Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.987
Filter
1.
Sci Transl Med ; 16(746): eadn2404, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718135

ABSTRACT

CD4+CD25hiCD127lo/-FOXP3+ regulatory T cells (Tregs) play a key role in preventing autoimmunity. In autoimmune type 1 diabetes (T1D), adoptive transfer of autologous polyclonal Tregs has been shown to be safe in adults in phase 1 clinical trials. We explored factors contributing to efficacy of autologous polyclonal expanded Tregs (expTregs) in a randomized phase 2 multi-center, double-blind, clinical trial (Sanford/Lisata Therapeutics T-Rex phase 2 trial, ClinicalTrials.gov NCT02691247). One hundred ten treated children and adolescents with new-onset T1D were randomized 1:1:1 to high-dose (20 × 106 cells/kilogram) or low-dose (1 × 106 cells/kilogram) treatments or to matching placebo. Cytometry as well as bulk and single-cell RNA sequencing were performed on selected expTregs and peripheral blood samples from participants. The single doses of expTregs were safe but did not prevent decline in residual ß cell function over 1 year compared to placebo (P = 0.94 low dose, P = 0.21 high dose), regardless of age or baseline C-peptide. ExpTregs were highly activated and suppressive in vitro. A transient increase of activated memory Tregs was detectable 1 week after infusion in the high-dose cohort, suggesting effective transfer of expTregs. However, the in vitro fold expansion of expTregs varied across participants, even when accounting for age, and lower fold expansion and its associated gene signature were linked with better C-peptide preservation regardless of Treg dose. These results suggest that a single dose of polyclonal expTregs does not alter progression in T1D; instead, Treg quality may be an important factor.


Subject(s)
Diabetes Mellitus, Type 1 , T-Lymphocytes, Regulatory , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , T-Lymphocytes, Regulatory/immunology , Child , Adolescent , Male , Female , Double-Blind Method , Child, Preschool , Transplantation, Autologous
2.
Nat Commun ; 15(1): 3810, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714671

ABSTRACT

Previous studies have revealed heterogeneity in the progression to clinical type 1 diabetes in children who develop islet-specific antibodies either to insulin (IAA) or glutamic acid decarboxylase (GADA) as the first autoantibodies. Here, we test the hypothesis that children who later develop clinical disease have different early immune responses, depending on the type of the first autoantibody to appear (GADA-first or IAA-first). We use mass cytometry for deep immune profiling of peripheral blood mononuclear cell samples longitudinally collected from children who later progressed to clinical disease (IAA-first, GADA-first, ≥2 autoantibodies first groups) and matched for age, sex, and HLA controls who did not, as part of the Type 1 Diabetes Prediction and Prevention study. We identify differences in immune cell composition of children who later develop disease depending on the type of autoantibodies that appear first. Notably, we observe an increase in CD161 expression in natural killer cells of children with ≥2 autoantibodies and validate this in an independent cohort. The results highlight the importance of endotype-specific analyses and are likely to contribute to our understanding of pathogenic mechanisms underlying type 1 diabetes development.


Subject(s)
Autoantibodies , Diabetes Mellitus, Type 1 , Glutamate Decarboxylase , Immunity, Cellular , Humans , Diabetes Mellitus, Type 1/immunology , Autoantibodies/immunology , Autoantibodies/blood , Child , Female , Male , Glutamate Decarboxylase/immunology , Child, Preschool , Adolescent , Killer Cells, Natural/immunology , Leukocytes, Mononuclear/immunology , Insulin/immunology , Islets of Langerhans/immunology , Disease Progression
3.
Diabetes Metab Res Rev ; 40(4): e3811, 2024 May.
Article in English | MEDLINE | ID: mdl-38751148

