Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.934
Filter
2.
Arch Dermatol Res ; 316(6): 230, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787441

ABSTRACT

Adult acne vulgaris affects up to 43-51% of individuals. While there are numerous treatment options for acne including topical, oral, and energy-based approaches, benzoyl peroxide (BPO) is a popular over the counter (OTC) treatment. Although BPO monotherapy has a long history of efficacy and safety, it suffers from several disadvantages, most notably, skin irritation, particularly for treatment naïve patients. In this prospective, randomized, controlled, split-face study, we evaluated the comparative efficacy, safety, and tolerability of a novel 3-step azelaic acid, salicylic acid, and graduated retinol regimen versus a common OTC BPO-based regimen over 12 weeks. A total of 37 adult subjects with self-reported mild to moderate acne vulgaris were recruited. A total of 21 subjects underwent a 2-week washout period and completed the full study with 3 dropping out due to product irritation from the BPO routine, and 13 being lost to follow-up. Detailed tolerability surveys were conducted at Week 4. Additional surveys on tolerability and product preferences were collected monthly, at Week 4, Week 8, and Week 12. A blinded board-certified dermatologist objectively scored the presence and type of acne lesions (open or closed comedones, papules, pustules, nodules, and cysts) at baseline, Week 4, Week 8, and Week 12. Patients photographed themselves and uploaded the images using personal mobile phones. Detailed Week 4 survey results showed across 25 domains of user-assessed product performance, the novel routine outperformed the BPO routine in 19 (76%) which included domains in preference (e.g. "I would use this in the future) and performance ("my skin improved" and "helped my acne clear up faster"). Users of the novel routine reported less facial redness, itching, and burning, though differences did not reach statistical significance. In terms of efficacy, both products performed similarly, reducing total acne lesions by 36% (novel routine) and 40% (BPO routine) by Week 12. Overall, accounting for user preferences and tolerability the novel routine was more preferred than the BPO routine in 79% of domains (22/28). Differences in objective acne lesion reduction were not statistically significant (p = 0.97). In a randomized split-face study, a 3-step azelaic acid, salicylic acid, and graduated retinol regimen delivered similar acne lesion reduction, fewer user dropouts, greater user tolerability, and higher use preference compared to a 3-step BPO routine based in a cohort of participants with mild-to-moderate acne vulgaris.


Subject(s)
Acne Vulgaris , Benzoyl Peroxide , Dermatologic Agents , Dicarboxylic Acids , Salicylic Acid , Humans , Acne Vulgaris/drug therapy , Benzoyl Peroxide/administration & dosage , Benzoyl Peroxide/adverse effects , Benzoyl Peroxide/therapeutic use , Adult , Male , Female , Salicylic Acid/administration & dosage , Salicylic Acid/adverse effects , Salicylic Acid/therapeutic use , Prospective Studies , Young Adult , Treatment Outcome , Double-Blind Method , Dicarboxylic Acids/adverse effects , Dicarboxylic Acids/administration & dosage , Dicarboxylic Acids/therapeutic use , Dermatologic Agents/adverse effects , Dermatologic Agents/administration & dosage , Dermatologic Agents/therapeutic use , Vitamin A/administration & dosage , Vitamin A/adverse effects , Vitamin A/therapeutic use , Administration, Cutaneous , Adolescent , Severity of Illness Index , Nonprescription Drugs/administration & dosage , Nonprescription Drugs/adverse effects , Nonprescription Drugs/therapeutic use , Drug Therapy, Combination/methods
3.
Curr Probl Cardiol ; 49(7): 102637, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735347

ABSTRACT

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Hyperlipidemia, particularly elevated low-density lipoprotein cholesterol (LDL-C) is one of the major risk factors for CVD. Major landmark cardiovascular outcome clinical trials demonstrated that LDL-C lowering medications reduce cardiovascular events, and the lower the LDL-C the better the outcome. This article discusses the evolution of LDL-C lowering medications starting from bile acid sequestrants (BAS), statin therapy, bempedoic acid, the proprotein convertase subtilisin kexin 9 (PCSK9) synthesis inhibitor, novel small interfering RNA-based therapy (inclisiran) to the most recent oral PCSK9 inhibitors (MK-0616) which is currently under phase 3 clinical trial studies.


