Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.504
Filter
1.
J Am Chem Soc ; 146(19): 13676-13688, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38693710

ABSTRACT

Peptide-receptor interactions play critical roles in a wide variety of physiological processes. Methods to link bioactive peptides covalently to unmodified receptors on the surfaces of living cells are valuable for studying receptor signaling, dynamics, and trafficking and for identifying novel peptide-receptor interactions. Here, we utilize peptide analogues bearing deactivated aryl diazonium groups for the affinity-driven labeling of unmodified receptors. We demonstrate that aryl diazonium-bearing peptide analogues can covalently label receptors on the surface of living cells using both the neurotensin and the glucagon-like peptide 1 receptor systems. Receptor labeling occurs in the complex environment of the cell surface in a sequence-specific manner. We further demonstrate the utility of this covalent labeling approach for the visualization of peptide receptors by confocal fluorescence microscopy and for the enrichment and identification of labeled receptors by mass spectrometry-based proteomics. Aryl diazonium-based affinity-driven receptor labeling is attractive due to the high abundance of tyrosine and histidine residues susceptible to azo coupling in the peptide binding sites of receptors, the ease of incorporation of aryl diazonium groups into peptides, and the relatively small size of the aryl diazonium group. This approach should prove to be a powerful and relatively general method to study peptide-receptor interactions in cellular contexts.


Subject(s)
Diazonium Compounds , Diazonium Compounds/chemistry , Humans , Receptors, Peptide/metabolism , Receptors, Peptide/chemistry , Peptides/chemistry , Peptides/metabolism , Animals
2.
Article in English | MEDLINE | ID: mdl-38598095

ABSTRACT

Ochratoxin A (OTA) is a toxic fungal metabolite that is commonly found in cereals and animal feed. It is economically damaging and potentially hazardous to human health. Herein, we propose an electrochemical immunosensor for the rapid detection of OTA using anti-OTA antibodies and diazonium-functionalized, screen-printed electrodes. We attached 4-aminobenzoic acid to an electrode surface, activated the carboxyl groups on the surface with carbodiimide, and attached an antibody to the diazo layer. Subsequently, we used bovine serum protein as a blocker to prevent non-specific antigens from binding to the antibody. We evaluated the performance of the sensor by cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. The sensor is highly specific and sensitive, has good linear responses in the range 20-200 ng/mL, a limit of detection of 0.5 ng/mL, and good recoveries of 90.5%-100.9% in spiked samples. It can be stored at 4 °C for approximately 2 weeks, and is highly stable, with a current response variation of no more than 4.6%.


Subject(s)
Electrochemical Techniques , Food Contamination , Ochratoxins , Ochratoxins/analysis , Food Contamination/analysis , Electrodes , Immunoassay/methods , Food Analysis , Diazonium Compounds/chemistry , Biosensing Techniques , Animals
3.
J Plant Physiol ; 296: 154225, 2024 May.
Article in English | MEDLINE | ID: mdl-38522214

ABSTRACT

Local damaging stimuli cause a rapid increase in the content of the defense phytohormone jasmonic acid (JA) and its biologically active derivative jasmonoyl-L-isoleucine (JA-Ile) in undamaged distal tissues. The increase in JA and JA-Ile levels was coincident with a rapid decrease in the levels of the precursor 12-oxo-phytodienoic acid (OPDA). The propagation of a stimulus-induced long-distance electrical signal, variation potential (VP), which is accompanied by intracellular changes in pH and Ca2+ levels, preceded systemic changes in jasmonate content. The decrease in pH during VP, mediated by transient inactivation of the plasma membrane H+-ATPase, induced the conversion of OPDA to JA, probably by regulating the availability of the OPDA substrate to JA biosynthetic enzymes. The regulation of systemic synthesis of JA and JA-Ile by the Ca2+ wave accompanying VP most likely occurs by the same mechanism of pH-induced conversion of OPDA to JA due to Ca2+-mediated decrease in pH as a result of H+-ATPase inactivation. Thus, the transient increase in intracellular Ca2+ levels and the transient decrease in intracellular pH are most likely the key mechanisms of VP-mediated regulation of jasmonate production in systemic tissues upon local stimulation.


