therapeutic use , Disease Models, Animal , Reactive Oxygen Species/metabolism
20.
Ren Fail ; 46(1): 2347446, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38695335

ABSTRACT

This study is intended to explore the effect of hypoxia-inducible factor-1α (HIF-1α) activation on lipid accumulation in the diabetic kidney. A type 1 diabetic rat model was established by STZ intraperitoneal injection. Cobalt chloride (CoCl2) and YC-1 were used as the HIF-1α activator and antagonist, respectively. CoCl2 treatment significantly increased HIF-1α expression, accelerated lipid deposition, and accelerated tubular injury in diabetic kidneys. In vitro, CoCl2 effectively stabilized HIF-1α and increased its transportation from the cytoplasm to the nucleus, which was accompanied by significantly increased lipid accumulation in HK-2 cells. Furthermore, results obtained in vivo showed that HIF-1α protein expression in the renal tubules of diabetic rats was significantly downregulated by YC-1 treatment. Meanwhile, lipid accumulation in the tubules of the DM + YC-1 group was markedly decreased in comparison to the DM + DMSO group. Accordingly, PAS staining revealed that the pathological injury caused to the tubular epithelial cells was alleviated by YC-1 treatment. Furthermore, the blood glucose level, urine albumin creatinine ratio, and NAG creatinine ratio in the DM + YC-1 group were significantly decreased compared to the DM + DMSO group. Moreover, the protein expression levels of transforming growth factor ß1 (TGF-ß1) and connective tissue growth factor (CTGF) in diabetic kidneys were decreased by YC-1 treatment. Our findings demonstrate that the activation of HIF-1α contributed to interstitial injury in a rat model of diabetic nephropathy and that the underlying mechanism involved the induction of lipid accumulation.


Subject(s)
Cobalt , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Rats , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Male , Rats, Sprague-Dawley , Kidney Tubules/pathology , Kidney Tubules/metabolism , Transforming Growth Factor beta1/metabolism , Indazoles/pharmacology , Humans , Connective Tissue Growth Factor/metabolism , Lipid Metabolism/drug effects , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL
...