Subject(s)
Cardiovascular Diseases , Cholesterol, LDL , Humans , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/drug therapy , Cholesterol, LDL/blood , Anticholesteremic Agents/therapeutic use , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , PCSK9 Inhibitors , Dicarboxylic Acids , Fatty Acids , RNA, Small Interfering
4.
Int J Biol Macromol ; 270(Pt 1): 132076, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705324

ABSTRACT

The cross-linked enzyme (CLEs) of Thermomyces lanuginosa lipase (TLL) was prepared in an isocyanide-based multi-component reactions (ICMRs) platform by applying three di-acidic cross-linkers to unveil more factors contributing to the functional properties of CLEs. The linkers were 1,11-undecanedicarboxylic acid, azelaic acid, and adipic acid with 11, 7, and 4 carbon lengths, respectively, providing a proper tool to investigate the effect of linker length on the activity, stability, and selectivity of the resulting CLEs. The immobilization yields of 60-90 % and the specific activities of 168, 88.4 and 49 U/mg were obtained for the CLEs of 1,11-undecanedicarboxylic acid, azelaic acid, adipic acid, respectively. The lower activity of azelaic and adipic acid-mediated CLEs compared to the soluble TLL (110 U/mg) was explained by in silico calculations. The results revealed that as opposed to 1,11-undecanedicarboxylic acid, both linkers tended to penetrate the enzyme active site, thus resulting in a major inhibitory effect on the enzyme functionality. The thermal and co-solvent stability of the immobilized derivatives improved compared to those of free TLL. The selectivity of CLEs was also examined by catalytic release of main omega-3 fatty acids from fish oil, presenting the highest selectivity of 22 for the CLEs of azelaic acid.


Subject(s)
Cross-Linking Reagents , Enzymes, Immobilized , Lipase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Cross-Linking Reagents/chemistry , Enzyme Stability , Eurotiales/enzymology , Adipates/chemistry , Carbon/chemistry , Dicarboxylic Acids/chemistry
5.
Sci Total Environ ; 927: 172185, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575009

ABSTRACT

Phthalate exposure can adversely impact ovarian reserve, yet investigation on the influence of its alternative substance, the non-phthalate plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH), on ovarian reserve is very sparce. We aimed to investigate the associations of phthalate and DINCH exposure as well as their combined mixture with ovarian reserve. This present study included 657 women seeking infertility care in Jiangsu, China (2015-2018). Urine samples during enrollment prior to infertility treatment were analyzed using high-performance liquid chromatography-isotope dilution tandem mass spectrometry (UPLC-MS/MS) to quantify 17 phthalate metabolites and 3 DINCH metabolites. Multivariate linear regression models, Poisson regression models and weighted quantile sum (WQS) regression were performed to access the associations of 17 urinary phthalate metabolites and 3 DINCH metabolites with ovarian reserve markers, including antral follicle count (AFC), anti-Mullerian hormone (AMH), and follicle-stimulating hormone (FSH). We found that the most conventional phthalates metabolites (DMP, DnBP, DiBP, DBP and DEHP) were inversely associated with AFC, and the DINCH metabolites were positively associated with serum FSH levels. The WQS index of phthalate and DINCH mixtures was inversely associated with AFC (% change = -8.56, 95 % CI: -12.63, -4.31) and positively associated with FSH levels (% change =7.71, 95 % CI: 0.21, 15.78). Our findings suggest that exposure to environmental levels of phthalate and DINCH mixtures is inversely associated with ovarian reserve.


