Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.651
Filter
1.
BMC Prim Care ; 25(1): 197, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834994

ABSTRACT

BACKGROUND: Many patients with diabetic kidney disease (DKD) do not receive evidence-based, guideline-recommended treatment shown to reduce DKD progression and complications. Proactive electronic consultations (e-consults) are an emerging intervention strategy that could potentially allow nephrologists to provide timely and evidence-based guidance to primary care providers (PCPs) engaged in early DKD care. METHODS: The objective of this study was to explore perspectives about potential barriers and facilitators associated with a proactive e-consult program to improve DKD care delivery. We conducted semi-structured qualitative interviews with PCPs across three different health systems. Interview transcripts were reviewed in a rapid qualitative analysis approach to iteratively identify, refine, and achieve consensus on a final list of themes and subthemes. RESULTS: A total of 18 interviews were conducted. PCPs across all sites identified similar challenges to delivering guideline-recommended DKD care. PCPs were supportive of the proactive e-consult concept. Three major themes emerged surrounding (1) perceived potential benefits of proactive e-consults, including educational value and improved specialist access; (2) concerns about the proactive nature of e-consults, including the potential to increase PCP workload and the possibility that e-consults could be seen as documenting substandard care; and (3) leveraging of care teams to facilitate recommended DKD care, such as engaging clinic-based pharmacists to implement specialist recommendations from e-consults. CONCLUSION: In this pre-implementation qualitative study, PCPs noted potential benefits and identified concerns and implementation barriers for proactive e-consults for DKD care. Strategies that emerged for promoting successful implementation included involving clinic support staff to enact e-consult recommendations and framing e-consults as a system improvement effort to avoid judgmental associations.


Subject(s)
Attitude of Health Personnel , Diabetic Nephropathies , Physicians, Primary Care , Qualitative Research , Humans , Diabetic Nephropathies/therapy , Male , Female , Nephrology , Primary Health Care , Interviews as Topic , Remote Consultation
2.
Carbohydr Polym ; 339: 122275, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823933

ABSTRACT

Diabetic kidney disease (DKD) is the main cause of end-stage renal disease, and few therapeutic options are available. The root of Achyranthis bidentatae (AB) is commonly used for DKD treatment in Traditional Chinese medicine. However, its mechanisms are still unclear. Here, a graminan type fructan ABPW1 with molecular weight of 3998 Da was purified from AB. It was composed of ß-1,2-linked Fruf, ß-2,6-linked-Fruf and ß-1,2,6-linked-Fruf backbone, and terminated with T-Glcp and 2-Fruf residues. ABPW1 protected against kidney injuries and intestinal barrier disruption in Streptozotocin (STZ)/High fat diet (HFD) mice. It could modulate gut microbiota composition, evidenced by a rise in the abundance of Bacteroide and decreases of Rikenella, Alistipes, Laedolimicola and Faecalibaculum. ABPW1 intervention promoted short chain fatty acids (SCFAs) production in STZ/HFD mice, especially propionate and isobutyric acid. Antibiotic treatment further demonstrated the key role of gut microbiota in the renal protective action of ABPW1. In addition, in vitro simulated digestion and fermentation together with in vivo fluorescent labeling studies demonstrated ABPW1 was indigestible in upper digestive tract but could reach the colon and be degraded into SCFAs by gut microbiota there. Overall, these data suggested ABPW1 has the potential application on DKD prevention.


Subject(s)
Achyranthes , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Fructans , Gastrointestinal Microbiome , Animals , Gastrointestinal Microbiome/drug effects , Achyranthes/chemistry , Mice , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/prevention & control , Male , Fructans/pharmacology , Fructans/chemistry , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Streptozocin , Kidney/drug effects , Kidney/pathology , Fatty Acids, Volatile/metabolism
3.
Sci Rep ; 14(1): 13068, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38844495

ABSTRACT

Diabetic nephropathy represents one of the main long-term complications in T2DM patients. Cigarette smoking represents one of modifiable renal risk factors to kidney damage due to lead (Pb) exposure in these patients. Our goal is to investigate serum copeptin and Kidney injury molecule-1 (KIM-1) and urinary lead (UPb) in type 2 diabetes mellitus (T2DM) patients even smokers and non-smokers groups and compared to corresponding health controls and assess its associations with Angiotensin-Converting enzyme Insertion/Deletion polymorphism [ACE (I/D)] polymorphism in diabetic nephropathy progression in those patients. In present study, 106 T2DM patients and 102 healthy control individuals were enrolled. Serum glucose, copeptin, KIM-1, total cholesterol (TChol), triglycerides (TG), estimated glomerular filtration rate (eGFR) and UPb levels and ACE (I/D) polymorphisms were assessed in both groups. Results mentioned to significant variations in all parameters compared to in T2DM group compared to control group. Serum copeptin and UPb demonstrated significant difference in diabetic smokers (DS) and diabetic non-smokers (DNS) groups while KIM-1 exhibited significant change between DNS and healthy control non-smokers (CNS) groups. Positive relation was recorded between serum glucose and KIM-1 while negative one was found between serum copeptin and TChol. D allele was associated with significant variation in most parameters in T2DM, especially insertion/deletion (ID) polymorphism. ROC curve analysis (AUC) for serum copeptin was 0.8, p < 0.044 and for Kim-1 was 0.54, p = 0.13 while for uPb was 0.71, p < 0.033. Serum copeptin and UPb might be a prognostic biomarker for renal function decline in smoker T2DM patients while KIM-1 was potent marker in non-smoker T2DM with association with D allele of ACE I/D gene polymorphism.