ABSTRACT

AIMS: Individuals with type 1 diabetes (T1D) do not appear to have an elevated risk of severe Coronavirus Disease 19 (COVID-19). Pre-existing immune reactivity to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in unexposed individuals may serve as a protective factor. Hence, our study was designed to evaluate the existence of T cells with reactivity against SARS-CoV-2 antigens in unexposed patients with T1D. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from SARS-CoV-2 unexposed patients with T1D and healthy control subjects. SARS-CoV-2 specific T cells were identified in PBMCs by ex-vivo interferon (IFN)γ-ELISpot and flow cytometric assays. The epitope specificity of T cells in T1D was inferred through T Cell Receptor sequencing and GLIPH2 clustering analysis. RESULTS: T1D patients unexposed to SARS-CoV-2 exhibited higher rates of virus-specific T cells than controls. The T cells primarily responded to peptides from the ORF7/8, ORF3a, and nucleocapsid proteins. Nucleocapsid peptides predominantly indicated a CD4+ response, whereas ORF3a and ORF7/8 peptides elicited both CD4+ and CD8+ responses. The GLIPH2 clustering analysis of TCRß sequences suggested that TCRß clusters, associated with the autoantigens proinsulin and Zinc transporter 8 (ZnT-8), might share specificity towards ORF7b and ORF3a viral epitopes. Notably, PBMCs from three T1D patients exhibited T cell reactivity against both ORF7b/ORF3a viral epitopes and proinsulin/ZnT-8 autoantigens. CONCLUSIONS: The increased frequency of SAR-CoV-2- reactive T cells in T1D patients might protect against severe COVID-19 and overt infections. These results emphasise the long-standing association between viral infections and T1D.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , SARS-CoV-2 , Humans , Diabetes Mellitus, Type 1/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Male , Female , Adult , T-Lymphocytes/immunology , Middle Aged , Case-Control Studies , Epitopes, T-Lymphocyte/immunology , Young Adult
4.
Braz Oral Res ; 38: e043, 2024.
Article in English | MEDLINE | ID: mdl-38747830

ABSTRACT

This cross-sectional study evaluated the association between salivary immunoglobulins, plaque index, and gingival index in Brazilian children with and without type 1 diabetes mellitus (DM1). The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) checklist for the reporting of observational studies was followed. The DM1 group had 38 children, and an equal number of volunteers matched by sex and age were recruited as controls. Clinical examination was performed for plaque index and gingival index determination. Non-stimulated whole saliva was collected. Concentrations of IgA, IgG, and IgM were determined by ELISA test. Data were tested by the Kolmogorov-Smirnov, Mann-Whitney, and Spearman tests and a multiple linear regression model (p<0.05) was performed. Gingival index was higher in the Control (DM1: 0.16±0.17; Control: 0.24±0.23, p=0.040). In DM1, there was a correlation between IgA and age (rho=0.371, p=0.024), IgM and IgG (rho=0.459, p=0.007), and IgM and gingival index (rho=0.394, p=0.014). In DM1, multiple linear regression showed that age (p=0.041; ß=0.363), gingival index (p=0.041; ß=0.398), and plaque index (p=0.008; ß=-0.506) were good predictors of IgA levels in saliva. Thus, IgA was the only researched immunoglobulin that was directly associated with plaque and gingival indices in Brazilian children with DM1, but not in control subjects.


Subject(s)
Dental Plaque Index , Diabetes Mellitus, Type 1 , Immunoglobulin A , Periodontal Index , Saliva , Humans , Diabetes Mellitus, Type 1/immunology , Male , Female , Saliva/chemistry , Saliva/immunology , Cross-Sectional Studies , Child , Brazil/epidemiology , Case-Control Studies , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Statistics, Nonparametric , Immunoglobulin M/analysis , Reference Values , Enzyme-Linked Immunosorbent Assay , Adolescent , Linear Models , Age Factors , Immunoglobulins/analysis
5.
Medicine (Baltimore) ; 103(19): e38055, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728465