Subject(s)
Cyclohexanecarboxylic Acids , Ovarian Reserve , Phthalic Acids , Female , Humans , Ovarian Reserve/drug effects , Adult , China , Dicarboxylic Acids , Environmental Exposure/statistics & numerical data , Environmental Pollutants , Biomarkers , Infertility, Female
6.
Ann Intern Med ; 177(4): JC39, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38560908

ABSTRACT

SOURCE CITATION: Ray KK, Nicholls SJ, Li N, et al; CLEAR OUTCOMES Committees and Investigators. Efficacy and safety of bempedoic acid among patients with and without diabetes: prespecified analysis of the CLEAR Outcomes randomised trial. Lancet Diabetes Endocrinol. 2024;12:19-28. 38061370.


Subject(s)
Diabetes Mellitus , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Adult , Humans , Diabetes Mellitus/drug therapy , Dicarboxylic Acids/adverse effects , Fatty Acids/adverse effects , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects
7.
Lasers Med Sci ; 39(1): 113, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656631

ABSTRACT

PURPOSE: Melasma remains a refractory skin condition that needs to be actively explored. Azelaic acid has been used for decades as a topical agent to improve melasma through multiple mechanisms, however, there is a lack of research on its combination with laser therapy. This study evaluated the effectiveness of isolated treatment with topical 20% azelaic acid and its combination with 755-nm picosecond laser in facial melasma patients. METHODS: A randomized, evaluator-blinded, controlled study was conducted on 30 subjects with facial melasma in a single center from October 2021 to April 2022. All subjects received topical 20% azelaic acid cream (AA) for 24 weeks, and after 4 weeks, a hemiface was randomly assigned to receive 755-nm picosecond (PS) laser therapy once every 4 weeks for 3 treatments. Treatment efficacy was determined by mMASI score evaluations, dermoscopic assessment, reflectance confocal microscopy (RCM) assessments and patient's satisfaction assessments (PSA). RESULTS: Treatment with 20% azelaic acid, with or without picosecond laser therapy, significantly reduced the hemi-mMASI score (P < 0.0001) and resulted in higher patient satisfaction. Improvements in dermoscopic and RCM assessments were observed in both sides of the face over time, with no difference between the two sides. RCM exhibited better dentritic cell improvement in the combined treatment side. No patients had serious adverse effects at the end of treatment or during the follow-up period. CONCLUSION: The additional use of picosecond laser therapy showed no clinical difference except for subtle differences detected by RCM assessments.The study was registered in the Chinese Clinical Trial Registry (ChiCTR2100051294; 18 September 2021).


Subject(s)
Dicarboxylic Acids , Lasers, Solid-State , Melanosis , Humans , Melanosis/therapy , Melanosis/radiotherapy , Female , Dicarboxylic Acids/therapeutic use , Dicarboxylic Acids/administration & dosage , Adult , Middle Aged , Lasers, Solid-State/therapeutic use , Male , Treatment Outcome , Low-Level Light Therapy/methods , Dermatologic Agents/therapeutic use , Dermatologic Agents/administration & dosage , Combined Modality Therapy , Patient Satisfaction , Administration, Topical , Single-Blind Method
8.
Curr Microbiol ; 81(6): 147, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642080

ABSTRACT

Dicarboxylic acid (DCA) is a multifaceted chemical intermediate, recoursed to produce many industrially important products such as adhesives, plasticizers, lubricants, polymers, etc. To bypass the shortcomings of the chemical methods of synthesis of DCA and to reduce fossil fuel footprints, bio-based synthesis is gaining attention. In pursuit of an eco-friendly sustainable alternative method of DCA production, microbial cell factories, and renewable organic resources are gaining popularity. Among the plethora of microbial communities, yeast is being favored industrially compared to bacterial fermentation due to its hyperosmotic and low pH tolerance and flexibility for gene manipulations. By application of rapidly evolving genetic manipulation techniques, the bio-based DCA production could be made more precise and economical. To bridge the gap between supply and demand of DCA, many strategies are employed to improve the fermentation. This review briefly outlines the advancements in DCA production using yeast cell factories with the exemplification of strain improvement strategies.