Subject(s)
Diabetes Mellitus, Type 2 , Glycopeptides , Hepatitis A Virus Cellular Receptor 1 , Peptidyl-Dipeptidase A , Polymorphism, Genetic , Humans , Male , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/blood , Female , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/complications , Glycopeptides/blood , Middle Aged , Hepatitis A Virus Cellular Receptor 1/genetics , Diabetic Nephropathies/blood , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , INDEL Mutation , Smokers , Case-Control Studies , Adult , Genetic Predisposition to Disease , Glomerular Filtration Rate , Biomarkers/blood , ROC Curve
4.
Mol Med ; 30(1): 78, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844873

ABSTRACT

BACKGROUND: Diabetic nephropathy (DN) is a life-threatening renal disease and needs urgent therapies. Wogonin is renoprotective in DN. This study aimed to explore the mechanism of how wogonin regulated high glucose (HG)-induced renal cell injury. METHODS: Diabetic mice (db/db), control db/m mice, and normal glucose (NG)- or HG-treated human tubule epithelial cells (HK-2) were used to evaluate the levels of suppressor of cytokine signaling 3 (SOCS3), Toll-like receptor 4 (TLR4), inflammation and fibrosis. Lentivirus was used to regulate SOCS3 and TLR4 expressions. After oral gavage of wogonin (10 mg/kg) or vehicle in db/db mice, histological morphologies, blood glucose, urinary protein, serum creatinine values (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD), glutathione (GSH), and reactive oxygen species (ROS) were assessed. RT-qPCR and Western blot evaluated inflammation and fibrosis-related molecules. RESULTS: HG exposure induced high blood glucose, severe renal injuries, high serumal Src and BUN, low SOD and GSH, and increased ROS. HG downregulated SOCS3 but upregulated TLR4 and JAK/STAT, fibrosis, and inflammasome-related proteins. Wogonin alleviated HG-induced renal injuries by decreasing cytokines, ROS, Src, and MDA and increasing SOD and GSH. Meanwhile, wogonin upregulated SOCS3 and downregulated TLR4 under HG conditions. Wogonin-induced SOCS3 overexpression directly decreased TLR4 levels and attenuated JAK/STAT signaling pathway-related inflammation and fibrosis, but SOCS3 knockdown significantly antagonized the protective effects of wogonin. However, TLR4 knockdown diminished SOCS3 knockdown-induced renal injuries. CONCLUSION: Wogonin attenuates renal inflammation and fibrosis by upregulating SOCS3 to inhibit TLR4 and JAK/STAT pathway.


Subject(s)
Diabetic Nephropathies , Flavanones , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Toll-Like Receptor 4 , Flavanones/pharmacology , Flavanones/therapeutic use , Toll-Like Receptor 4/metabolism , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/etiology , Animals , Signal Transduction/drug effects , Mice , Humans , Male , Janus Kinases/metabolism , STAT Transcription Factors/metabolism , Cell Line , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Disease Models, Animal
5.
Front Endocrinol (Lausanne) ; 15: 1384953, 2024.
Article in English | MEDLINE | ID: mdl-38836233

ABSTRACT

Background: Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective: Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods: Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results: The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion: Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , NAD , Animals , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , NAD/metabolism , Humans , Mice , Diabetes Mellitus, Experimental/metabolism , Male , Mice, Inbred C57BL , Disease Models, Animal , Kidney/metabolism , Kidney/pathology
6.
Ren Fail ; 46(2): 2359033, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38836372

ABSTRACT

OBJECTIVE: To determine the efficacy and safety of Astragalus combined with renin-angiotensin-aldosterone system (RAAS) blockers in treating stage III diabetic nephropathy (DN) by meta-analysis. METHODS: PubMed, Embase, Cochrane Library, Wiley, and Web of Science databases were searched for articles published between August 2007 and August 2022. Clinical studies on Astragalus combined with RAAS blockers for the treatment of stage III DN were included. Meta-analysis was performed by RevMan 5.1 and Stata 14.3 software. RESULTS: A total of 32 papers were included in this meta-analysis, containing 2462 patients from randomized controlled trials, with 1244 receiving the combination treatment and 1218 solely receiving RAAS blockers. Astragalus combined with RAAS blockers yielded a significantly higher total effective rate (TER) (mean difference [MD] 3.63, 95% confidence interval [CI] 2.59-5.09) and significantly reduced urinary protein excretion rate (UPER), serum creatinine (Scr), blood urine nitrogen (BUN) and glycosylated hemoglobin (HbAlc) levels. In subgroup analysis, combining astragalus and angiotensin receptor blocker significantly lowered fasting plasma glucose (FPG) and 24 h urinary protein (24hUTP) levels, compared with the combined astragalus and angiotensin-converting enzyme inhibitor treatment. Meanwhile, the latter significantly decreased the urinary microprotein (ß2-MG). Importantly, the sensitivity analysis confirmed the study's stability, and publication bias was not detected for UPER, BUN, HbAlc, FPG, or ß2-MG. However, the TER, SCr, and 24hUTP results suggested possible publication bias. CONCLUSIONS: The astragalus-RAAS blocker combination treatment is safe and improves outcomes; however, rigorous randomized, large-scale, multi-center, double-blind trials are needed to evaluate its efficacy and safety in stage III DN.