ABSTRACT

Multiple studies have indicated a potential correlation between immune-mediated inflammatory diseases (IMIDs) and Frozen shoulder (FS). To explore the genetic causal relationship between IMIDs and FS using 2-sample Mendelian randomization (MR) analysis. Genome-wide association study (GWAS) summary data for FS were obtained from Green's study, while data for 10 IMIDs were sourced from the FinnGen Consortium. The MR analysis was performed using inverse variance weighting, MR Egger, and weighted median methods. IVW, as the primary MR analysis technique, was complemented with other sensitivity analyses to validate the robustness of the results. Additionally, reverse MR analysis was further conducted to investigate the presence of reverse causal relationships. In the forward MR analysis, genetically determined 4 IMIDs are causally associated with FS: rheumatoid arthritis (odds ratio [OR] (95% confidence interval [95% CI]) = 1.05 [1.02-1.09], P < .01); type 1 diabetes (OR [95% CI] = 1.06 [1.03-1.09], P < .01); hypothyroidism (OR [95% CI] = 1.07 [1.01-1.14], P = .02); and Celiac disease (OR [95% CI] = 1.02 [1.01-1.04], P = .01). However, no causal relationship was found between 6 IMIDs (autoimmune hyperthyroidism, Crohn disease, ulcerative colitis, psoriasis, sicca syndrome and systemic lupus erythematosus) and FS. Sensitivity analyses did not detect any heterogeneity or horizontal pleiotropy. In the reverse MR analysis, no causal relationship was observed between FS and IMIDs. In conclusion, this MR study suggests a potential causal relationship between rheumatoid arthritis, type 1 diabetes, hypothyroidism, and Celiac disease in the onset and development of FS. Nevertheless, more basic and clinical research will be needed in the future to support our findings.


Subject(s)
Bursitis , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bursitis/genetics , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genetic Predisposition to Disease , Hypothyroidism/genetics , Polymorphism, Single Nucleotide
6.
Sci Adv ; 10(20): eadn2136, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758799

ABSTRACT

Monocytes are immune regulators implicated in the pathogenesis of type 1 diabetes (T1D), an autoimmune disease that targets insulin-producing pancreatic ß cells. We determined that monocytes of recent onset (RO) T1D patients and their healthy siblings express proinflammatory/cytolytic transcriptomes and hypersecrete cytokines in response to lipopolysaccharide exposure compared to unrelated healthy controls (uHCs). Flow cytometry measured elevated circulating abundances of intermediate monocytes and >2-fold more CD14+CD16+HLADR+KLRD1+PRF1+ NK-like monocytes among patients with ROT1D compared to uHC. The intermediate to nonclassical monocyte ratio among ROT1D patients correlated with the decline in functional ß cell mass during the first 24 months after onset. Among sibling nonprogressors, temporal decreases were measured in the intermediate to nonclassical monocyte ratio and NK-like monocyte abundances; these changes coincided with increases in activated regulatory T cells. In contrast, these monocyte populations exhibited stability among T1D progressors. This study associates heightened monocyte proinflammatory/cytolytic activity with T1D susceptibility and progression and offers insight to the age-dependent decline in T1D susceptibility.


Subject(s)
Diabetes Mellitus, Type 1 , Disease Progression , Monocytes , Humans , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/genetics , Monocytes/metabolism , Monocytes/immunology , Male , Female , Adolescent , Child , Adult , Cytokines/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Young Adult , Case-Control Studies
7.
PLoS One ; 19(5): e0303863, 2024.
Article in English | MEDLINE | ID: mdl-38781241

ABSTRACT

Type 1 diabetes (T1D)-associated hyperglycemia develops, in part, from loss of insulin-secreting beta cells. The degree of glycemic dysregulation and the age at onset of disease can serve as indicators of the aggressiveness of the disease. Tracking blood glucose levels in prediabetic mice may demonstrate the onset of diabetes and, along with animal age, also presage disease severity. In this study, an analysis of blood glucose levels obtained from female NOD mice starting at 4 weeks until diabetes onset was undertaken. New onset diabetic mice were orally vaccinated with a Salmonella-based vaccine towards T1D-associated preproinsulin combined with TGFß and IL10 along with anti-CD3 antibody. Blood glucose levels were obtained before and after development of disease and vaccination. Animals were classified as acute disease if hyperglycemia was confirmed at a young age, while other animals were classified as progressive disease. The effectiveness of the oral T1D vaccine was greater in mice with progressive disease that had less glucose excursion compared to acute disease mice. Overall, the Salmonella-based vaccine reversed disease in 60% of the diabetic mice due, in part, to lessening of islet inflammation, improving residual beta cell health, and promoting tolerance. In summary, the age of disease onset and severity of glucose dysregulation in NOD mice predicted response to vaccine therapy. This suggests a similar disease categorization in the clinic may predict therapeutic response.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 1 , Mice, Inbred NOD , Animals , Female , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/microbiology , Mice , Administration, Oral , Blood Glucose/metabolism , Salmonella Vaccines/immunology , Salmonella Vaccines/administration & dosage , Salmonella/immunology , Insulin/immunology , Disease Progression , Acute Disease , Protein Precursors
8.
PLoS One ; 19(5): e0287877, 2024.
Article in English | MEDLINE | ID: mdl-38787820