Subject(s)
Arabidopsis , Diazonium Compounds , Isoleucine/analogs & derivatives , Pyridines , Arabidopsis/metabolism , Oxylipins/metabolism , Cyclopentanes/metabolism , Isoleucine/metabolism , Proton-Translocating ATPases/metabolism , Hydrogen-Ion Concentration
4.
Rev Paul Pediatr ; 42: e2023186, 2024.
Article in English | MEDLINE | ID: mdl-38537035

ABSTRACT

OBJECTIVE: To develop a rapid method for analysing polyphenols, which are potentially active antioxidants against neonatal oxidative stress, from small human milk (HM) volumes. METHODS: Acid and alkaline extractions were compared using two dyes: Folin-Ciocalteu and Fast Blue BB. Linearity, sensitivity, recovery percentage, polyphenol content, precision, and stability were assessed in 14 HM samples and compared using the Kruskal-Wallis H test (p<0.05). The best technique was applied to 284 HM samples to determine their polyphenolic content and its association with maternal diet by multifactorial linear regression. RESULTS: Acidic extraction successfully recovered the gallic acid reference standard, whereas alkaline extraction overestimated it. Calibration curves for all methods were linear (R2>0.96) up to 500 mg/L. All bicarbonate-based Folin-Ciocalteu methods assayed were stable and repeatable, whereas Fast Blue BB-based variants were not. HM polyphenols (mean=94.68 mg/L) positively correlated to the dietary intake of hydroxycinnamic acids, the most consumed polyphenolic family in this population. CONCLUSIONS: A bicarbonate-based Folin-Ciocalteu micromethod allowed the accurate determination of polyphenols in HM, which might be useful for translational research settings and HM banks.


Subject(s)
Diazonium Compounds , Milk, Human , Polyphenols , Infant, Newborn , Humans , Polyphenols/analysis , Milk, Human/chemistry , Bicarbonates , Cost-Benefit Analysis
5.
Biomaterials ; 305: 122467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38224643

ABSTRACT

Impaired angiogenesis, bacterial infection, persistent severe pain, exacerbated inflammation, and oxidative stress injury are intractable problems in the treatment of chronic diabetic ulcer wounds. A strategy that effectively targets all these issues has proven challenging. Herein, an in-situ sprayable nanoparticle-gel composite comprising platinum clusters (Pt) loaded-mesoporous polydopamine (MPDA) nanoparticle and QX-314-loaded fibrin gel (Pt@MPDA/QX314@Fibrin) was developed for diabetic wound analgesia and therapy. The composite shows good local analgesic effect of QX-314 mediated by near-infrared light (NIR) activation of transient receptor potential vanilloid 1 (TRPV1) channel, as well as multifunctional therapeutic effects of rapid hemostasis, anti-inflammation, antioxidation, and antibacterial properties that benefit the fast-healing of diabetic wounds. Furthermore, it demonstrates that the composite, with good biodegradability and biosafety, significantly relieved wound pain by inhibiting the expression of c-Fos in the dorsal root ganglion and the activation of glial cells in the spinal cord dorsal horn. Consequently, our designed sprayable Pt@MPDA/QX314@Fibrin composite with good biocompatibility, NIR activation of TRPV1 channel-mediated QX-314 local wound analgesia and comprehensive treatments, is promising for chronic diabetic wound therapy.


Subject(s)
Diabetes Mellitus , Diazonium Compounds , Lidocaine/analogs & derivatives , Nanocomposites , Pyridines , Rats , Animals , Pain , Analgesics/therapeutic use , Nanocomposites/therapeutic use , Fibrin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
6.
Small ; 20(13): e2307262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37963850