Renin-angiotensin-aldosterone system (RAAS) inhibitors are commonly used to treat diabetic neuropathy (DN) and Astragalus membranaceus components are known to improve DN symptoms.We aimed to establish the efficacy and safety of using Astragalus combined with RAAS inhibitors.Astragalus combined with RAAS inhibitors enhances the total effective rate of diabetic neuropathy response to treatment and reduces urinary protein excretion rate, serum creatinine, blood urea nitrogen and HbAlc.Sensitivity analysis affirms study stability, while publication bias was detected for total effective rate, serum creatinine, and 24 h urinary protein levels.


Subject(s)
Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Diabetic Nephropathies , Drug Therapy, Combination , Renin-Angiotensin System , Humans , Diabetic Nephropathies/drug therapy , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Renin-Angiotensin System/drug effects , Angiotensin Receptor Antagonists/therapeutic use , Astragalus Plant , Randomized Controlled Trials as Topic , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/administration & dosage , Treatment Outcome , Creatinine/blood , Glycated Hemoglobin , Proteinuria/drug therapy
7.
J Cell Mol Med ; 28(11): e18364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38837668

ABSTRACT

Diabetic kidney disease (DKD) is a leading cause of end stage renal disease with unmet clinical demands for treatment. Lipids are essential for cell survival; however, renal cells have limited capability to metabolize overloaded lipids. Dyslipidaemia is common in DKD patients and renal ectopic lipid accumulation is associated with disease progression. Unveiling the molecular mechanism involved in renal lipid regulation is crucial for exploring potential therapeutic targets. In this review, we focused on the mechanism underlying cholesterol, oxysterol and fatty acid metabolism disorder in the context of DKD. Specific regulators of lipid accumulation in different kidney compartment and TREM2 macrophages, a lipid-related macrophages in DKD, were discussed. The role of sodium-glucose transporter 2 inhibitors in improving renal lipid accumulation was summarized.


Subject(s)
Diabetic Nephropathies , Kidney , Lipid Metabolism , Humans , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Kidney/metabolism , Kidney/pathology , Macrophages/metabolism , Cholesterol/metabolism , Fatty Acids/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Oxysterols/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
8.
BMC Med Genomics ; 17(1): 152, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831322

ABSTRACT

OBJECTIVE: To investigate the role of BTG2 in periodontitis and diabetic kidney disease (DKD) and its potential underlying mechanism. METHODS: Gene expression data for periodontitis and DKD were acquired from the Gene Expression Omnibus (GEO) database. Differential expression analysis identified co-expressed genes between these conditions. The Nephroseq V5 online nephropathy database validated the role of these genes in DKD. Pearson correlation analysis identified genes associated with our target gene. We employed Gene Set Enrichment Analysis (GSEA) and Protein-Protein Interaction (PPI) networks to elucidate potential mechanisms. Expression levels of BTG2 mRNA were examined using quantitative polymerase Chain Reaction (qPCR) and immunofluorescence assays. Western blotting quantified proteins involved in epithelial-to-mesenchymal transition (EMT), apoptosis, mTORC1 signaling, and autophagy. Additionally, wound healing and flow cytometric apoptosis assays evaluated podocyte migration and apoptosis, respectively. RESULTS: Analysis of GEO database data revealed BTG2 as a commonly differentially expressed gene in both DKD and periodontitis. BTG2 expression was reduced in DKD compared to normal conditions and correlated with proteinuria. GSEA indicated enrichment of BTG2 in the EMT and mTORC1 signaling pathways. The PPI network highlighted BTG2's relevance to S100A9, S100A12, and FPR1. Immunofluorescence assays demonstrated significantly lower BTG2 expression in podocytes under high glucose (HG) conditions. Reduced BTG2 expression in HG-treated podocytes led to increased levels of EMT markers (α-SMA, vimentin) and the apoptotic protein Bim, alongside a decrease in nephrin. Lower BTG2 levels were associated with increased podocyte mobility and apoptosis, as well as elevated RPS6KB1 and mTOR levels, but reduced autophagy marker LC3. CONCLUSION: Our findings suggest that BTG2 is a crucial intermediary gene linking DKD and periodontitis. Modulating autophagy via inhibition of the mTORC1 signaling pathway, and consequently suppressing EMT, may be pivotal in the interplay between periodontitis and DKD.