ABSTRACT

Type 1 diabetes (T1D) is characterized by HLA class I-mediated presentation of autoantigens on the surface of pancreatic ß-cells. Recognition of these autoantigens by CD8+ T cells results in the destruction of pancreatic ß-cells and, consequently, insulin deficiency. Most epitopes presented at the surface of ß-cells derive from the insulin precursor molecule proinsulin. The intracellular processing pathway(s) involved in the generation of these peptides are poorly defined. In this study, we show that a proinsulin B-chain antigen (PPIB5-14) originates from proinsulin molecules that are processed by ER-associated protein degradation (ERAD) and thus originate from ER-resident proteins. Furthermore, screening genes encoding for E2 ubiquitin conjugating enzymes, we identified UBE2G2 to be involved in proinsulin degradation and subsequent presentation of the PPIB10-18 autoantigen. These insights into the pathway involved in the generation of insulin-derived peptides emphasize the importance of proinsulin processing in the ER to T1D pathogenesis and identify novel targets for future T1D therapies.


Subject(s)
Autoantigens , Endoplasmic Reticulum-Associated Degradation , Proinsulin , Proteolysis , Ubiquitin-Conjugating Enzymes , Proinsulin/metabolism , Proinsulin/immunology , Proinsulin/genetics , Autoantigens/metabolism , Autoantigens/immunology , Humans , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Antigen Presentation/immunology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/immunology
9.
Front Endocrinol (Lausanne) ; 15: 1377322, 2024.
Article in English | MEDLINE | ID: mdl-38800484

ABSTRACT

Type 1 diabetes (T1D) is an organ-specific autoimmune disease caused by pancreatic ß cell destruction and mediated primarily by autoreactive CD8+ T cells. It has been shown that only a small number of stem cell-like ß cell-specific CD8+ T cells are needed to convert normal mice into T1D mice; thus, it is likely that T1D can be cured or significantly improved by modulating or altering self-reactive CD8+ T cells. However, stem cell-type, effector and exhausted CD8+ T cells play intricate and important roles in T1D. The highly diverse T-cell receptors (TCRs) also make precise and stable targeted therapy more difficult. Therefore, this review will investigate the mechanisms of autoimmune CD8+ T cells and TCRs in T1D, as well as the related single-cell RNA sequencing (ScRNA-Seq), CRISPR/Cas9, chimeric antigen receptor T-cell (CAR-T) and T-cell receptor-gene engineered T cells (TCR-T), for a detailed and clear overview. This review highlights that targeting CD8+ T cells and their TCRs may be a potential strategy for predicting or treating T1D.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Receptors, Antigen, T-Cell , Single-Cell Analysis , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/genetics , CD8-Positive T-Lymphocytes/immunology , Humans , Animals , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Insulin-Secreting Cells/immunology , Insulin-Secreting Cells/metabolism , Autoimmunity , Mice
10.
Expert Rev Endocrinol Metab ; 19(3): 217-227, 2024 May.
Article in English | MEDLINE | ID: mdl-38693782