Subject(s)
Dicarboxylic Acids , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Fermentation , Metabolic Engineering/methods
9.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38602263

ABSTRACT

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Subject(s)
Dicarboxylic Acids , Fungal Proteins , Furans , Lipase , Polyesters , Polymerization , Lipase/chemistry , Lipase/metabolism , Furans/chemistry , Fungal Proteins/chemistry , Dicarboxylic Acids/chemistry , Polyesters/chemistry , Polyesters/chemical synthesis , Isomerism , Basidiomycota
10.
Int J Cardiol ; 406: 132074, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38643794

ABSTRACT

BACKGROUND: The effects of bempedoic acid on mortality in the secondary prevention setting have not been examined. METHODS: We used data from the overall and primary prevention reports of CLEAR - Outcomes to reconstruct data for the secondary prevention population. A Bayesian analyses was employed to calculate the posterior probability of benefit or harm for the outcomes of all-cause mortality, cardiovascular mortality, and major adverse cardiovascular events (MACE). Relative effect sizes are presented as risk ratios (RR) with 95% credible intervals (CrI), which represent the intervals that true effect sizes are expected to fall in with 95% probability, given the priors and model. RESULTS: In primary prevention, the posterior probability of bempedoic acid decreasing all-cause and cardiovascular mortality was 99.4% (RR: 0.70; 95% CrI: 0.51 to 0.92) and 99.7% (RR: 0.58; 95% CrI: 0.38 to 0.86) respectively. In secondary prevention, the posterior probability of bempedoic acid increasing all-cause and cardiovascular mortality was 96.6% (RR: 1.15; 95% CrI: 0.99 to 1.33) and 97.2% (RR: 1.21; 95% CrI: 1.00 to 1.45) respectively. The probability of bemepdoic acid reducing MACE in the primary and secondary prevention settings was 99.9% (RR: 0.70; 95% CrI: 0.54 to 0.88) and 95.8% (RR: 0.92; 95% CrI: 0.84 to 1.01) respectively. CONCLUSION: In contrast to its effect in the primary prevention subgroup of CLEAR - Outcomes, bempedoic acid resulted in a more modest MACE reduction and a potential increase in mortality in the secondary prevention subgroup. Whether these findings represent true treatment effect heterogeneity or the play of chance requires further evidence.


Subject(s)
Cardiovascular Diseases , Dicarboxylic Acids , Fatty Acids , Primary Prevention , Secondary Prevention , Aged , Female , Humans , Male , Middle Aged , Cardiovascular Diseases/prevention & control , Cardiovascular Diseases/mortality , Dicarboxylic Acids/therapeutic use , Double-Blind Method , Primary Prevention/methods , Secondary Prevention/methods , Treatment Outcome
12.
Environ Res ; 252(Pt 2): 118847, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38582427

ABSTRACT

Growing evidence suggests that exposure to certain metabolism-disrupting chemicals (MDCs), such as the phthalate plasticizer DEHP, might promote obesity in humans, contributing to the spread of this global health problem. Due to the restriction on the use of phthalates, there has been a shift to safer declared substitutes, including the plasticizer diisononyl-cyclohexane-1,2-dicarboxylate (DINCH). Notwithstanding, recent studies suggest that the primary metabolite monoisononyl-cyclohexane-1,2-dicarboxylic acid ester (MINCH), induces differentiation of human adipocytes and affects enzyme levels of key metabolic pathways. Given the lack of methods for assessing metabolism-disrupting effects of chemicals on adipose tissue, we used metabolomics to analyze human SGSB cells exposed to DINCH or MINCH. Concentration analysis of DINCH and MINCH revealed that uptake of MINCH in preadipocytes was associated with increased lipid accumulation during adipogenesis. Although we also observed intracellular uptake for DINCH, the solubility of DINCH in cell culture medium was limited, hampering the analysis of possible effects in the µM concentration range. Metabolomics revealed that MINCH induces lipid accumulation similar to peroxisome proliferator-activated receptor gamma (PPARG)-agonist rosiglitazone through upregulation of the pyruvate cycle, which was recently identified as a key driver of de novo lipogenesis. Analysis of the metabolome in the presence of the PPARG-inhibitor GW9662 indicated that the effect of MINCH on metabolism was mediated at least partly by a PPARG-independent mechanism. However, all effects of MINCH were only observed at high concentrations of 10 µM, which are three orders of magnitudes higher than the current concentrations of plasticizers in human serum. Overall, the assessment of the effects of DINCH and MINCH on SGBS cells by metabolomics revealed no adipogenic potential at physiologically relevant concentrations. This finding aligns with previous in vivo studies and supports the potential of our method as a New Approach Method (NAM) for the assessment of adipogenic effects of environmental chemicals.