Subject(s)
Apoptosis , Diabetic Nephropathies , Epithelial-Mesenchymal Transition , Periodontitis , Tumor Suppressor Proteins , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/pathology , Humans , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , Podocytes/metabolism , Podocytes/pathology , Signal Transduction , Autophagy , Protein Interaction Maps , Mechanistic Target of Rapamycin Complex 1/metabolism , Cell Movement
9.
BMC Med ; 22(1): 224, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831391

ABSTRACT

BACKGROUND: Type 2 diabetes is associated with a variety of complications, including micro- and macrovascular complications, neurological manifestations and poor wound healing. Adhering to a Mediterranean Diet (MED) is generally considered an effective intervention in individuals at risk for type 2 diabetes mellitus (T2DM). However, little is known about its effect with respect to the different specific manifestations of T2DM. This prompted us to explore the effect of MED on the three most significant microvascular complications of T2DM: diabetic retinopathy (DR), diabetic kidney disease (DKD), and vascular diabetic neuropathies (DN). METHODS: We examined the association between the MED and the incidence of these microvascular complications in a prospective cohort of 33,441 participants with hyperglycemia free of microvascular complications at baseline, identified in the UK Biobank. For each individual, we calculated the Alternate Mediterranean Diet (AMED) score, which yields a semi-continuous measure of the extent to which an individual's diet can be considered as MED. We used Cox proportional hazard models to analyze hazard ratios (HRs) and 95% confidence intervals (CIs), adjusting for demographics, lifestyle factors, medical histories and cardiovascular risk factors. RESULTS: Over a median of 12.3 years of follow-up, 3,392 cases of microvascular complications occurred, including 1,084 cases of diabetic retinopathy (DR), 2,184 cases of diabetic kidney disease (DKD), and 632 cases of diabetic neuropathies (DN), with some patients having 2 or 3 microvascular complications simultaneously. After adjusting for confounders, we observed that higher AMED scores offer protection against DKD among participants with hyperglycemia (comparing the highest AMED scores to the lowest yielded an HR of 0.79 [95% CIs: 0.67, 0.94]). Additionally, the protective effect of AMED against DKD was more evident in the hyperglycemic participants with T2DM (HR, 0.64; 95% CI: 0.50, 0.83). No such effect, however, was seen for DR or DN. CONCLUSIONS: In this prospective cohort study, we have demonstrated that higher adherence to a MED is associated with a reduced risk of DKD among individuals with hyperglycemia. Our study emphasizes the necessity for continued research focusing on the benefits of the MED. Such efforts including the ongoing clinical trial will offer further insights into the role of MED in the clinical management of DKD.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diet, Mediterranean , Hyperglycemia , Humans , Prospective Studies , Male , Female , Middle Aged , Diabetic Nephropathies/diet therapy , Diabetic Nephropathies/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/diet therapy , Aged , Hyperglycemia/epidemiology , Hyperglycemia/complications , Adult , United Kingdom/epidemiology , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/diet therapy , Incidence , Diabetic Neuropathies/epidemiology , Diabetic Neuropathies/diet therapy , Risk Factors
10.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832484

ABSTRACT

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Subject(s)
Computational Biology , Diabetic Nephropathies , Membrane Proteins , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Humans , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line , Palmitic Acid/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Male , Mice, Inbred C57BL , Up-Regulation , Biomarkers/metabolism
11.
Ren Fail ; 46(2): 2357746, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832498

ABSTRACT

Numerous studies have revealed a correlation between the risk of developing diabetic nephropathy (DN) and the gut microbiota (GM) composition. However, it remains uncertain whether the GM composition causes DN. We aimed to explore any potential causal links between the GM composition and the risk of developing DN. A meta-analysis conducted by the MiBioGen consortium of the largest genome-wide association study (GWAS) provided aggregated data on the GM. DN data were obtained from the IEU database. The inverse-variance weighting (IVW) method was employed as the primary analytical approach. The IVW analysis indicated that genus Dialister (OR = 0.51, 95% CI: 0.34-0.77, p = 0.00118) was protective against DN. In addition, class Gammaproteobacteria (OR = 0.47, 95% CI: 0.27-0.83, p = 0.0096), class Lentisphaeria (OR =0.76, 95% CI: 0.68-0.99, p = 0.04), order Victivallales (OR = 0.76, 95% CI: 0.58-0.99, p = 0.04), and phylum Proteobacteria (OR = 0.53, 95% CI: 0.33-0.85, p = 0.00872) were negatively associated with the risk of developing DN. Genus LachnospiraceaeUCG008 (OR =1.45, 95% CI: 1.08-1.95, p = 0.01), order Bacteroidales (OR = 1.59, 95% CI: 1.02-2.49, p = 0.04), and genus Terrisporobacter (OR = 1.98, 95% CI: 1.14-3.45, p = 0.015) were positively associated with the risk of developing DN. In this study, we established a causal relationship between the genus Dialister and the risk of developing DN. Further trials are required to confirm the protective effects of probiotics on DN and to elucidate the precise protective mechanisms involving genus Dialister and DN.