ABSTRACT

INTRODUCTION: Type 1 diabetes (T1D) mellitus is an autoimmune disease in which immune cells, predominantly effector T cells, destroy insulin-secreting beta-cells. Beta-cell destruction led to various consequences ranging from retinopathy and nephropathy to neuropathy. Different strategies have been developed to achieve normoglycemia, including exogenous glucose compensation, whole pancreas transplantation, islet transplantation, and beta-cell replacement. AREAS COVERED: The last two decades of experience have shown that indigenous glucose compensation through beta-cell regeneration and protection is a peerless method for T1D therapy. Tremendous studies have tried to find an unlimited source for beta-cell regeneration, on the one hand, and beta-cell protection against immune attack, on the other hand. Recent advances in stem cell technology, gene editing methods, and immune modulation approaches provide a unique opportunity for both beta-cell regeneration and protection. EXPERT OPINION: Pluripotent stem cell differentiation into the beta-cell is considered an unlimited source for beta-cell regeneration. Devising engineered pancreas-specific regulatory T cells using Chimeric Antigen Receptor (CAR) technology potentiates an effective immune tolerance induction for beta-cell protection. Beta-cell regeneration using pluripotent stem cells and beta-cell protection using pancreas-specific engineered regulatory T cells promises to develop a curative protocol in T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Islets of Langerhans Transplantation , Regeneration , Humans , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/physiology , Islets of Langerhans Transplantation/methods , Animals , Pluripotent Stem Cells , Pancreas Transplantation/methods
11.
J Exp Med ; 221(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38634869

ABSTRACT

We previously reported two siblings with inherited PD-1 deficiency who died from autoimmune pneumonitis at 3 and 11 years of age after developing other autoimmune manifestations, including type 1 diabetes (T1D). We report here two siblings, aged 10 and 11 years, with neonatal-onset T1D (diagnosed at the ages of 1 day and 7 wk), who are homozygous for a splice-site variant of CD274 (encoding PD-L1). This variant results in the exclusive expression of an alternative, loss-of-function PD-L1 protein isoform in overexpression experiments and in the patients' primary leukocytes. Surprisingly, cytometric immunophenotyping and single-cell RNA sequencing analysis on blood leukocytes showed largely normal development and transcriptional profiles across lymphoid and myeloid subsets in the PD-L1-deficient siblings, contrasting with the extensive dysregulation of both lymphoid and myeloid leukocyte compartments in PD-1 deficiency. Our findings suggest that PD-1 and PD-L1 are essential for preventing early-onset T1D but that, unlike PD-1 deficiency, PD-L1 deficiency does not lead to fatal autoimmunity with extensive leukocytic dysregulation.


Subject(s)
B7-H1 Antigen , Diabetes Mellitus, Type 1 , Child , Child, Preschool , Humans , Infant, Newborn , Autoimmunity , B7-H1 Antigen/deficiency , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Homozygote , Programmed Cell Death 1 Receptor/deficiency , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology
12.
Int Immunopharmacol ; 133: 112166, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38678673

ABSTRACT

Dendritic cells (DCs) are specialized antigen-presenting cells that play an important role in inducing and maintaining immune tolerance. The altered distribution and/or function of DCs contributes to defective tolerance in autoimmune diseases such as type 1 diabetes (T1D). In human T1D and in NOD mouse models, DCs share some defects and are often described as less tolerogenic and excessively immunogenic. In the NOD mouse model, the autoimmune response is associated with a defect in the Stat5b signaling pathway. We have reported that expressing a constitutively active form of Stat5b in DCs of transgenic NOD mice (NOD.Stat5b-CA), re-established their tolerogenic function, restored autoimmune tolerance and conferred protection from diabetes. However, the role and molecular mechanisms of Stat5b signaling in regulating splenic conventional DCs tolerogenic signature remained unclear. In this study, we reported that, compared to immunogenic splenic DCs of NOD, splenic DCs of NOD.Stat5b-CA mice exhibited a tolerogenic profile marked by elevated PD-L1 and PD-L2 expression, reduced pro-inflammatory cytokine production, increased frequency of the cDC2 subset and decreased frequency of the cDC1 subset. This tolerogenic profile was associated with increased Ezh2 and IRF4 but decreased IRF8 expression. We also found an upregulation of PD-L1 in the cDC1 subset and high PD-L1 and PD-L2 expression in cDC2 of NOD.Stat5b-CA mice. Mechanistically, we demonstrated that Ezh2 plays an important role in the maintenance of high PD-L1 expression in cDC1 and cDC2 subsets and that Ezh2 inhibition resulted in PD-L1 but not PD-L2 downregulation which was more drastic in the cDC2 subset. Additionally, Ezh2 inhibition severely reduced the cDC2 subset and increased the cDC1 subset and Stat5b-CA.DC pro-inflammatory cytokine production. Together our data suggest that the Stat5b-Ezh2 axis is critical for the maintenance of tolerogenic high PD-L1-expressing cDC2 and autoimmune tolerance in NOD.Stat5b-CA mice.