Subject(s)
Adipocytes , Adipogenesis , Cyclohexanecarboxylic Acids , Dicarboxylic Acids , Metabolomics , Humans , Metabolomics/methods , Dicarboxylic Acids/pharmacology , Dicarboxylic Acids/metabolism , Adipogenesis/drug effects , Adipocytes/drug effects , Adipocytes/metabolism , Cyclohexanecarboxylic Acids/pharmacology , Carbon/metabolism , Cell Line , Plasticizers/toxicity
13.
Plant Physiol Biochem ; 210: 108592, 2024 May.
Article in English | MEDLINE | ID: mdl-38569422

ABSTRACT

The present study investigates the phytotoxic potential of azelaic acid (AZA) on Arabidopsis thaliana roots. Effects on root morphology, anatomy, auxin content and transport, gravitropic response and molecular docking were analysed. AZA inhibited root growth, stimulated lateral and adventitious roots, and altered the root apical meristem by reducing meristem cell number, length and width. The treatment also slowed down the roots' gravitropic response, likely due to a reduction in statoliths, starch-rich organelles involved in gravity perception. In addition, auxin content, transport and distribution, together with PIN proteins' expression and localisation were altered after AZA treatment, inducing a reduction in auxin transport and its distribution into the meristematic zone. Computational simulations showed that AZA has a high affinity for the auxin receptor TIR1, competing with auxin for the binding site. The AZA binding with TIR1 could interfere with the normal functioning of the TIR1/AFB complex, disrupting the ubiquitin E3 ligase complex and leading to alterations in the response of the plant, which could perceive AZA as an exogenous auxin. Our results suggest that AZA mode of action could involve the modulation of auxin-related processes in Arabidopsis roots. Understanding such mechanisms could lead to find environmentally friendly alternatives to synthetic herbicides.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Dicarboxylic Acids , F-Box Proteins , Gravitropism , Indoleacetic Acids , Plant Roots , Receptors, Cell Surface , Arabidopsis/metabolism , Arabidopsis/drug effects , Arabidopsis/growth & development , Indoleacetic Acids/metabolism , Arabidopsis Proteins/metabolism , Plant Roots/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Gravitropism/drug effects , Dicarboxylic Acids/metabolism , F-Box Proteins/metabolism , Receptors, Cell Surface/metabolism , Binding Sites , Biological Transport/drug effects , Molecular Docking Simulation
14.
Environ Sci Technol ; 58(17): 7516-7528, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629947

ABSTRACT

Field observations of daytime HONO source strengths have not been well explained by laboratory measurements and model predictions up until now. More efforts are urgently needed to fill the knowledge gaps concerning how environmental factors, especially relative humidity (RH), affect particulate nitrate photolysis. In this work, two critical attributes for atmospheric particles, i.e., phase state and bulk-phase acidity, both influenced by ambient RH, were focused to illuminate the key regulators for reactive nitrogen production from typical internally mixed systems, i.e., NaNO3 and dicarboxylic acid (DCA) mixtures. The dissolution of only few oxalic acid (OA) crystals resulted in a remarkable 50-fold increase in HONO production compared to pure nitrate photolysis at 85% RH. Furthermore, the HONO production rates (PHONO) increased by about 1 order of magnitude as RH rose from <5% to 95%, initially exhibiting an almost linear dependence on the amount of surface absorbed water and subsequently showing a substantial increase in PHONO once nitrate deliquescence occurred at approximately 75% RH. NaNO3/malonic acid (MA) and NaNO3/succinic acid (SA) mixtures exhibited similar phase state effects on the photochemical HONO production. These results offer a new perspective on how aerosol physicochemical properties influence particulate nitrate photolysis in the atmosphere.


