Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.836
Filter
1.
Sci Rep ; 14(1): 10340, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710764

ABSTRACT

This study aims to evaluate the role of trefoil factor 3 (TFF3) peptides in type 2 diabetes mellitus (T2DM) from an inflammatory perspective. The focus was on exploring how TFF3 affects the function of T cells. TFF3 overexpression model was constructed using lentivirus in Jurkat cell lines. We evaluated the impact of TFF3 on the proliferation, apoptosis, and IL-17A levels of Jurkat cells cultured in high glucose. The T2DM model was induced in TFF3 knockout (KO) mice through streptozotocin combined with high-fat diet. The measurements included glucose tolerance, insulin tolerance, inflammation markers, Th17 cell proportion, and pancreatic pathological changes. The T2DM modeling led to splenomegaly in mice, and increased expression of TFF3 in their spleens. Overexpression of TFF3 increased the proportion of IL-17+ T cells and the levels of Th17-related cytokines in Jurkat cells. There was no difference in body weight and blood glucose levels between wild-type and TFF3 KO mice. However, T2DM mice lacking the TFF3 gene showed improved glucose utilization, ameliorated pancreatic pathology, decreased inflammation levels, and reduced Th17 cell ratio. TFF3 may be involved in the chronic inflammatory immune response in T2DM. Its mechanism may be related to the regulation of the RORγt/IL-17 signaling pathway and its impact on T cell proliferation and apoptosis.


Subject(s)
Diabetes Mellitus, Type 2 , Mice, Knockout , Th17 Cells , Trefoil Factor-3 , Th17 Cells/immunology , Th17 Cells/metabolism , Animals , Humans , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/immunology , Mice , Trefoil Factor-3/metabolism , Trefoil Factor-3/genetics , Jurkat Cells , Interleukin-17/metabolism , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Male , Cell Proliferation , Apoptosis , Diet, High-Fat/adverse effects
2.
Immunol Lett ; 267: 106862, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38702033

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) stands as a prominent complication of diabetes. Berberine (BBR) has reported to be effective to ameliorate the retinal damage of DR. Studying the potential immunological mechanisms of BBR on the streptozotocin (STZ) induced DR mouse model will explain the therapeutic mechanisms of BBR and provide theoretical basis for the clinical application of this drug. METHODS: C57BL/6 J mice were induced into a diabetic state using a 50 mg/(kg·d) dose of STZ over a 5-day period. Subsequently, they were subjected to a high-fat diet (HFD) for one month. Following a 5-week treatment with 100 mg/(kg·d) BBR, the concentrations of inflammatory factors in the mice's peripheral blood were determined using an enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin staining was employed to scrutinize pathological changes in the mice's retinas, while flow cytometry assessed the proportions of T-lymphocyte subsets and the activation status of dendritic cells (DCs) in the spleen and lymph nodes. CD4+T cells and DC2.4 cell lines were utilized to investigate the direct and indirect effects of BBR on T cells under high glucose conditions in vitro. RESULTS: Following 5 weeks of BBR treatment in the streptozotocin (STZ) mouse model of DR, we observed alleviation of retinal lesions and a down-regulation in the secretion of inflammatory cytokines, namely TNF-α, IL-1ß, and IL-6, in the serum of these mice. And in the spleen and lymph nodes of these mice, BBR inhibited the proportion of Th17 cells and promoted the proportion of Treg cells, thereby down-regulating the Th17/Treg ratio. Additionally, in vitro experiments, BBR directly inhibited the expression of the transcription factor RORγt and promoted the expression of the transcription factor Foxp3 in T cells, resulting in a down-regulation of the Th17/Treg ratio. Furthermore, BBR indirectly modulated the Th17/Treg ratio by suppressing the secretion of TNF-α, IL-1ß, and IL-6 by DCs and enhancing the secretion of indoleamine 2,3-dioxygenase (IDO) and transforming growth factor-beta (TGF-ß) by DCs. This dual action inhibited Th17 cell differentiation while promoting Treg cells. CONCLUSION: Our findings indicate that BBR regulate T cell subpopulation differentiation, reducing the Th17/Treg ratio by directly or indirectly pathway. This represents a potential therapeutic avenue of BBR for improving diabetic retinopathy.