Subject(s)
B7-H1 Antigen , Dendritic Cells , Diabetes Mellitus, Type 1 , Enhancer of Zeste Homolog 2 Protein , Immune Tolerance , Mice, Inbred NOD , STAT5 Transcription Factor , Animals , Dendritic Cells/immunology , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , STAT5 Transcription Factor/metabolism , STAT5 Transcription Factor/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Enhancer of Zeste Homolog 2 Protein/genetics , Diabetes Mellitus, Type 1/immunology , Mice , Humans , Signal Transduction , Female , Mice, Transgenic , Cytokines/metabolism , Cells, Cultured
13.
Genes (Basel) ; 15(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38674328

ABSTRACT

Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.


Subject(s)
Signal Transduction , Humans , Signal Transduction/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Oligonucleotide Array Sequence Analysis/methods , Gene Regulatory Networks , Immune System/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/immunology , Gene Expression Profiling/methods
15.
Cell Rep Med ; 5(5): 101535, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38677282

ABSTRACT

Type 1 diabetes (T1D) is a chronic condition in which beta cells are destroyed by immune cells. Despite progress in immunotherapies that could delay T1D onset, early detection of autoimmunity remains challenging. Here, we evaluate the utility of machine learning for early prediction of T1D using single-cell analysis of islets. Using gradient-boosting algorithms, we model changes in gene expression of single cells from pancreatic tissues in T1D and non-diabetic organ donors. We assess if mathematical modeling could predict the likelihood of T1D development in non-diabetic autoantibody-positive donors. While most autoantibody-positive donors are predicted to be non-diabetic, select donors with unique gene signatures are classified as T1D. Our strategy also reveals a shared gene signature in distinct T1D-associated models across cell types, suggesting a common effect of the disease on transcriptional outputs of these cells. Our study establishes a precedent for using machine learning in early detection of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Disease Progression , Islets of Langerhans , Machine Learning , Single-Cell Analysis , Transcriptome , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/pathology , Single-Cell Analysis/methods , Islets of Langerhans/metabolism , Islets of Langerhans/immunology , Transcriptome/genetics , Autoantibodies/immunology , Gene Expression Profiling/methods , Male , Female , Insulin-Secreting Cells/metabolism , Adult
16.
J Immunol ; 212(11): 1658-1669, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38587315

ABSTRACT

Chronic destruction of insulin-producing pancreatic ß cells by T cells results in autoimmune diabetes. Similar to other chronic T cell-mediated pathologies, a role for T cell exhaustion has been identified in diabetes in humans and NOD mice. The development and differentiation of exhausted T cells depends on exposure to Ag. In this study, we manipulated ß cell Ag presentation to target exhausted autoreactive T cells by inhibiting IFN-γ-mediated MHC class I upregulation or by ectopically expressing the ß cell Ag IGRP under the MHC class II promotor in the NOD8.3 model. Islet PD-1+TIM3+CD8+ (terminally exhausted [TEX]) cells were primary producers of islet granzyme B and CD107a, suggestive of cells that have entered the exhaustion program yet maintained cytotoxic capacity. Loss of IFN-γ-mediated ß cell MHC class I upregulation correlated with a significant reduction in islet TEX cells and diabetes protection in NOD8.3 mice. In NOD.TII/8.3 mice with IGRP expression induced in APCs, IGRP-reactive T cells remained exposed to high levels of IGRP in the islets and periphery. Consequently, functionally exhausted TEX cells, with reduced granzyme B expression, were significantly increased in these mice and this correlated with diabetes protection. These results indicate that intermediate Ag exposure in wild-type NOD8.3 islets allows T cells to enter the exhaustion program without becoming functionally exhausted. Moreover, Ag exposure can be manipulated to target this key cytotoxic population either by limiting the generation of cytotoxic TIM3+ cells or by driving their functional exhaustion, with both resulting in diabetes protection.