Subject(s)
Nitrates , Photolysis , Nitrates/chemistry , Dicarboxylic Acids/chemistry , Nitrous Acid/chemistry , Humidity , Malonates/chemistry , Air Pollutants/chemistry
15.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38466032

ABSTRACT

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Subject(s)
Bone Cements , Polyethylene Glycols , Polyethylene Glycols/pharmacology , Prospective Studies , Bone Cements/pharmacology , Calcium Phosphates/pharmacology , Polymers , Dicarboxylic Acids/pharmacology
16.
J Extracell Vesicles ; 13(4): e12427, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545803

ABSTRACT

The heterogeneity of tumour cells enables cancers to dynamically adapt to microenvironmental stresses during progression. However, the mechanism underlying the transformation and intercellular communication between heterogeneous tumour cells has remained elusive. Here, we report a "contagion model" that mediates intercellular transformation between heterogeneous tumour cells which facilitates tumour progression. Initially identifying heterogeneous expression of CXCR1, a receptor for interleukin-8, in head and neck squamous cell carcinoma (HNSCC) tumour cells, we found that CXCR1High tumour cells had higher abilities for migration and invasion. Following interleukin-8-mediated activation, CXCR1High cells transformed CXCR1Low cells into CXCR1High cells through the secretion of small extracellular vesicles (sEVs), which increased the proportion of CXCR1High cells and facilitated tumour progression. Mechanistically, we demonstrate that sEVs derived from interleukin-8-activated CXCR1High cells contain high levels of ATP citrate lyase (ACLY), which acetylates NF-κB p65 and facilitates its nuclear translocation to transcribe CXCR1 in CXCR1Low cells. That process could be inhibited by Bempedoic acid, an FDA-approved ACLY-targeted drug. Taken together, our study reveals an sEV-mediated transformation of CXCR1Low to CXCR1High cells that promotes HNSCC progression. This provides a new paradigm to explain the dynamic changes of heterogeneous tumour cells, and identifies Bempedoic acid as a potential drug for HNSCC treatment.


Subject(s)
Dicarboxylic Acids , Extracellular Vesicles , Fatty Acids , Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Interleukin-8/metabolism , Cell Line, Tumor , Extracellular Vesicles/metabolism
17.
BMC Cancer ; 24(1): 371, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528462

ABSTRACT

BACKGROUND: The need for intelligent and effective treatment of diseases and the increase in drug design costs have raised drug repurposing as one of the effective strategies in biomedicine. There are various computational methods for drug repurposing, one of which is using transcription signatures, especially single-cell RNA sequencing (scRNA-seq) data, which show us a clear and comprehensive view of the inside of the cell to compare the state of disease and health. METHODS: In this study, we used 91,103 scRNA-seq samples from 29 patients with colorectal cancer (GSE144735 and GSE132465). First, differential gene expression (DGE) analysis was done using the ASAP website. Then we reached a list of drugs that can reverse the gene signature pattern from cancer to normal using the iLINCS website. Further, by searching various databases and articles, we found 12 drugs that have FDA approval, and so far, no one has reported them as a drug in the treatment of any cancer. Then, to evaluate the cytotoxicity and performance of these drugs, the MTT assay and real-time PCR were performed on two colorectal cancer cell lines (HT29 and HCT116). RESULTS: According to our approach, 12 drugs were suggested for the treatment of colorectal cancer. Four drugs were selected for biological evaluation. The results of the cytotoxicity analysis of these drugs are as follows: tezacaftor (IC10 = 19 µM for HCT-116 and IC10 = 2 µM for HT-29), fenticonazole (IC10 = 17 µM for HCT-116 and IC10 = 7 µM for HT-29), bempedoic acid (IC10 = 78 µM for HCT-116 and IC10 = 65 µM for HT-29), and famciclovir (IC10 = 422 µM for HCT-116 and IC10 = 959 µM for HT-29). CONCLUSIONS: Cost, time, and effectiveness are the main challenges in finding new drugs for diseases. Computational approaches such as transcriptional signature-based drug repurposing methods open new horizons to solve these challenges. In this study, tezacaftor, fenticonazole, and bempedoic acid can be introduced as promising drug candidates for the treatment of colorectal cancer. These drugs were evaluated in silico and in vitro, but it is necessary to evaluate them in vivo.