ABSTRACT

Breast cancer (BC) is a major global health problem, with ≈20-25% of patients overexpressing human epidermal growth factor receptor 2 (HER2), an aggressive marker, yet access to early detection and treatment varies across countries. A low-cost, equipment-free, and easy-to-use polydiacetylene (PDA)-based colorimetric sensor is developed for HER2-overexpressing cancer detection, designed for use in low- and middle-income countries (LMICs). PDA nanoparticles are first prepared through thin-film hydration. Subsequently, hydrophilic magnetic nanoparticles and HER2 antibodies are sequentially conjugated to them. The synthesized HER2-MPDA can be concentrated and separated by a magnetic field while inheriting the optical characteristics of PDA. The specific binding of HER2 antibody in HER2-MPDA to HER2 receptor in HER2-overexpressing exosomes causes a blue-to-red color change by altering the molecular structure of the PDA backbone. This colorimetric sensor can simultaneously separate and detect HER2-overexpressing exosomes. HER2-MPDA can detect HER2-overexpressing exosomes in the culture medium of HER2-overexpressing BC cells and in mouse urine samples from a HER2-overexpressing BC mouse model. It can selectively isolate and detect only HER2-overexpressing exosomes through magnetic separation, and its detection limit is found to be 8.5 × 108 particles mL-1. This colorimetric sensor can be used for point-of-care diagnosis of HER2-overexpressing BC in LMICs.


Subject(s)
Breast Neoplasms , Diazonium Compounds , Exosomes , Nanoparticles , Polyacetylene Polymer , Pyridines , Humans , Animals , Mice , Female , Colorimetry , Exosomes/metabolism , Breast Neoplasms/metabolism , Antibodies , Magnetic Phenomena
7.
Part Fibre Toxicol ; 20(1): 38, 2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37807046

ABSTRACT

Recently, mesoporous nanomaterials with widespread applications have attracted great interest in the field of drug delivery due to their unique structure and good physiochemical properties. As a biomimetic nanomaterial, mesoporous polydopamine (MPDA) possesses both a superior nature and good compatibility, endowing it with good clinical transformation prospects compared with other inorganic mesoporous nanocarriers. However, the subacute toxicity and underlying mechanisms of biomimetic mesoporous polydopamine nanoparticles remain uncertain. Herein, we prepared MPDAs by a soft template method and evaluated their primary physiochemical properties and metabolite toxicity, as well as potential mechanisms. The results demonstrated that MPDA injection at low (3.61 mg/kg) and medium doses (10.87 mg/kg) did not significantly change the body weight, organ index or routine blood parameters. In contrast, high-dose MPDA injection (78.57 mg/kg) is associated with disturbances in the gut microbiota, activation of inflammatory pathways through the abnormal metabolism of bile acids and unsaturated fatty acids, and potential oxidative stress injury. In sum, the MPDA dose applied should be controlled during the treatment. This study first provides a systematic evaluation of metabolite toxicity and related mechanisms for MPDA-based nanoparticles, filling the gap between their research and clinical transformation as a drug delivery nanoplatform.


Subject(s)
Biomimetics , Nanoparticles , Nanoparticles/toxicity , Nanoparticles/chemistry , Diazonium Compounds
8.
Top Curr Chem (Cham) ; 381(5): 29, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736818

ABSTRACT

Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.


Subject(s)
Carbon , Diazonium Compounds , Nitrogen , Peroxides
9.
Phytochemistry ; 215: 113855, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37690699

ABSTRACT

Cis-(+)-12-oxophytodienoic acid (cis-(+)-OPDA) is a bioactive jasmonate, a precursor of jasmonic acid, which also displays signaling activity on its own. Modulation of cis-(+)-OPDA actions may be carried out via biotransformation leading to metabolites of various functions. This work introduces a methodology for the synthesis of racemic cis-OPDA conjugates with amino acids (OPDA-aa) and their deuterium-labeled analogs, which enables the unambiguous identification and accurate quantification of these compounds in plants. We have developed a highly sensitive liquid chromatography-tandem mass spectrometry-based method for the reliable determination of seven OPDA-aa (OPDA-Alanine, OPDA-Aspartate, OPDA-Glutamate, OPDA-Glycine, OPDA-Isoleucine, OPDA-Phenylalanine, and OPDA-Valine) from minute amount of plant material. The extraction from 10 mg of fresh plant tissue by 10% aqueous methanol followed by single-step sample clean-up on hydrophilic-lipophilic balanced columns prior to final analysis was optimized. The method was validated in terms of accuracy and precision, and the method parameters such as process efficiency, recovery and matrix effects were evaluated. In mechanically wounded 30-day-old Arabidopsis thaliana leaves, five endogenous (+)-OPDA-aa were identified and their endogenous levels were estimated. The time-course accumulation revealed a peak 60 min after the wounding, roughly corresponding to the accumulation of cis-(+)-OPDA. Our synthetic and analytical methodologies will support studies on cis-(+)-OPDA conjugation with amino acids and research into the biological significance of these metabolites in plants.