Subject(s)
CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Mice, Inbred NOD , Animals , Mice , CD8-Positive T-Lymphocytes/immunology , Insulin-Secreting Cells/immunology , Diabetes Mellitus, Type 1/immunology , Granzymes/metabolism , Interferon-gamma/immunology , Interferon-gamma/metabolism , Antigen Presentation/immunology , Female
17.
Diabetes Care ; 47(6): 1048-1055, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621411

ABSTRACT

OBJECTIVE: Mixed-meal tolerance test-stimulated area under the curve (AUC) C-peptide at 12-24 months represents the primary end point for nearly all intervention trials seeking to preserve ß-cell function in recent-onset type 1 diabetes. We hypothesized that participant benefit might be detected earlier and predict outcomes at 12 months posttherapy. Such findings would support shorter trials to establish initial efficacy. RESEARCH DESIGN AND METHODS: We examined data from six Type 1 Diabetes TrialNet immunotherapy randomized controlled trials in a post hoc analysis and included additional stimulated metabolic indices beyond C-peptide AUC. We partitioned the analysis into successful and unsuccessful trials and analyzed the data both in the aggregate as well as individually for each trial. RESULTS: Among trials meeting their primary end point, we identified a treatment effect at 3 and 6 months when using C-peptide AUC (P = 0.030 and P < 0.001, respectively) as a dynamic measure (i.e., change from baseline). Importantly, no such difference was seen in the unsuccessful trials. The use of C-peptide AUC as a 6-month dynamic measure not only detected treatment efficacy but also suggested long-term C-peptide preservation (R2 for 12-month C-peptide AUC adjusted for age and baseline value was 0.80, P < 0.001), and this finding supported the concept of smaller trial sizes down to 54 participants. CONCLUSIONS: Early dynamic measures can identify a treatment effect among successful immune therapies in type 1 diabetes trials with good long-term prediction and practical sample size over a 6-month period. While external validation of these findings is required, strong rationale and data exist in support of shortening early-phase clinical trials.


Subject(s)
C-Peptide , Diabetes Mellitus, Type 1 , Immunotherapy , Diabetes Mellitus, Type 1/therapy , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/immunology , Humans , C-Peptide/blood , C-Peptide/metabolism , Immunotherapy/methods , Female , Male , Adolescent , Treatment Outcome , Randomized Controlled Trials as Topic , Child , Adult , Area Under Curve
18.
Biomed Pharmacother ; 175: 116622, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653114

ABSTRACT

BACKGROUND: Type 1 diabetes (T1D) is a challenging autoimmune disease, characterized by an immune system assault on insulin-producing ß-cells. As insulin facilitates glucose absorption into cells and tissues, ß-cell deficiency leads to elevated blood glucose levels on one hand and target-tissues starvation on the other. Despite efforts to halt ß-cell destruction and stimulate recovery, success has been limited. Our recent investigations identified Protease-Activated Receptor 2 (Par2) as a promising target in the battle against autoimmunity. We discovered that Par2 activation's effects depend on its initial activation site: exacerbating the disease within the immune system but fostering regeneration in affected tissue. METHODS: We utilized tissue-specific Par2 knockout mice strains with targeted Par2 mutations in ß-cells, lymphocytes, and the eye retina (as a control) in the NOD autoimmune diabetes model, examining T1D onset and ß-cell survival. RESULTS: We discovered that Par2 expression within the immune system accelerates autoimmune processes, while its presence in ß-cells offers protection against ß-cell destruction and T1D onset. This suggests a dual-strategy treatment for T1D: inhibiting Par2 in the immune system while activating it in ß-cells, offering a promising strategy for T1D. CONCLUSIONS: This study highlights Par2's potential as a drug target for autoimmune diseases, particularly T1D. Our results pave the way for precision medicine approaches in treating autoimmune conditions through targeted Par2 modulation.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Mice, Inbred NOD , Mice, Knockout , Receptor, PAR-2 , Receptor, PAR-2/metabolism , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/prevention & control , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/drug effects , Mice , Mice, Inbred C57BL , Autoimmunity , Female
19.
Front Immunol ; 15: 1375177, 2024.
Article in English | MEDLINE | ID: mdl-38650946