Subject(s)
Berberine , Diabetes Mellitus, Experimental , Diabetic Retinopathy , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Berberine/pharmacology , Berberine/therapeutic use , Diabetic Retinopathy/drug therapy , Diabetic Retinopathy/immunology , Diabetic Retinopathy/etiology , Th17 Cells/immunology , Th17 Cells/drug effects , Th17 Cells/metabolism , Mice , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Male , Cytokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal , Dendritic Cells/immunology , Dendritic Cells/drug effects , Dendritic Cells/metabolism , Retina/pathology , Retina/immunology , Retina/drug effects , Retina/metabolism
3.
Int Immunopharmacol ; 134: 112254, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749333

ABSTRACT

BACKGROUND: Patients with diabetes are particularly susceptible to Legionella pneumophila (LP) infection, but the exact pathogenesis of LP infection in diabetic patients is still not fully understood. Herein, we investigated the effect of diabetes on immune function during LP infection in vitro and in vivo. METHODS: The time course of LP infection in macrophages under normal and high-glucose (HG) conditions was examined in vitro. Western blot was used to determine nucleotide-binding oligomerization domain 1 (NOD1), kinase 1/2 (ERK1/2), mitogen-activated protein kinase p38 (MAPK p38), and c-Jun N-terminal kinases (JNK). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cell Counting Kit-8 (CCK8) assay assessed U937 cell viability after treating cells with different concentrations of high sugar medium and ML130 (NOD1 inhibitor). For the in vivo study, normal and streptozocin-induced diabetic guinea pigs were infected with LP for 6, 24, and 72 h, after which NOD1, MAPK-related signals, TNF-α, and IL-6 expression in lung tissues were assessed using immunohistochemistry, western blot, and RT-PCR. RESULTS: HG attenuated the upregulation of NOD1 expression and reduced TNF-α and IL-6 secretion caused by LP compared with LP-infected cells exposed to normal glucose levels (all p < 0.05). In diabetic guinea pigs, HG inhibited the upregulation of NOD1 expression in lung tissues and the activation of p38, ERK1/2, and cJNK caused by LP infection compared to control pigs (all p < 0.05). CONCLUSION: HG attenuates the response of macrophages to LP infection by inhibiting NOD1 upregulation and the activation of MAPK signaling.


Subject(s)
Glucose , Legionella pneumophila , Macrophages , Nod1 Signaling Adaptor Protein , Nod1 Signaling Adaptor Protein/metabolism , Nod1 Signaling Adaptor Protein/genetics , Animals , Humans , Macrophages/immunology , Macrophages/drug effects , Macrophages/metabolism , Legionella pneumophila/immunology , Glucose/metabolism , Guinea Pigs , Male , Interleukin-6/metabolism , Legionnaires' Disease/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , MAP Kinase Signaling System/drug effects , U937 Cells , Tumor Necrosis Factor-alpha/metabolism , Mice
4.
Int Immunopharmacol ; 133: 112056, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38626546

ABSTRACT

OBJECTIVES: The aim of this study was to investigate the effect of 4µ8c, an inhibitor targeting the endoplasmic reticulum stress-associated factor IRE1α, on macrophage polarization in an experimental model of diabetic periodontitis through ex vivo experiments. MATERIALS AND METHODS: Local alveolar bone parameters were evaluated using Micro-CT following intraperitoneal administration of 4µ8c in mice with experimental diabetic periodontitis. Surface markers indicating macrophage polarization were identified using immunofluorescence. In vitro experiments were performed employing bone marrow-derived macrophages and gingival fibroblasts. Macrophage polarization was determined using flow cytometry. Principal impacted signaling pathways were identified through Western blot analysis. RESULTS: Results from both in vitro and in vivo experiments demonstrated that 4µ8c mitigated alveolar bone resorption and inflammation in mice with diabetic periodontitis. Furthermore, it modulated macrophage polarization towards the M2 phenotype and augmented M2 macrophage polarization through the MAPK signaling pathway. CONCLUSIONS: These findings suggest that inhibiting IRE1α can modulate macrophage polarization and alleviate ligature-induced diabetic periodontitis via the MAPK signaling pathway. This unveils a novel mechanism, offering a scientific foundation for the treatment of experimental diabetic periodontitis.


Subject(s)
Diabetes Mellitus, Type 2 , Endoplasmic Reticulum Stress , Endoribonucleases , Macrophages , Mice, Inbred C57BL , Periodontitis , Protein Serine-Threonine Kinases , Animals , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Protein Serine-Threonine Kinases/metabolism , Periodontitis/immunology , Periodontitis/metabolism , Endoribonucleases/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/drug effects , Mice , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Male , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Cells, Cultured , Alveolar Bone Loss/immunology , MAP Kinase Signaling System/drug effects , Humans
5.
Int Immunopharmacol ; 132: 112019, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38599099