Subject(s)
Colorectal Neoplasms , Dicarboxylic Acids , Drug Repositioning , Fatty Acids , Humans , Drug Repositioning/methods , HT29 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics
18.
J Agric Food Chem ; 72(11): 5555-5573, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38442481

ABSTRACT

Mid-to-long-chain dicarboxylic acids (DCAi, i ≥ 6) are organic compounds in which two carboxylic acid functional groups are present at the terminal position of the carbon chain. These acids find important applications as structural components and intermediates across various industrial sectors, including organic compound synthesis, food production, pharmaceutical development, and agricultural manufacturing. However, conventional petroleum-based DCA production methods cause environmental pollution, making sustainable development challenging. Hence, the demand for eco-friendly processes and renewable raw materials for DCA production is rising. Owing to advances in systems metabolic engineering, new tools from systems biology, synthetic biology, and evolutionary engineering can now be used for the sustainable production of energy-dense biofuels. Here, we explore systems metabolic engineering strategies for DCA synthesis in various chassis via the conversion of different raw materials into mid-to-long-chain DCAs. Subsequently, we discuss the future challenges in this field and propose synthetic biology approaches for the efficient production and successful commercialization of these acids.


Subject(s)
Dicarboxylic Acids , Metabolic Engineering , Dicarboxylic Acids/metabolism , Acids , Biofuels , Organic Chemicals
19.
Curr Opin Cardiol ; 39(4): 280-285, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38456474

ABSTRACT

PURPOSE OF REVIEW: To study the effect of bempedoic acid on markers of inflammation and lipoprotein (a) to help determine if the drug would be useful to treat patients with elevated cardiovascular risks and residual cardiovascular risk despite optimal low-density lipoprotein cholesterol (LDL-C) levels. RECENT FINDINGS: Bempedoic acid is found to cause significant reduction in LDL-C and high-sensitivity C-reactive protein (hs-CRP) in various randomized clinical trials. Multiple meta-analyses have also found that bempedoic acid therapy leads to reduction in non-high-density lipoprotein cholesterol (non-HDL-C), total cholesterol (TC) and apolipoprotein B (ApoB) levels. However, it has minimal effect on lipoprotein (a) (Lp(a)) level. SUMMARY: Bempedoic acid is a new lipid-lowering agent that inhibits enzyme ATP-citrate lyase in the cholesterol biosynthesis pathway. Major risk of cardiovascular events and its associated morbidity and mortality are proportional to LDL-C and inflammatory markers levels. It was found that bempedoic acid significantly lowers LDL-C, hs-CRP and other inflammatory markers levels. This drug could potentially be used in patients with elevated cardiovascular risk, in patients with residual cardiovascular risk despite attaining LDL-C goal and in statin intolerant patients.


Subject(s)
Biomarkers , C-Reactive Protein , Cardiovascular Diseases , Dicarboxylic Acids , Fatty Acids , Inflammation , Lipoprotein(a) , Humans , Dicarboxylic Acids/therapeutic use , Dicarboxylic Acids/pharmacology , Lipoprotein(a)/blood , Biomarkers/blood , Inflammation/drug therapy , Cardiovascular Diseases/prevention & control , Fatty Acids/therapeutic use , C-Reactive Protein/analysis , C-Reactive Protein/drug effects , Cholesterol, LDL/blood , Cholesterol, LDL/drug effects , Hypolipidemic Agents/therapeutic use , Hypolipidemic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...