Subject(s)
Amino Acids , Oxylipins , Oxylipins/metabolism , Diazonium Compounds , Cyclopentanes/metabolism
10.
Nat Chem ; 15(6): 832-840, 2023 06.
Article in English | MEDLINE | ID: mdl-37055572

ABSTRACT

The ability of Janus nanoparticles to establish biological logic systems has been widely exploited, yet conventional non/uni-porous Janus nanoparticles are unable to fully mimic biological communications. Here we demonstrate an emulsion-oriented assembly approach for the fabrication of highly uniform Janus double-spherical MSN&mPDA (MSN, mesoporous silica nanoparticle; mPDA, mesoporous polydopamine) nanoparticles. The delicate Janus nanoparticle possesses a spherical MSN with a diameter of ~150 nm and an mPDA hemisphere with a diameter of ~120 nm. In addition, the mesopore size in the MSN compartment is tunable from ~3 to ~25 nm, while those in the mPDA compartments range from ~5 to ~50 nm. Due to the different chemical properties and mesopore sizes in the two compartments, we achieve selective loading of guests in different compartments, and successfully establish single-particle-level biological logic gates. The dual-mesoporous structure enables consecutive valve-opening and matter-releasing reactions within one single nanoparticle, facilitating the design of single-particle-level logic systems.


Subject(s)
Nanoparticles , Emulsions , Nanoparticles/chemistry , Diazonium Compounds , Pyridines , Silicon Dioxide/chemistry , Porosity
11.
J Agric Food Chem ; 71(2): 1162-1169, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36621524

ABSTRACT

2,3,5-Trimethylhydroquinone (2,3,5-TMHQ) is the key precursor in the synthesis of vitamin E. It is still a major challenge to produce 2,3,5-TMHQ under mild reaction conditions by chemical methods. The monooxygenase system MpdAB can specifically catalyze the conversion of 2,3,6-trimethylphenol (2,3,6-TMP) to 2,3,5-TMHQ. However, the weak catalytic capacity of wild-type MpdA and the cytotoxicity of the substrate limited the production efficiency of 2,3,5-TMHQ. Here, homologous modeling and saturation mutation were performed to increase the catalytic activity of MpdA. Two variants, L128A and L128K, with higher activity toward 2,3,6-TMP (1.86-1.87-fold) were obtained. On the other hand, an evolved strain B5-4M-evolved with enhanced resistance to 2,3,6-TMP (8.15-fold higher for 1000 µM 2,3,6-TMP) was obtained through adaptive laboratory evolution. Subsequently, a 5.29-fold (or 4.87-fold) improvement in 2,3,5-TMHQ production was achieved by a strain B5-4M-evolved harboring L128K (or L128A) and MpdB, in comparison with that of the wild type (strain B5-4M expressing MpdAB). This study provides better genetic resources for producing 2,3,5-TMHQ and proves that the synthesis efficiency of 2,3,5-TMHQ can be improved through enzyme modification and adaptive laboratory evolution.