ABSTRACT

OBJECTIVE: The current study aimed to assess the modulating effect of IL-2 encapsulated chitosan-nanoparticles (CSNPs) on the function of Treg cells through induction of type 1 diabetes (T1D). Treg cell function was monitored by the forkhead box P3 (FoxP3) and transforming growth factor beta (TGFß) levels, correlating them with blood glucose and serum insulin levels. MATERIALS AND METHODS: In this case-control study, a low dose of IL-2 (free and chitosan-loaded) was injected into a diabetic mice group. The levels of FoxP3 and TGF-ß 1 were assessed using Enzyme-Linked Immunosorbent Assay. In addition, blood glucose and serum insulin levels were determined. RESULTS: The mean glucose level decreased significantly after free rIL-2 or rIL-2 / CSNPs treatment. Meanwhile, the mean serum insulin level was significantly increased after treatment with free rIL-2 or rIL-2/CSNPs. The mean levels of FoxP3 and TGFß 1 were significantly increased with either free rIL-2 or rIL-2/CSNPs compared to the T1D untreated group (P < 0.001). In the treated mice group receiving free CSNPs, there was a significant negative correlation between glucose and insulin levels. Moreover, FoxP3 & TGFß 1 levels had a significant positive correlation. In treated mice groups with free rIL-2 and IL-2 CSNPs, there was a significant positive correlation between FoxP3 and glucose levels. A significant negative correlation was found after conducting a correlation between insulin level and FoxP3 in the T1D/ rIL-2 / CSNPs group. CONCLUSIONS: Low-dose IL-2 selectively modulates FoxP3 + Tregs, and TGFß 1 increases their levels. These results demonstrated that IL-2-free and chitosan-loaded nanoparticles can be therapeutic agents in T1D.


Subject(s)
Blood Glucose , Chitosan , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Forkhead Transcription Factors , Insulin , Interleukin-2 , Nanoparticles , T-Lymphocytes, Regulatory , Animals , Chitosan/chemistry , Chitosan/administration & dosage , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Interleukin-2/metabolism , Interleukin-2/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Blood Glucose/drug effects , Mice , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/blood , Forkhead Transcription Factors/metabolism , Insulin/blood , Male , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/blood , Streptozocin , Humans
6.
Transplantation ; 108(5): 1115-1126, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38192025

ABSTRACT

BACKGROUND: The utilization of islet-like cells derived from pluripotent stem cells may resolve the scarcity of islet transplantation donors. The subcutaneous space is a promising transplantation site because of its capacity for graft observation and removal, thereby ensuring safety. To guarantee subcutaneous islet transplantation, physicians should ensure ample blood supply. Numerous methodologies, including prevascularization, have been investigated to augment blood flow, but the optimal approach remains undetermined. METHODS: From C57BL/6 mice, 500 syngeneic islets were transplanted into the prevascularized subcutaneous site of recipient mice by implanting agarose rods with basic fibroblast growth factor at 1 and 2 wk. Before transplantation, the blood glucose levels, cell infiltration, and cytokine levels at the transplant site were evaluated. Furthermore, we examined the impact of the extracellular matrix capsule on graft function and the inflammatory response. RESULTS: Compared with the 1-wk group, the 2-wk group exhibited improved glycemic control, indicating that longer prevascularization enhanced transplant success. Flow cytometry analysis detected immune cells, such as neutrophils and macrophages, in the extracellular matrix capsules, whereas cytometric bead array analysis indicated the release of inflammatory and proinflammatory cytokines. Treatment with antitumor necrosis factor and anti-interleukin-6R antibodies in the 1-wk group improved graft survival, similar to the 2-wk group. CONCLUSIONS: In early prevascularization before subcutaneous transplantation, neutrophil and macrophage accumulation prevented early engraftment owing to inflammatory cytokine production.


Subject(s)
Blood Glucose , Cytokines , Graft Survival , Islets of Langerhans Transplantation , Mice, Inbred C57BL , Islets of Langerhans Transplantation/methods , Islets of Langerhans Transplantation/immunology , Animals , Blood Glucose/metabolism , Cytokines/metabolism , Mice , Male , Time Factors , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/surgery , Subcutaneous Tissue/blood supply , Subcutaneous Tissue/immunology , Extracellular Matrix/metabolism , Islets of Langerhans/immunology , Islets of Langerhans/blood supply , Neovascularization, Physiologic
7.
Biochem Pharmacol ; 216: 115764, 2023 10.
Article in English | MEDLINE | ID: mdl-37634595

ABSTRACT

Development of specific therapies that target and accelerate diabetic wound repair is an urgent need to alleviate pain and suffering and the huge socioeconomic burden of this debilitating disease. C-X-C Motif Chemokine Ligand 12 (CXCL12) also know an stromal cell-derived factor 1α (SDF-1α) is a chemokine that binds the CXC chemokine receptor type 4 (CXCR4) and activates downstream signaling resulting in recruitment of hematopoietic cells to locations of tissue injury and promotes tissue repair. In diabetes, low expression of CXCL12 correlates with impaired wound healing. Activation of CXCR4 receptor signaling with agonists or positive allosteric modulators (PAMs) provides a potential for small molecule therapeutic discovery and development. We recently reported high throughput screening and identification of the CXCR4 partial agonist UCUF-728, characterization of in vitro activity and reduced wound closure time in diabetic mice at 100 µM as a proof-of-concept study. We report here, the discovery of a second chemical scaffold demonstrating increased agonist potency and represented by thiadiazine derivative, UCUF-965. UCUF-965 is a potent partial agonist of ß-arrestin recruitment in CXCR4 receptor overexpressing cell line. Furthermore, UCUF-965 potentiates the CXCL12 maximal response in cAMP signaling pathway, activates CXCL12 stimulated migration in lymphoblast cells and modulates the levels of specific microRNA involved in the complex wound repair process, specifically in mouse fibroblasts. Our results indicate that UCUF-965 acts as a PAM agonist of the CXCR4 receptor. Furthermore, UCUF-965 enhanced angiogenesis markers and reduced wound healing time by 36% at 10.0 µM in diabetic mice models compared to untreated control.