Subject(s)
Diabetic Nephropathies , Gastrointestinal Microbiome , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Diabetic Nephropathies/microbiology , Gastrointestinal Microbiome/genetics
12.
Ren Fail ; 46(1): 2347462, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832497

ABSTRACT

Diabetic nephropathy (DN) is one of the most serious and frequent complications among diabetes patients and presently constitutes vast the cases of end-stage renal disease worldwide. Tubulointerstitial fibrosis is a crucial factor related to the occurrence and progression of DN. Oridonin (Ori) is a diterpenoid derived from rubescens that has diverse pharmacological properties. Our previous study showed that Ori can protect against DN by decreasing the inflammatory response. However, whether Ori can alleviate renal fibrosis in DN remains unknown. Here, we investigated the mechanism through which Ori affects the Wnt/ß-catenin signaling pathway in diabetic rats and human proximal tubular epithelial cells (HK-2) exposed to high glucose (HG) levels. Our results revealed that Ori treatment markedly decreased urinary protein excretion levels, improved renal function and alleviated renal fibrosis in diabetic rats. In vitro, HG treatment increased the migration of HK-2 cells while reducing their viability and proliferation rate, and treatment with Ori reversed these changes. Additionally, the knockdown of ß-catenin arrested cell migration and reduced the expression levels of Wnt/ß-catenin signaling-related molecules (Wnt4, p-GSK3ß and ß-catenin) and fibrosis-related molecules (α-smooth muscle actin, collagen I and fibronectin), and Ori treatment exerted an effect similar to that observed after the knockdown of ß-catenin. Furthermore, the combination of Ori treatment and ß-catenin downregulation exerted more pronounced biological effects than treatment alone. These findings may provide the first line of evidence showing that Ori alleviates fibrosis in DN by inhibiting the Wnt/ß-catenin signaling pathway and thereby reveal a novel therapeutic avenue for treating tubulointerstitial fibrosis.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Diterpenes, Kaurane , Fibrosis , Rats, Sprague-Dawley , Wnt Signaling Pathway , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/etiology , Wnt Signaling Pathway/drug effects , Animals , Diterpenes, Kaurane/pharmacology , Diterpenes, Kaurane/therapeutic use , Rats , Fibrosis/drug therapy , Humans , Male , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Cell Line , beta Catenin/metabolism , Cell Movement/drug effects , Kidney/pathology , Kidney/drug effects , Cell Proliferation/drug effects , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/metabolism
13.
FASEB J ; 38(11): e23729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38847786

ABSTRACT

Diabetic nephropathy (DN) is one of the common microvascular complications in diabetic patients. Marrow mesenchymal stem cells (MSCs) have attracted attention in DN therapy but the underlying mechanism remains unclear. Here, we show that MSC administration alleviates high glucose (HG)-induced human kidney tubular epithelial cell (HK-2 cell) injury and ameliorates renal injury in DN mice. We identify that Smad2/3 is responsible for MSCs-regulated DN progression. The activity of Smad2/3 was predominantly upregulated in HG-induced HK-2 cell and DN mice and suppressed with MSC administration. Activation of Smad2/3 via transforming growth factor-ß1 (TGF-ß1) administration abrogates the protective effect of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Smad2/3 has been reported to interact with methyltransferase of N6-methyladenosine (m6A) complex and we found a methyltransferase, Wilms' tumor 1-associating protein (WTAP), is involved in MSCs-Smad2/3-regulated DN development. Moreover, WTAP overexpression abrogates the improvement of MSCs on HG-induced HK-2 cell injury and renal injury of DN mice. Subsequently, α-enolase (ENO1) is the downstream target of WTAP-mediated m6A modification and contributes to the MSCs-mediated regulation. Collectively, these findings reveal a molecular mechanism in DN progression and indicate that Smad2/3/WTAP/ENO1 may present a target for MSCs-mediated DN therapy.


Subject(s)
Diabetic Nephropathies , Mesenchymal Stem Cells , Smad2 Protein , Smad3 Protein , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Animals , Mesenchymal Stem Cells/metabolism , Smad2 Protein/metabolism , Mice , Humans , Smad3 Protein/metabolism , Male , Mice, Inbred C57BL , Adenosine/metabolism , Adenosine/analogs & derivatives , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Signal Transduction , Methyltransferases/metabolism , Methyltransferases/genetics , Mesenchymal Stem Cell Transplantation/methods , Transforming Growth Factor beta1/metabolism , Cell Line
14.
Endocrinol Diabetes Metab ; 7(3): e488, 2024 May.
Article in English | MEDLINE | ID: mdl-38718275

