Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 333: 194-214, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28359036

ABSTRACT

The contamination of soils by metals such as arsenic, chromium, copper and organic compounds such as pentachlorophenol (PCP) and dioxins and furans (PCDD/F) is a major problem in industrialized countries. Excavation followed by disposal in an appropriate landfilling is usually used site to manage these contaminated soils. Many researches have been conducted to develop physical, biological, thermal and chemical methods to allow the rehabilitation of contaminated sites. Thermal treatments including thermal desorption seemed to be the most appropriate methods, allowing the removal of more than 99.99% of organic contaminants but, they are ineffective for inorganic compounds. Biological treatments have been developed to remove inorganic and hydrophobic organic contaminants but their applications are limited to soils contaminated by easily biodegradable organic compounds. Among the physical technologies available, attrition is the most commonly used technique for the rehabilitation of soils contaminated by both organic and inorganic contaminants. Chemical processes using acids, bases, redox agents and surfactants seemed to be an interesting option to simultaneously extract organic and inorganic contaminants from soils. This paper will provide an overview of the recent developments in the field of decontamination technologies applicable for the removal of As, Cr, Cu, PCP and/or PCDD/F from contaminated soils.


Subject(s)
Arsenic/isolation & purification , Chromium/isolation & purification , Copper/isolation & purification , Dibenzofurans, Polychlorinated/isolation & purification , Environmental Restoration and Remediation/methods , Pentachlorophenol/isolation & purification , Polychlorinated Dibenzodioxins/isolation & purification , Soil Pollutants/isolation & purification
2.
J Environ Sci Health B ; 52(4): 267-273, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28095187

ABSTRACT

The current environmental legislations recommend monitoring chemical contaminants such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans before the use of sewage sludge on the agricultural land. In this study, a solid-liquid extraction with low-temperature purification (SLE-LTP) was optimized and validated to determine 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran in sewage sludge and soil samples. The analyses were performed by gas chromatography-mass spectrometry operating in the selective ion mode (GC-MS-SIM). Acetonitrile:ethyl acetate 6.5:1.5 (v/v) was the best extraction phase, and the recoveries percentages were close to 100%. The linearity was demonstrated in the range of 1.25-25 µg L-1 of 1.25-20 µg L-1 for sewage sludge and soil, respectively. Matrix effect was proved for the two compounds and in the two matrices studied. Extraction percentages were between 78 and 109% and relative standard deviations ≤ 19%. The proposed method is faster than methods described in the literature because showed a few steps. The quantification limits (LOQ) in sewage sludge were 6.4 and 32 ng TEQ kg-1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. In soil, LOQs were 0.8 and 8.0 ng TEQ kg-1 for 2,3,7,8-TCDF and 2,3,7,8-TCDD, respectively. These values are lower than the maximum residue limits established by European Legislation. The method was applied to 22 agricultural soil samples from different Brazilian cities and 2,3,7,8-TCDF was detected in one of these samples.


Subject(s)
Chemical Fractionation/methods , Dibenzofurans, Polychlorinated/isolation & purification , Environmental Monitoring/methods , Polychlorinated Dibenzodioxins/isolation & purification , Sewage/chemistry , Acetonitriles/chemistry , Agriculture , Benzofurans/isolation & purification , Brazil , Cities , Gas Chromatography-Mass Spectrometry/methods , Limit of Detection , Soil Pollutants/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...