Subject(s)
Diabetes Mellitus, Experimental , Receptors, CXCR4 , Wound Healing , Animals , Mice , Cell Movement/physiology , Chemokine CXCL12/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/immunology , Hematopoietic Stem Cells , Receptors, CXCR4/agonists , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Signal Transduction , Wound Healing/drug effects , Wound Healing/genetics , Wound Healing/physiology
8.
Nutr Diabetes ; 13(1): 4, 2023 04 08.
Article in English | MEDLINE | ID: mdl-37031163

ABSTRACT

BACKGROUND: Lentinan (LNT) is a complex fungal component that possesses effective antitumor and immunostimulating properties. However, there is a paucity of studies regarding the effects and mechanisms of LNT on type 1 diabetes. OBJECTIVE: In the current study, we investigated whether an intraperitoneal injection of LNT can diminish the risk of developing type 1 diabetes (T1D) in non-obese diabetic (NOD) mice and further examined possible mechanisms of LNT's effects. METHODS: Pre-diabetic female NOD mice 8 weeks of age, NOD mice with 140-160 mg/dL, 200-230 mg/dL or 350-450 mg/dL blood glucose levels were randomly divided into two groups and intraperitoneally injected with 5 mg/kg LNT or PBS every other day. Then, blood sugar levels, pancreas slices, spleen, PnLN and pancreas cells from treatment mice were examined. RESULTS: Our results demonstrated that low-dosage injections (5 mg/kg) of LNT significantly suppressed immunopathology in mice with autoimmune diabetes but increased the Foxp3+ regulatory T cells (Treg cells) proportion in mice. LNT treatment induced the production of Tregs in the spleen and PnLN cells of NOD mice in vitro. Furthermore, the adoptive transfer of Treg cells extracted from LNT-treated NOD mice confirmed that LNT induced Treg function in vivo and revealed an enhanced suppressive capacity as compared to the Tregs isolated from the control group. CONCLUSION: LNT was capable of stimulating the production of Treg cells from naive CD4 + T cells, which implies that LNT exhibits therapeutic values as a tolerogenic adjuvant and may be used to reverse hyperglycaemia in the early and late stages of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Lentinan , Prediabetic State , T-Lymphocytes, Regulatory , Animals , Female , Mice , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Injections, Intraperitoneal , Lentinan/administration & dosage , Lentinan/immunology , Lentinan/pharmacology , Lentinan/therapeutic use , Mice, Inbred NOD , Prediabetic State/drug therapy , Prediabetic State/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology
9.
Int J Mol Sci ; 23(21)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36362050

ABSTRACT

Diabetic kidney disease (DKD) frequently leads to end-stage renal disease and other life-threatening illnesses. The dysregulation of glomerular cell types, including mesangial cells, endothelial cells, and podocytes, appears to play a vital role in the development of DKD. Myeloid-derived suppressor cells (MDSCs) exhibit immunoregulatory and anti-inflammatory properties through the depletion of L-arginine that is required by T cells, through generation of oxidative stress, interference with T-cell recruitment and viability, proliferation of regulatory T cells, and through the promotion of pro-tumorigenic functions. Under hyperglycemic conditions, mouse mesangial cells reportedly produce higher levels of fibronectin and pro-inflammatory cytokines. Moreover, the number of MDSCs is noticeably decreased, weakening inhibitory immune activities, and creating an inflammatory environment. In diabetic mice, immunotherapy with MDSCs that were induced by a combination of granulocyte-macrophage colony-stimulating factor, interleukin (IL)-1ß, and IL-6, reduced kidney to body weight ratio, fibronectin expression, and fibronectin accumulation in renal glomeruli, thus ameliorating DKD. In conclusion, MDSCs exhibit anti-inflammatory activities that help improve renal fibrosis in diabetic mice. The therapeutic targeting of the proliferative or immunomodulatory pathways of MDSCs may represent an alternative immunotherapeutic strategy for DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Myeloid-Derived Suppressor Cells , Animals , Mice , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/immunology , Diabetic Nephropathies/metabolism , Endothelial Cells/metabolism , Fibronectins/metabolism , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells/immunology
10.
Elife ; 112022 02 03.
Article in English | MEDLINE | ID: mdl-35112667