ABSTRACT

INTRODUCTION: This study aimed to assess and compare the prevalence of diabetes complications between men and women with Type 2 diabetes (T2D), as well as how gender relates to these complications. METHODS: In this cross-sectional study, complications of diabetes, including coronary artery disease (CAD), retinopathy, neuropathy and diabetic kidney disease (DKD), were evaluated in 1867 participants with T2D. Additionally, baseline characteristics of the individuals, including anthropometric measurements, metabolic parameters and the use of dyslipidaemia drugs and antihyperglycaemic agents, were assessed. Gender differences in complications were examined using the chi-squared test. Multivariate logistic regression was employed to investigate the relationship between gender and T2D complications, with and without adjusting for the characteristics of the studied population. RESULTS: In the studied population, 62.1% had at least one complication, and complications were 33.5% for DKD, 29.6% for CAD, 22.9% for neuropathy and 19.1% for retinopathy. The prevalence of CAD and neuropathy was higher in men. However, DKD and retinopathy were more prevalent among women. Odds ratios of experiencing any complication, CAD and retinopathy in men compared with women were 1.57 (95% CI: 1.27-2.03), 2.27 (95% CI: 1.72-2.99) and 0.72 (95% CI: 0.52-0.98), respectively, after adjusting for demographic factors, anthropometric measures, metabolic parameters and the consumption of dyslipidaemia drugs and antihyperglycaemic agents. CONCLUSION: The prevalence of diabetes complications was significantly higher in men with diabetes, highlighting the need for better treatment adherence. CAD was associated with the male gender, whereas retinopathy was associated with the female gender. Men and women with diabetes should be monitored closely for CAD and retinopathy, respectively, regardless of their age, diabetes duration, anthropometric measures, laboratory findings and medications.


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Humans , Male , Female , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Cross-Sectional Studies , Middle Aged , Aged , Prevalence , Sex Factors , Diabetic Retinopathy/etiology , Diabetic Retinopathy/epidemiology , Diabetes Complications/etiology , Diabetes Complications/epidemiology , Adult , Diabetic Neuropathies/etiology , Diabetic Neuropathies/epidemiology , Diabetic Nephropathies/etiology , Diabetic Nephropathies/epidemiology , Coronary Artery Disease/etiology
15.
Front Endocrinol (Lausanne) ; 15: 1381746, 2024.
Article in English | MEDLINE | ID: mdl-38726340

ABSTRACT

Background: A serious consequence of diabetes is diabetic nephropathy (DN), which is commonly treated by statins. Studies evaluating the effects of statin medication have yielded inconsistent results regarding the potential association with diabetic nephropathy. To manage diabetic nephropathy's onset and improve the quality of life of patients, it is imperative to gain a comprehensive understanding of its contributing factors. Data and methods: Our study was conducted using the National Health and Nutrition Examination Survey (NHANES) as well as weighted multivariate logistic regression models to determine the odds ratio (OR) and 95% confidence intervals (95%CI) for diabetic nephropathy. We conducted stratified analyses to examine the impact of statins and the duration of their usage on diabetic nephropathy in different subgroups. A nomogram model and the receiver operating characteristic (ROC) curve were also developed to predict DN risk. Results: Statin use significantly increased the incidence of DN (OR=1.405, 95%CI (1.199,1.647), p<0.001). Individuals who used statins for 5 to 7 years were more likely to develop diabetic nephropathy (OR=1.472, 95%CI (1.057,2.048), p=0.022) compared to those who used statins for 1-3 years (OR=1.334, 95%CI (1.058,1.682), p=0.015) or <1 year (OR=1.266, 95%CI (1.054,1.522), p = 0.012). Simvastatin has a greater incidence of diabetic nephropathy (OR=1.448, 95%CI(1.177, 1.78), P < 0.001). Conclusion: Taking statins long-term increases the risk of DN. Statin use is associated with an increased risk of DN. Caution should be exercised when prescribing atorvastatin and simvastatin for long-term statin therapy.


Subject(s)
Diabetic Nephropathies , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Nutrition Surveys , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/drug therapy , Male , Female , Middle Aged , United States/epidemiology , Adult , Aged , Incidence , Risk Factors
16.
Front Endocrinol (Lausanne) ; 15: 1345293, 2024.
Article in English | MEDLINE | ID: mdl-38726343

ABSTRACT

Objective: The activation of platelets in individuals with type 2 diabetes mellitus (T2DM) triggers inflammation and hemodynamic abnormalities, contributing to the development of diabetic kidney disease (DKD). Despite this, research into the relationship between plateletcrit (PCT) levels and DKD is sparse, with inconsistent conclusions drawn regarding the connection between various platelet parameters and DKD. This highlights the necessity for comprehensive, large-scale population studies. Therefore, our objective is to explore the association between PCT levels and various platelet parameters in relation to DKD. Methods: In this cross-sectional study, hematological parameter data were collected from a cohort of 4,302 hospitalized Chinese patients. We analyzed the relationships between PCT, platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), platelet large cell ratio (P-LCR), and DKD, along with the urinary albumin-to-creatinine ratio (UACR), and estimated glomerular filtration rate (eGFR). Receiver operating characteristic (ROC) curve analysis was conducted to evaluate the diagnostic potential of these parameters. Results: DKD patients exhibited significantly higher PCT levels compared to those without DKD. Multivariate regression analysis identified elevated PCT and PLT levels as potential independent risk factors for both DKD and UACR, while lower MPV levels might serve as independent protective factors for eGFR. The areas under the ROC curve for PCT in relation to DKD and UACR (≥30 mg/g) were 0.523 and 0.526, respectively. The area under the ROC curve for PLT in relation to UACR (≥30 mg/g) was 0.523. Conclusion: PCT demonstrates a weak diagnostic value for T2DM patients at risk of developing DKD and experiencing proteinuria, and PLT shows a similarly modest diagnostic utility for detecting proteinuria. These insights contribute to a deeper understanding of the complex dynamics involved in DKD. Additionally, incorporating these markers into routine clinical assessments could enhance risk stratification, facilitating early interventions and personalized management strategies.