Subject(s)
Diazonium Compounds , Pyridines , Vitamin E
12.
Expert Opin Drug Deliv ; 20(2): 285-299, 2023 02.
Article in English | MEDLINE | ID: mdl-36654482

ABSTRACT

OBJECTIVES: Poly(glycerol sebacate) urethane (PGSU) elastomers formulated with 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), levonorgestrel (LNG), or a combination thereof can function as multipurpose prevention technology implants for prophylaxis against HIV and unintended pregnancies. For these public health challenges, long-acting drug delivery technologies may improve patient experience and adherence. Traditional polymers encounter challenges delivering multiple drugs with dissimilar physiochemical properties. PGSU offers an alternative option that successfully delivers hydrophilic EFdA alongside hydrophobic LNG. METHODS: This article presents the formulation, design, and characterization of PGSU implants, highlighting the impact of API loading, dimensions, and individual- versus combination-loading on release rates. RESULTS: Co-delivery of hydrophilic EFdA alongside hydrophobic LNG acted as a porogen to accelerate LNG release. Increasing the surface area of LNG-only implants increased LNG release. All EFdA-LNG, EFdA-only, and LNG-only formulated implants demonstrated low burst release and linear release kinetics over 245 or 122 days studied to date. CONCLUSION: PGSU co-delivers two APIs for HIV prevention and contraception at therapeutically relevant concentrations in vitro from a single bioresorbable, elastomeric implant. A new long-acting polymer technology, PGSU demonstrates linear-release kinetics, dual delivery of APIs with disparate physiochemical properties, and biocompatibility through long-term subcutaneous implantation. PGSU can potentially meet the demands of complex MPT or fixed-dose combination products, where better solutions can serve and empower patients.


Subject(s)
Contraceptive Agents, Female , HIV Infections , Pregnancy , Female , Humans , Levonorgestrel , Diazonium Compounds , HIV Infections/prevention & control
13.
Chem Commun (Camb) ; 59(1): 118-121, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36477311

ABSTRACT

Transition metal- and photosensitizer-free C(sp3)-H (sulfonyl)amidation reactions have been realized by employing Selectfluor® as a versatile reagent, functioning as a photoactive component, a HAT precursor and an oxidant. Various toluene derivatives, cycloalkanes, natural products and bioactive molecules can be converted into N-containing products under mild conditions in good yield and with high chemo- and site-selectivity.


Subject(s)
Diazonium Compounds , Molecular Structure , Catalysis
14.
Chem Commun (Camb) ; 58(88): 12325-12328, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36259987

ABSTRACT

The highly regio- and enantioselective intramolecular cyclopropanation reactions of naphthyl diazoacetamides have been reported herein. In the presence of a Ru(II)-Pheox catalyst, chiral and stable norcaradiene derivatives were obtained from the corresponding diazoacetamides via carbene transfer reactions in high yields (up to 99%) and with high enantioselectivities (up to 99% ee).


Subject(s)
Ruthenium , Stereoisomerism , Diazonium Compounds
15.
Molecules ; 27(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36234997

ABSTRACT

As a promising therapy, photothermal therapy (PTT) converts near-infrared (NIR) light into heat through efficient photothermal agents (PTAs), causing a rapid increase in local temperature. Considering the importance of PTAs in the clinical application of PTT, the safety of PTAs should be carefully evaluated before their widespread use. As a promising PTA, mesoporous polydopamine (MPDA) was studied for its clinical applications for tumor photothermal therapy and drug delivery. Given the important role that intestinal microflora plays in health, the impacts of MPDA on the intestine and on intestinal microflora were systematically evaluated in this study. Through biological and animal experiments, it was found that MPDA exhibited excellent biocompatibility, in vitro and in vivo. Moreover, 16S rRNA analysis demonstrated that there was no obvious difference in the composition and classification of intestinal microflora between different drug delivery groups and the control group. The results provided new evidence that MPDA was safe to use in large doses via different drug delivery means, and this lays the foundation for further clinical applications.


Subject(s)
Gastrointestinal Microbiome , Hyperthermia, Induced , Nanoparticles , Animals , Diazonium Compounds , Indoles , Intestines , Phototherapy , Polymers , Pyridines , RNA, Ribosomal, 16S/genetics
16.
Org Biomol Chem ; 20(38): 7577-7581, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36131636

ABSTRACT

The first bench-stable triple-diazonium reagent (TDA-1) was rationally designed and synthesized for coupling and crosslinking. The three reactive sites of TDA-1 can react with phenol-containing molecules as well as plant viruses in aqueous buffers efficiently. In addition, a new-type azo-linked cage was constructed by the direct reaction of TDA-1 with a triple-phenol molecule and was characterized by X-ray crystallography.