ABSTRACT

Infection is a major co-morbidity that contributes to impaired healing in diabetic wounds. Although impairments in diabetic neutrophils have been blamed for this co-morbidity, what causes these impairments and whether they can be overcome, remain largely unclear. Diabetic neutrophils, isolated from diabetic individuals, exhibit chemotaxis impairment but this peculiar functional impairment has been largely ignored because it appears to contradict the clinical findings which blame excessive neutrophil influx as a major impediment to healing in chronic diabetic ulcers. Here, we report that exposure to glucose in diabetic range results in impaired chemotaxis signaling through the formyl peptide receptor (FPR) in neutrophils, culminating in reduced chemotaxis and delayed neutrophil trafficking in the wound of Leprdb (db/db) type two diabetic mice, rendering diabetic wound vulnerable to infection. We further show that at least some auxiliary receptors remain functional under diabetic conditions and their engagement by the pro-inflammatory cytokine CCL3, overrides the requirement for FPR signaling and substantially improves infection control by jumpstarting the neutrophil trafficking toward infection, and stimulates healing in diabetic wound. We posit that CCL3 may have therapeutic potential for the treatment of diabetic foot ulcers if it is applied topically after the surgical debridement process which is intended to reset chronic ulcers into acute fresh wounds.


Subject(s)
Chemotaxis, Leukocyte/immunology , Diabetes Mellitus, Experimental/immunology , Neutrophils/pathology , Receptors, Formyl Peptide/genetics , Signal Transduction/immunology , Wound Healing/immunology , Wound Infection/microbiology , Animals , Chemokine CCL3/immunology , Diabetes Complications/microbiology , Glucose/administration & dosage , Male , Mice , Mice, Inbred C57BL , Neutrophils/immunology , Receptors, Formyl Peptide/immunology , Wound Infection/drug therapy , Wound Infection/etiology
11.
Int J Mol Sci ; 23(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35163121

ABSTRACT

Type 1 diabetes (T1D) is caused by the destruction of ß cells in pancreatic islets by autoimmune T cells. Islet transplantation has been established as an effective treatment for T1D. However, the survival of islet grafts is often disrupted by recurrent autoimmunity. Alpha-lipoic acid (ALA) has been reported to have immunomodulatory effects and, therefore, may have therapeutic potential in the treatment of T1D. In this study, we investigated the therapeutic potential of ALA in autoimmunity inhibition. We treated non-obese diabetic (NOD) mice with spontaneous diabetes and islet-transplantation mice with ALA. The onset of diabetes was decreased and survival of the islet grafts was extended. The populations of Th1 cells decreased, and regulatory T cells (Tregs) increased in ALA-treated mice. The in vitro Treg differentiation was significantly increased by treatment with ALA. The adoptive transfer of ALA-differentiated Tregs into NOD recipients improved the outcome of the islet grafts. Our results showed that in vivo ALA treatment suppressed spontaneous diabetes and autoimmune recurrence in NOD mice by inhibiting the Th1 immune response and inducing the differentiation of Tregs. Our study also demonstrated the therapeutic potential of ALA in Treg-based cell therapies and islet transplantation used in the treatment of T1D.


Subject(s)
Autoimmunity , Diabetes Mellitus, Experimental/prevention & control , Diabetes Mellitus, Type 1/prevention & control , Islets of Langerhans Transplantation/methods , Islets of Langerhans/cytology , T-Lymphocytes, Regulatory/immunology , Thioctic Acid/pharmacology , Animals , Antioxidants/pharmacology , Cell Differentiation , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Female , Graft Survival , Mice , Mice, Inbred NOD , Th1 Cells
12.
Life Sci ; 288: 120184, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34838848

ABSTRACT

AIMS: Rosmarinic acid (RA) is a polyphenol that occurs in plants of the Lamiaceae family. Phenethyl ester of RA (PERA), a novel RA derivative, has been developed and evaluated in vivo in an animal model of type 1 diabetes (T1D). METHODS: T1D was induced in male C57BL/6 mice using multiple low doses of streptozotocin (STZ) administered intraperitoneally for 5 consecutive days. Intraperitoneal administration of PERA (2.5 mg/kg bw) began from the first STZ injection and continued for 20 days. KEY FINDINGS: PERA-treated mice exhibited lower incidence of T1D (monitored up to 38 days from the disease induction), and fluorescent histochemical analysis showed that their pancreatic islets expressed more insulin. PERA treatment significantly down-regulated the proportions of CD11b+ and CD11c+ myeloid cells in the immune cell infiltrates in the pancreatic islets early during T1D pathogenesis (on day 9 after T1D induction), while on day 15, PERA significantly reduced the proportions of CD11c+, CD8+, Th1 and Th17 cells. Simultaneously, it was found that the cells from the pancreatic infiltrates of PERA-treated mice produced significantly less reactive oxygen species than cells from the control group. SIGNIFICANCE: These findings suggest that PERA efficiently prevented T1D development in mice. Interestingly, PERA attenuated the inflammatory process in the islets through temporally specific interference with the innate and adaptive immune response and therefore shows great promise for further clinical evaluation as a novel T1D therapeutic.