Subject(s)
Blood Platelets , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Humans , Cross-Sectional Studies , Male , Female , Diabetic Nephropathies/blood , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Middle Aged , Platelet Count , Prevalence , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Blood Platelets/metabolism , Blood Platelets/pathology , Aged , Mean Platelet Volume , Glomerular Filtration Rate , Risk Factors , Adult , Biomarkers/blood
17.
BMJ Open Diabetes Res Care ; 12(3)2024 May 06.
Article in English | MEDLINE | ID: mdl-38719508

ABSTRACT

INTRODUCTION: To study the HbA1c trajectory from the time of diagnosis to examine if patients at the greatest risk for severe microangiopathy can be identified early allowing clinicians to intervene as soon as possible to avoid complications. RESEARCH DESIGN AND METHODS: In a population-based observational study, 447 patients diagnosed with type 1 diabetes before 35 years of age, 1983-1987, were followed from diagnosis until 2019. Mean HbA1c was calculated each year for each patient. Severe diabetic microangiopathy was defined as proliferative diabetic retinopathy (PDR) or macroalbuminuria (nephropathy). RESULTS: After 32 years, 27% had developed PDR and 8% macroalbuminuria. Patients with weighted HbA1c (wHbA1c); <57 mmol/mol; <7.4% did not develop PDR or macroalbuminuria. The HbA1c trajectories for patients developing PDR and macroalbuminuria follow separate courses early on and stay separated for 32 years during the follow-up. Patients without severe complications show an initial dip, after which HbA1c slowly increases. HbA1c in patients with severe complications directly rises to a high level within a few years. Mean HbA1c calculated for the period 5-8 years after diabetes onset strongly predicts the development of severe complications. Females with childhood-onset diabetes exhibit a high peak in HbA1c during adolescence associated with higher wHbA1c and higher prevalence of PDR. CONCLUSIONS: The HbA1c trajectory from diabetes onset shows that mean HbA1c for the period 5-8 years after diagnosis strongly predicts severe microangiopathy. Females with childhood-onset diabetes exhibit a high peak in HbA1c during adolescence associated with higher wHbA1c and a higher prevalence of PDR.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Angiopathies , Glycated Hemoglobin , Humans , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Female , Male , Glycated Hemoglobin/analysis , Adult , Adolescent , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/etiology , Young Adult , Follow-Up Studies , Child , Diabetic Retinopathy/epidemiology , Diabetic Retinopathy/etiology , Prognosis , Biomarkers/blood , Albuminuria/epidemiology , Risk Factors , Child, Preschool , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/etiology , Disease Progression , Severity of Illness Index
18.
BMC Nephrol ; 25(1): 156, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724923

ABSTRACT

BACKGROUND: Islet transplantation is an effective treatment for diabetes or even its complications. Aim of this study is to investigate efficacy of biomaterial treated islet transplantation on treating diabetic nephropathy. METHODS: Male rats were randomly divided into 6 groups; Control, diabetic control, diabetic transplanted with untreated islets, with platelet rich plasma treated islets, with pancreatic islets homogenate treated islets, or with these biomaterials combination treated islets. Islets cultured with biomaterials and transplanted to diabetic rats. After 60 days, biochemical, oxidative stress, and stereological parameters were assessed. RESULTS: Serum albumin and BUN concentration, decreased and increased respectively, Oxidative stress of kidney impaired, kidney weight, volume of kidney, cortex, medulla, glomerulus, proximal and distal tubules, collecting ducts, vessels, inflammatory, necrotic and fibrotic tissue in diabetic group increased compared to control group (p < 0.001). In treated groups, especially pancreatic islets homogenate treated islets transplanting animals, there was significant changes in kidney weight, and volume of kidney, proximal and distal tubules, Henle's loop and collecting ducts compared with diabetic group (p = 0.013 to p < 0.001). Combination treated islets animals showed significant increase in vessel volume compared to diabetic group (p < 0.001). Necrotic and fibrotic tissue significantly decreased in islets treated than untreated islet animals, it was higher in pancreatic islets homogenate, and combination treated islets groups (p = 0.001). CONCLUSIONS: Biomaterials treated islets transplanting could improve diabetic nephropathy. Improvement of oxidative stress followed by controlling glucose level, and effects of growth factors presenting in biomaterials can be considered as capable underlying mechanism of ameliorating inflammatory, necrotic and fibrotic tissue volume.