Subject(s)
Diazonium Compounds , Phenols , Crystallography, X-Ray , Diazonium Compounds/chemistry , Indicators and Reagents
17.
Biomater Sci ; 10(20): 5912-5924, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36040793

ABSTRACT

The efficacy of free radical-based therapeutic strategies is severely hindered by nonspecific accumulation, premature release and glutathione (GSH) scavenging effects. Herein, a tumor microenvironment-responsive MPDA/AIPH@Cu-TA@HA (abbreviated as MACTH) nanoplatform was constructed by coating Cu2+ and tannic acid (TA) on the surface of azo initiator (AIPH)-loaded mesoporous polydopamine (MPDA) nanoparticles and further modifying them with hyaluronic acid (HA) to achieve tumor-specific photothermal/thermodynamic/chemodynamic synergistic therapy (PTT/TDT/CDT). Once accumulated and internalized into cancer cells through CD44 receptor-mediated active targeting and endocytosis, the HA shell of MACTH would be preliminarily degraded by hyaluronidase (HAase) to expose the Cu-TA metal-phenolic networks, which would further dissociate in response to an acidic lysosomal environment, leading to HAase/pH dual-responsive release of Cu2+ and AIPH. On the one hand, the released Cu2+ could deplete the overexpressed GSH via redox reactions and produce Cu+, which in turn catalyzes endogenous H2O2 into highly cytotoxic hydroxyl radicals (˙OH) for CDT. On the other hand, the local hyperthermia generated by MACTH under 808 nm laser irradiation could not only augment CDT efficacy through accelerating the Cu+-mediated Fenton-like reaction, but also trigger the decomposition of AIPH to produce biotoxic alkyl radicals (˙R) for TDT. The consumption of GSH and accumulation of oxygen-independent free radicals (˙OH/˙R) synergistically amplified intracellular oxidative stress, resulting in substantial apoptotic cell death and significant tumor growth inhibition. Collectively, this study provides a promising paradigm for customizing stimuli-responsive free radical-based nanoplatforms to achieve accurate and efficacious cancer treatment.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Diazonium Compounds , Glutathione/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronoglucosaminidase , Hydrogen Peroxide/metabolism , Nanoparticles/chemistry , Neoplasms/drug therapy , Oxygen , Pyridines , Tannins , Thermodynamics , Tumor Microenvironment
18.
ChemMedChem ; 17(19): e202200360, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36000799

ABSTRACT

The combination of photothermal therapy and chemotherapy are developing as a promising clinical strategy but it urgently needs the high exploration of intelligent multifunctional drug delivery nanovectors. In this paper, we used a versatile method to construct mesoporous polydopamine nanovehicles (MPDA) with the dendritic mesopores loaded with a clinical chemotherapeutic drug, Doxorubicin (MPDA@DOX). The monodisperse nanoagents are spherical with a size of ∼160 nm and pore size of approximately 10 nm. MPDA could efficiently delivery DOX with π-π stacking interaction and acts as the potent photothermal agents. Importantly, MPDA@DOX are preferentially internalized by cancerous cells, then bursting drug release and local hyperthermia generation were observed in conditions representative of the cytoplasm in tumor cells that highly synergistic cell killing effect were found under 808 nm laser irradiation. The fluorescent imaging results of human breast tumor bearing murine model evidenced that MPDA delivery platform have excellent tumor precise targeting effect and in vivo tumor ablation experiment further revealed that MPDA@DOX showed markedly eradicated tumor growth capability under laser exposure. Therefore, this work provided a fascinating strategy based on biocompatible MPDA based drug delivery system for malignant tumors eradication via synergistic therapy.