Subject(s)
Autoimmunity , Cinnamates/pharmacology , Depsides/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 1/prevention & control , Esters/chemistry , Islets of Langerhans/drug effects , Animals , Cinnamates/chemistry , Depsides/chemistry , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Islets of Langerhans/immunology , Islets of Langerhans/pathology , Male , Mice , Mice, Inbred C57BL , Phenylethyl Alcohol/chemistry , Rosmarinic Acid
13.
J Mol Med (Berl) ; 100(1): 101-113, 2022 01.
Article in English | MEDLINE | ID: mdl-34651203

ABSTRACT

Infections are common in patients with diabetes, but increasing antibiotic resistance hampers successful bacterial clearance and calls for alternative treatment strategies. Hypoxia-inducible factor 1 (HIF-1) is known to influence the innate immune defense and could therefore serve as a possible target. However, the impact of high glucose on HIF-1 has received little attention and merits closer investigation. Here, we show that higher levels of proinflammatory cytokines and CAMP, encoding for the antimicrobial peptide cathelicidin, LL-37, correlate with HIF-1 in type 2 diabetic patients. Chemical activation of HIF-1 further enhanced LL-37, IL-1ß, and IL-8 in human uroepithelial cells exposed to high glucose. Moreover, HIF-1 activation of transurethrally infected diabetic mice resulted in lower bacterial load. Drugs activating HIF-1 could therefore in the future potentially have a therapeutic role in clearing bacteria in diabetic patients with infections where antibiotic treatment failed. KEY MESSAGES: • Mohanty et al. "HIF-1 mediated activation of antimicrobial peptide LL-37 in type 2 diabetic patients." • Our study highlights induction of the antimicrobial peptide, LL-37, and strengthening of the innate immunity through hypoxia-inducible factor 1 (HIF-1) in diabetes. • Our key observations are: 1. HIF-1 activation increased LL-37 expression in human urothelial cells treated with high glucose. In line with that, we demonstrated that patients with type 2 diabetes living at high altitude had increased levels of the LL-37. 2. HIF-1 activation increased IL-1ß and IL-8 in human uroepithelial cells treated with high glucose concentration. 3. Pharmacological activation of HIF-1 decreased bacterial load in the urinary bladder of mice with hereditary diabetes. • We conclude that enhancing HIF-1 may along with antibiotics in the future contribute to the treatment in selected patient groups where traditional therapy is not possible.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/immunology , Escherichia coli Infections/immunology , Hypoxia-Inducible Factor 1/immunology , Urinary Tract Infections/immunology , Adult , Aged , Aged, 80 and over , Animals , Cytokines/genetics , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 2/genetics , Escherichia coli Infections/genetics , Female , Humans , Hypoxia-Inducible Factor 1/genetics , Male , Mice , Middle Aged , Urinary Tract Infections/genetics , Urothelium/cytology , Cathelicidins
14.
FASEB J ; 36(1): e22107, 2022 01.
Article in English | MEDLINE | ID: mdl-34939700

ABSTRACT

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Subject(s)
Blood-Brain Barrier/immunology , Collagenases/immunology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/immunology , Tissue Inhibitor of Metalloproteinases/immunology , Animals , Annexin A1/pharmacology , Blood-Brain Barrier/pathology , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/pathology , Humans , Male , Mice , Recombinant Proteins/pharmacology
15.
Signal Transduct Target Ther ; 6(1): 409, 2021 11 30.
Article in English | MEDLINE | ID: mdl-34848693

ABSTRACT

Natural killer (NK) cells have been suggested to be associated with type 2 diabetes by regulating systemic inflammation. However, the mechanism by which NK cells regulate insulin sensitivity remains unknown. This study shows that NK-derived exosomes from lean mice attenuate obesity-induced insulin resistance and inflammation in mice of type 2 diabetes. Moreover, lean NK-derived exosomes enhance insulin sensitivity and relieve inflammation in adipocytes and hepatocytes. MiR-1249-3p, which is significantly upregulated in lean NK-derived exosomes, can be transferred from NK cells to adipocytes and hepatocytes via exosomes. NK-derived exosomal miR-1249-3p dramatically induces cellular insulin sensitivity and relieves inflammation. Mechanistically, exosomal miR-1249-3p directly targets SKOR1 to regulate the formation of ternary complex SMAD6/MYD88/SMURF1, which mediates glucose homeostasis by suppressing the TLR4/NF-κB signaling pathway. This study reveals an emerging role for NK-derived exosomal miR-1249-3p in remission of insulin resistance, and provides a series of potential therapeutic targets in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 2/immunology , Exosomes/immunology , Insulin Resistance/immunology , Killer Cells, Natural/immunology , MicroRNAs/immunology , Animals , Inflammation/immunology , Male , Mice
16.
Mediators Inflamm ; 2021: 9940009, 2021.
Article in English | MEDLINE | ID: mdl-34712101