ABSTRACT

Human allogeneic pancreatic islet transplantation is a life-changing treatment for patients with severe Type 1 Diabetes (T1D) who suffer from hypoglycemia unawareness and high risk of severe hypoglycemia. However, intensive immunosuppression is required to prevent immune rejection of the graft, that may in turn lead to undesirable side effects such as toxicity to the islet cells, kidney toxicity, occurrence of opportunistic infections, and malignancies. The shortage of cadaveric human islet donors further limits islet transplantation as a treatment option for widespread adoption. Alternatively, porcine islets have been considered as another source of insulin-secreting cells for transplantation in T1D patients, though xeno-transplants raise concerns over the risk of endogenous retrovirus transmission and immunological incompatibility. As a result, technological advancements have been made to protect transplanted islets from immune rejection and inflammation, ideally in the absence of chronic immunosuppression, to improve the outcomes and accessibility of allogeneic islet cell replacement therapies. These include the use of microencapsulation or macroencapsulation devices designed to provide an immunoprotective environment using a cell-impermeable layer, preventing immune cell attack of the transplanted cells. Other up and coming advancements are based on the use of stem cells as the starting source material for generating islet cells 'on-demand'. These starting stem cell sources include human induced pluripotent stem cells (hiPSCs) that have been genetically engineered to avoid the host immune response, curated HLA-selected donor hiPSCs that can be matched with recipients within a given population, and multipotent stem cells with natural immune privilege properties. These strategies are developed to provide an immune-evasive cell resource for allogeneic cell therapy. This review will summarize the immunological challenges facing islet transplantation and highlight recent bio-engineering and cell-based approaches aimed at avoiding immune rejection, to improve the accessibility of islet cell therapy and enhance treatment outcomes. Better understanding of the different approaches and their limitations can guide future research endeavors towards developing more comprehensive and targeted strategies for creating a more tolerogenic microenvironment, and improve the effectiveness and sustainability of islet transplantation to benefit more patients.


Subject(s)
Diabetes Mellitus, Type 1 , Graft Rejection , Islets of Langerhans Transplantation , Islets of Langerhans Transplantation/methods , Humans , Animals , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/therapy , Graft Rejection/immunology , Graft Rejection/prevention & control , Biomedical Engineering/methods , Islets of Langerhans/immunology
20.
Immunol Lett ; 267: 106857, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604551

ABSTRACT

To control immune responses, regulatory CD4+CD25+Foxp3+ T cells (Treg) maintain their wide and diverse repertoire through continuous arrival of recent thymic emigrants (RTE). However, during puberty, the activity of RTE starts to decline as a natural process of thymic involution, introducing consequences, not completely described, to the repertoire. Type 1 diabetes (T1D) patients show quantitative and qualitative impairments on the Treg cells. Our aim was to evaluate peripheral Treg and RTE cell frequencies, in T1D patients from two distinct age groups (young and adults) and verify if HLA phenotypes are concomitant associated. To this, blood samples from Brazilian twenty established T1D patients (12 young and 8 adults) and twenty-one healthy controls (11 young and 10 adults) were analyzed, by flow cytometry, to verify the percentages of CD4, Treg (CD4+CD25+Foxp3+) and the subsets of CD45RA+ (naive) and CD31+(RTE) within then. Furthermore, the HLA typing was also set. We observed that the young established T1D patients feature decreased frequencies in total Treg cells and naive RTE within Treg cells. Significant prevalence of HLA alleles, associated with risk, in T1D patients, was also identified. Performing a multivariate analysis, we confirmed that the cellular changes described offers significant variables that distinct T1D patients from the controls. Our data collectively highlight relevant aspects about homeostasis imbalances in the Treg cells of T1D patients, especially in young, and disease prognosis; that might contribute for future therapeutic strategies involving Treg cells manipulation.


Subject(s)
Diabetes Mellitus, Type 1 , Forkhead Transcription Factors , Interleukin-2 Receptor alpha Subunit , T-Lymphocytes, Regulatory , Thymus Gland , Humans , Diabetes Mellitus, Type 1/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Adult , Brazil , Male , Female , Forkhead Transcription Factors/metabolism , Thymus Gland/immunology , Interleukin-2 Receptor alpha Subunit/metabolism , Young Adult , Adolescent , Immunophenotyping , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Child
SELECTION OF CITATIONS
SEARCH DETAIL
...