Subject(s)
Nanoparticles , Neoplasms , Animals , Diazonium Compounds , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Delivery Systems/methods , Drug Liberation , Humans , Indoles , Mice , Neoplasms/drug therapy , Pharmaceutical Preparations , Phototherapy/methods , Polymers , Pyridines
19.
J Colloid Interface Sci ; 626: 985-994, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35839679

ABSTRACT

Electro-polymerization of diazonium salts is widely used for modifying surfaces with thin organic films. Initially this method was primarily applied to carbon, then to metals, and more recently to semiconducting Si. Unlike on other surfaces, electrochemical reduction of diazonium salts on Si, which is one of the most industrially dominant material, is not well understood. Here, we report the electrochemical reduction of diazonium salts on a range of silicon electrodes of different crystal orientations (111, 211, 311, 411, and 100). We show that the kinetics of surface reaction and the reduction potential is Si crystal-facet dependent and is more favorable in the hierarchical order (111) > (211) > (311) > (411) > (100), a finding that offers control over the surface chemistry of diazonium salts on Si. The dependence of the surface reaction kinetics on the crystal orientation was found to be directly related to differences in the potential of zero charge (PZC) of each crystal orientation, which in turn controls the adsorption of the diazonium cations prior to reduction. Another consequence of the effect of PZC on the adsorption of diazonium cations, is that molecules terminated by distal diazonium moieties form a compact film in less time and requires less reduction potentials compared to that formed from diazonium molecules terminated by only one diazo moiety. In addition, at higher concentrations of diazonium cations, the mechanism of electrochemical polymerization on the surface becomes PZC-controlled adsorption-dominated inner-sphere electron transfer while at lower concentrations, diffusion-based outer-sphere electron transfer dominates. These findings help understanding the electro-polymerization reaction of diazonium salts on Si en route towards an integrated molecular and Si electronics technology.


Subject(s)
Diazonium Compounds , Salts , Diazonium Compounds/chemistry , Electrodes , Polymerization , Salts/chemistry , Surface Properties
20.
J Am Soc Echocardiogr ; 35(10): 1037-1046, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35842077

ABSTRACT

OBJECTIVES: Barlow's mitral valve disease with late systolic mitral regurgitation provides diagnostic and therapeutic challenges. The mechanisms of the regurgitation are still unclear. We hypothesized that the onset and the severity of late systolic regurgitation are determined by annulus dynamics and the mechanical stresses imposed by the left ventricle. METHODS: Ten patients with Barlow's mitral valve disease and mitral annulus disjunction (MAD) were compared with 10 healthy controls. Resting blood pressure was measured, and transthoracic three-dimensional echocardiography was analyzed using a holographic display that allows tracking and measurements of mitral annulus surface area (ASA) throughout the cardiac cycle. A novel annulus elastance index (dASA/dP) was calculated between aortic valve opening and onset of mitral regurgitation. Severity of MAD was quantified as the disjunction index (mm × degree). Leaflet coaptation area was calculated using a finite element model. RESULTS: Peak systolic ASAs in controls and patients were 9.3 ± 0.6 and 21.1 ± 3.1 cm2, respectively (P < .001). In patients, the ASA increased rapidly during left ventricular ejection, and onset of mitral regurgitation coincided closely with peak upslope of annulus area change (dASA/dt). The finite element model showed a close association between rapid annulus displacement and coaptation area deficit in Barlow's mitral valve disease. Systolic annulus elastance index (0.058 ± 0.036 cm2/mm Hg) correlated strongly with disjunction index (r = 0.91, P < .0001). Moreover, regurgitation volume showed a positive correlation with systolic blood pressure (r = 0.80, P < .01). CONCLUSION: The present pilot study supports the hypothesis that annulus dilatation may accentuate mitral valve regurgitation in patients with Barlow's mitral valve disease. A novel annulus elastance index may predict the severity of mitral valve regurgitation in selected patients.


Subject(s)
Mitral Valve Insufficiency , Mitral Valve Prolapse , Diazonium Compounds , Elasticity , Humans , Mitral Valve/diagnostic imaging , Mitral Valve Insufficiency/diagnostic imaging , Mitral Valve Prolapse/diagnosis , Pilot Projects , Sulfanilic Acids
SELECTION OF CITATIONS
SEARCH DETAIL
...