ABSTRACT

Alloxan (ALX) and streptozotocin (STZ) are extensively used to induce type 1 diabetes (T1D) in animal models. This study is aimed at evaluating the differences in immune parameters caused by ALX and STZ. T1D was induced either with ALX or with STZ, and the animals were followed for up to 180 days. Both ALX and STZ induced a decrease in the total number of circulating leukocytes and lymphocytes, with an increase in granulocytes when compared to control mice (CT). STZ-treated mice also exhibited an increase in neutrophils and a reduction in the lymphocyte percentage in the bone marrow. In addition, while the STZ-treated group showed a decrease in total CD3+, CD4-CD8+, and CD4+CD8+ T lymphocytes in the thymus and CD19+ B lymphocytes in the pancreas and spleen, the ALX group showed an increase in CD4-CD8+ and CD19+ only in the thymus. Basal levels of splenic interleukin- (IL-) 1ß and pancreatic IL-6 in the STZ group were decreased. Both diabetic groups showed atrophy of the thymic medulla and degeneration of pancreatic islets of Langerhans composed of inflammatory infiltration and hyperemia with vasodilation. ALX-treated mice showed a decrease in reticuloendothelial cells, enhanced lymphocyte/thymocyte cell death, and increased number of Hassall's corpuscles. Reduced in vitro activation of splenic lymphocytes was found in the STZ-treated group. Furthermore, mice immunized with ovalbumin (OVA) showed a more intense antigen-specific paw edema response in the STZ-treated group, while production of anti-OVA IgG1 antibodies was similar in both groups. Thereby, important changes in immune cell parameters in vivo and in vitro were found at an early stage of T1D in the STZ-treated group, whereas alterations in the ALX-treated group were mostly found in the chronic phase of T1D, including increased mortality rates. These findings suggest that the effects of ALX and STZ influenced, at different times, lymphoid organs and their cell populations.


Subject(s)
Alloxan/toxicity , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/immunology , Lymphocytes/drug effects , Streptozocin/toxicity , Animals , Blood Glucose/analysis , Cytokines/biosynthesis , Lymphocytes/immunology , Male , Mice , Mice, Inbred C57BL , Pancreas/drug effects , Pancreas/pathology , Spleen/drug effects , Spleen/immunology , Thymus Gland/drug effects , Thymus Gland/pathology
17.
Cell Rep ; 37(5): 109942, 2021 11 02.
Article in English | MEDLINE | ID: mdl-34706272

ABSTRACT

Anti-viral monoclonal antibody (mAb) treatments may provide immediate but short-term immunity from coronavirus disease 2019 (COVID-19) in high-risk populations, such as people with diabetes and the elderly; however, data on their efficacy in these populations are limited. We demonstrate that prophylactic mAb treatment blocks viral replication in both the upper and lower respiratory tracts in aged, type 2 diabetic rhesus macaques. mAb infusion dramatically curtails severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-mediated stimulation of interferon-induced chemokines and T cell activation, significantly reducing development of interstitial pneumonia. Furthermore, mAb infusion significantly dampens the greater than 3-fold increase in SARS-CoV-2-induced effector CD4 T cell influx into the cerebrospinal fluid. Our data show that neutralizing mAbs administered preventatively to high-risk populations may mitigate the adverse inflammatory consequences of SARS-CoV-2 exposure.


Subject(s)
Antibodies, Monoclonal/therapeutic use , COVID-19/prevention & control , SARS-CoV-2/immunology , Aging/immunology , Animals , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/immunology , Diabetes Complications/immunology , Diabetes Complications/virology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/immunology , Female , Humans , Lymphocyte Activation , Macaca mulatta , Male , Neuritis/immunology , Neuritis/prevention & control , Pre-Exposure Prophylaxis , T-Lymphocytes/immunology , Virus Replication/immunology
18.
J Neuroinflammation ; 18(1): 244, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702288

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is a common concomitant disease of late-onset myasthenia gravis (MG). However, the impacts of DM on the progression of late-onset MG were unclear. METHODS: In this study, we examined the immune response in experimental autoimmune myasthenia gravis (EAMG) rats with DM or not. The phenotype and function of the spleen and lymph nodes were determined by flow cytometry. The serum antibodies, Tfh cells, and germinal center B cells were determined by ELISA and flow cytometry. The roles of advanced glycation end products (AGEs) in regulating Tfh cells were further explored in vitro by co-culture assays. RESULTS: Our results indicated clinical scores of EAMG rats were worse in diabetes rats compared to control, which was due to the increased production of anti-R97-116 antibody and antibody-secreting cells. Furthermore, diabetes induced a significant upregulation of Tfh cells and the subtypes of Tfh1 and Tfh17 cells to provide assistance for antibody production. The total percentages of B cells were increased with an activated statue of improved expression of costimulatory molecules CD80 and CD86. We found CD4+ T-cell differentiation was shifted from Treg cells towards Th1/Th17 in the DM+EAMG group compared to the EAMG group. In addition, in innate immunity, diabetic EAMG rats displayed more CXCR5 expression on NK cells. However, the expression of CXCR5 on NKT cells was down-regulated with the increased percentages of NKT cells in the DM+EAMG group. Ex vivo studies further indicated that Tfh cells were upregulated by AGEs instead of hyperglycemia. The upregulation was mediated by the existence of B cells, the mechanism of which might be attributed the elevated molecule CD40 on B cells. CONCLUSIONS: Diabetes promoted both adaptive and innate immunity and exacerbated clinical symptoms in EAMG rats. Considering the effect of diabetes, therapy in reducing blood glucose levels in MG patients might improve clinical efficacy through suppressing the both innate and adaptive immune responses. Additional studies are needed to confirm the effect of glucose or AGEs reduction to seek treatment for MG.