Subject(s)
Biocompatible Materials , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Islets of Langerhans Transplantation , Animals , Male , Rats , Diabetic Nephropathies/pathology , Islets of Langerhans Transplantation/methods , Biocompatible Materials/therapeutic use , Islets of Langerhans/pathology , Oxidative Stress , Rats, Sprague-Dawley , Treatment Outcome
19.
Cardiovasc Diabetol ; 23(1): 152, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702680

ABSTRACT

BACKGROUND: Insulin resistance and chronic kidney disease are both associated with increased coronary artery disease risk. Many formulae estimating glucose disposal rate in type 1 diabetes infer insulin sensitivity from clinical data. We compare associations and performance relative to traditional risk factors and kidney disease severity between three formulae estimating the glucose disposal rate and coronary artery disease in people with type 1 diabetes. METHODS: The baseline glucose disposal rate was estimated by three (Williams, Duca, and Januszewski) formulae in FinnDiane Study participants and related to subsequent incidence of coronary artery disease, by baseline kidney status. RESULTS: In 3517 adults with type 1 diabetes, during median (IQR) 19.3 (14.6, 21.4) years, 539 (15.3%) experienced a coronary artery disease event, with higher rates with worsening baseline kidney status. Correlations between the three formulae estimating the glucose disposal rate were weak, but the lowest quartile of each formula was associated with higher incidence of coronary artery disease. Importantly, only the glucose disposal rate estimation by Williams showed a linear association with coronary artery disease risk in all analyses. Of the three formulae, Williams was the strongest predictor of coronary artery disease. Only age and diabetes duration were stronger predictors. The strength of associations between estimated glucose disposal rate and CAD incidence varied by formula and kidney status. CONCLUSIONS: In type 1 diabetes, estimated glucose disposal rates are associated with subsequent coronary artery disease, modulated by kidney disease severity. Future research is merited regarding the clinical usefulness of estimating the glucose disposal rate as a coronary artery disease risk factor and potential therapeutic target.


Subject(s)
Biomarkers , Blood Glucose , Coronary Artery Disease , Diabetes Mellitus, Type 1 , Insulin Resistance , Humans , Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Coronary Artery Disease/epidemiology , Coronary Artery Disease/diagnosis , Coronary Artery Disease/blood , Male , Female , Adult , Incidence , Middle Aged , Risk Assessment , Time Factors , Blood Glucose/metabolism , Biomarkers/blood , Finland/epidemiology , Longitudinal Studies , Risk Factors , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/diagnosis , Prognosis , Predictive Value of Tests , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/physiopathology , Renal Insufficiency, Chronic/blood , Kidney/physiopathology , Insulin/blood , Insulin/therapeutic use , Young Adult , Severity of Illness Index
20.
Drug Des Devel Ther ; 18: 1439-1457, 2024.
Article in English | MEDLINE | ID: mdl-38707616

ABSTRACT

Background: Acteoside, an active ingredient found in various medicinal herbs, is effective in the treatment of diabetic kidney disease (DKD); however, the intrinsic pharmacological mechanism of action of acteoside in the treatment of DKD remains unclear. This study utilizes a combined approach of network pharmacology and experimental validation to investigate the potential molecular mechanism systematically. Methods: First, acteoside potential targets and DKD-associated targets were aggregated from public databases. Subsequently, utilizing protein-protein interaction (PPI) networks, alongside GO and KEGG pathway enrichment analyses, we established target-pathway networks to identify core potential therapeutic targets and pathways. Further, molecular docking facilitated the confirmation of interactions between acteoside and central targets. Finally, the conjectured molecular mechanisms of acteoside against DKD were verified through experimentation on unilateral nephrectomy combined with streptozotocin (STZ) rat model. The underlying downstream mechanisms were further investigated. Results: Network pharmacology identified 129 potential intersected targets of acteoside for DKD treatment, including targets such as AKT1, TNF, Casp3, MMP9, SRC, IGF1, EGFR, HRAS, CASP8, and MAPK8. Enrichment analyses indicated the PI3K-Akt, MAPK, Metabolic, and Relaxin signaling pathways could be involved in this therapeutic context. Molecular docking revealed high-affinity binding of acteoside to PIK3R1, AKT1, and NF-κB1. In vivo studies validated the therapeutic efficacy of acteoside, demonstrating reduced blood glucose levels, improved serum Scr and BUN levels, decreased 24-hour urinary total protein (P<0.05), alongside mitigated podocyte injury (P<0.05) and ameliorated renal pathological lesions. Furthermore, this finding indicates that acteoside inhibits the expression of pyroptosis markers NLRP3, Caspase-1, IL-1ß, and IL-18 through the modulation of the PI3K/AKT/NF-κB pathway. Conclusion: Acteoside demonstrates renoprotective effects in DKD by regulating the PI3K/AKT/NF-κB signaling pathway and alleviating pyroptosis. This study explores the pharmacological mechanism underlying acteoside's efficacy in DKD treatment, providing a foundation for further basic and clinical research.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , Molecular Docking Simulation , Network Pharmacology , Phenols , Polyphenols , Streptozocin , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Animals , Rats , Glucosides/pharmacology , Glucosides/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Male , Phenols/pharmacology , Phenols/chemistry , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...