Subject(s)
Adaptive Immunity/physiology , Diabetes Mellitus, Experimental/immunology , Immunity, Innate/physiology , Inflammation Mediators/immunology , Myasthenia Gravis, Autoimmune, Experimental/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Coculture Techniques , Diabetes Mellitus, Experimental/metabolism , Female , Inflammation Mediators/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Myasthenia Gravis, Autoimmune, Experimental/metabolism , Rats , Rats, Inbred Lew , Th17 Cells/immunology , Th17 Cells/metabolism
19.
Eur J Pharmacol ; 910: 174468, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34478692

ABSTRACT

Acute kidney injury (AKI) is one of the major complications with increased oxidative stress and inflammation in diabetic patients. Hyperglycemia stimulates the formation of advanced glycation end products (AGEs). However, hyperglycemia directly triggers the interaction between AGEs and transmembrane AGEs receptors (RAGE), which enhances oxidative stress and increases the production of inflammatory substances. Therefore, diabetes plays a pivotal role in kidney injury. Hydralazine, a vasodilator and antihypertensive drug, was found to have the ability to reduce ROS, oxidative stress, and inflammation. We applied Hydralazine co-culture with AGEs in rat mesangial cells (RMC) and to renal ischemia/reperfusion(I/R) injury models in streptozotocin-induced diabetic rats. Hydralazine significantly decreased AGEs-induced RAGE, iNOS, and COX-2 expressions in RMC. Compared to the diabetic with AKI group, hydralazine decreased inflammation-related protein, and JAK2, STAT3 signaling in rat kidney tissue. Our studies indicate that Hydralazine has the potential to become a beneficial drug in the treatment of diabetic acute kidney injury.


Subject(s)
Acute Kidney Injury/drug therapy , Diabetic Nephropathies/drug therapy , Hydralazine/pharmacology , Nephritis/drug therapy , Reperfusion Injury/drug therapy , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Animals , Cells, Cultured , Coculture Techniques , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/immunology , Diabetic Nephropathies/immunology , Diabetic Nephropathies/pathology , Glycation End Products, Advanced , Humans , Hydralazine/therapeutic use , Male , Mesangial Cells , Nephritis/immunology , Nephritis/pathology , Oxidative Stress/drug effects , Oxidative Stress/immunology , Primary Cell Culture , Rats , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Signal Transduction/drug effects , Signal Transduction/immunology , Streptozocin/administration & dosage , Streptozocin/toxicity
20.
J Exp Med ; 218(10)2021 10 04.
Article in English | MEDLINE | ID: mdl-34415994

ABSTRACT

Understanding mechanisms of immune regulation is key to developing immunotherapies for autoimmunity and cancer. We examined the role of mononuclear phagocytes during peripheral T cell regulation in type 1 diabetes and melanoma. MERTK expression and activity in mononuclear phagocytes in the pancreatic islets promoted islet T cell regulation, resulting in reduced sensitivity of T cell scanning for cognate antigen in prediabetic islets. MERTK-dependent regulation led to reduced T cell activation and effector function at the disease site in islets and prevented rapid progression of type 1 diabetes. In human islets, MERTK-expressing cells were increased in remaining insulin-containing islets of type 1 diabetic patients, suggesting that MERTK protects islets from autoimmune destruction. MERTK also regulated T cell arrest in melanoma tumors. These data indicate that MERTK signaling in mononuclear phagocytes drives T cell regulation at inflammatory disease sites in peripheral tissues through a mechanism that reduces the sensitivity of scanning for antigen leading to reduced responsiveness to antigen.


Subject(s)
Autoimmunity/physiology , Islets of Langerhans/enzymology , Phagocytes/physiology , T-Lymphocytes/immunology , c-Mer Tyrosine Kinase/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Antigen-Presenting Cells/immunology , Antigens/immunology , Antigens/metabolism , CD11 Antigens/metabolism , Diabetes Mellitus, Experimental/enzymology , Diabetes Mellitus, Experimental/immunology , Diabetes Mellitus, Type 1/enzymology , Diabetes Mellitus, Type 1/pathology , Female , Humans , Islets of Langerhans/immunology , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Neoplasms, Experimental/enzymology , Neoplasms, Experimental/immunology , Phagocytes/immunology , Piperazines/pharmacology , c-Mer Tyrosine Kinase/genetics , c-Mer Tyrosine Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...