Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 468: 133796, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38377905

ABSTRACT

Haloacetic acids (HAAs) are ubiquitous in drinking water and have been associated with impaired male reproductive health. However, epidemiological evidence exploring the associations between HAA exposure and reproductive hormones among males is scarce. In the current study, the urinary concentrations of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the internal exposure markers of HAAs, as well as sex hormones (testosterone [T], progesterone [P], and estradiol [E2]) were measured among 449 Chinese men. Moreover, in vitro experiments, designed to simulate the real-world scenarios of human exposure, were conducted to assess testosterone synthesis in the Leydig cell line MLTC-1 and testosterone metabolism in the hepatic cell line HepG2 in response to low-dose HAA exposure. The DCAA and TCAA urinary concentrations were found to be positively associated with urinary T, P, and E2 levels (all p < 0.001), but negatively associated with the ratio of urinary T to E2 (p < 0.05). Combined with in vitro experiments, the results suggest that environmentally-relevant doses of HAA stimulate sex hormone synthesis and steroidogenesis pathway gene expression in MLTC-1 cells. In addition, the inhibition of the key gene CYP3A4 involved in the testosterone phase Ⅰ catabolism, and induction of the gene UGT2B15 involved in testosterone phase Ⅱ glucuronide conjugation metabolism along with the ATP-binding cassette (ABC) transport genes (ABCC4 and ABCG2) in HepG2 cells could play a role in elevation of urinary hormone excretion upon low-dose exposure to HAAs. Our novel findings highlight that exposure to HAAs at environmentally-relevant concentrations is associated with increased synthesis and excretion of sex hormones in males, which potentially provides an alternative approach involving urinary hormones for the noninvasive evaluation of male reproductive health following exposure to DBPs.


Subject(s)
Disinfection , Drinking Water , Humans , Male , Trichloroacetic Acid/toxicity , Dichloroacetic Acid/analysis , Dichloroacetic Acid/urine , Steroids , Testosterone
2.
J Hazard Mater ; 466: 133035, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38266585

ABSTRACT

Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERß) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERß in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.


Subject(s)
Drinking Water , Endocrine Disruptors , Pregnancy , Female , Male , Animals , Mice , Drinking Water/chemistry , Disinfection , Dichloroacetic Acid/analysis , Trichloroacetic Acid/toxicity , Endocrine Disruptors/toxicity , Estrogen Receptor alpha , Estrogen Receptor beta
3.
Sci Total Environ ; 912: 168729, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38007137

ABSTRACT

BACKGROUND: Disinfection byproducts (DBPs) as ovarian toxicants have been documented in toxicological studies. However, no human studies have explored the effects of exposure to DBPs on diminished ovarian reserve (DOR). OBJECTIVE: To assess whether urinary biomarkers of exposure to drinking-water DBPs were associated with DOR risk. METHODS: A total of 311 women undergoing assisted reproductive technology were diagnosed with DOR in the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. The cases were matched to the controls with normal ovarian reserve function by age in a ratio of 1:1. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were quantified as biomarkers of drinking-water DBP exposures. The conditional logistic regression and restricted cubic spline (RCS) were used to explore urinary biomarkers of drinking-water DBP exposures in associations with the risk of DOR. RESULTS: Elevated urinary DCAA levels were associated with higher DOR risk [adjusted odds ratio (OR) = 1.87; 95 % confidence interval (CI): 1.16, 3.03 for the highest vs. lowest quartiles; P for trend = 0.016]. The association was confirmed in the RCS model, with a linear dose-response curve (P for overall association = 0.029 and P for non-linear association = 0.708). The subgroup analysis by age and body mass index (BMI) showed that urinary DCAA in association with DOR risk was observed among women ≥35 years old and leaner women (BMI < 24 kg/m2), but the group differences were not statistically significant. Moreover, a U-shaped dose-response curve between urinary TCAA and DOR risk was estimated in the RCS model (P for overall association = 0.011 and P for non-linear association = 0.004). CONCLUSIONS: Exposure to drinking-water DBPs may contribute to the risk of DOR among women undergoing assisted reproductive technology.


Subject(s)
Drinking Water , Ovarian Reserve , Humans , Female , Adult , Disinfection , Drinking Water/analysis , Case-Control Studies , Biomarkers/urine , Trichloroacetic Acid/analysis , Dichloroacetic Acid/analysis
4.
Ecotoxicol Environ Saf ; 266: 115582, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37862747

ABSTRACT

Standardised tests are often used to determine the ecotoxicity of chemicals and focus mainly on one or a few generic endpoints (e.g. mortality, growth), but information on the sub-cellular processes leading to these effects remain usually partial or missing. Flow cytometry (FCM) can be a practical tool to study the physiological responses of individual cells (such as microalgae) exposed to a stress via the use of fluorochromes and their morphology and natural autofluorescence. This work aimed to assess the effects of five chlorine-based disinfection by-products (DBPs) taken individually on growth and sub-cellular endpoints of the green microalgae Raphidocelis subcapitata. These five DBPs, characteristic of a chlorinated effluent, are the following monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), bromochloroacetic acid (BCAA) and 1,1-dichloropropan-2-one (1,1-DCP). Results showed that 1,1-DCP had the strongest effect on growth inhibition (EC50 = 1.8 mg.L-1), followed by MCAA, TCAA, BCAA and DCAA (EC50 of 10.1, 15.7, 27.3 and 64.5 mg.L-1 respectively). Neutral lipid content, reactive oxygen species (ROS) formation, red autofluorescence, green autofluorescence, size and intracellular complexity were significantly affected by the exposure to the five DBPs. Only mitochondrial membrane potential did not show any variation. Important cellular damages (>10%) were observed for only two of the chemicals (BCAA and 1,1-DCP) and were probably due to ROS formation. The most sensitive and informative sub-lethal parameter studied was metabolic activity (esterase activity), for which three types of response were observed. Combining all this information, an adverse outcome pathways framework was proposed to explain the effect of the targeted chemicals on R. subcapitata. Based on these results, both FCM sub-cellular analysis and conventional endpoint of algal toxicity were found to be complementary approaches.


Subject(s)
Adverse Outcome Pathways , Microalgae , Disinfection/methods , Flow Cytometry , Reactive Oxygen Species , Trichloroacetic Acid/analysis , Trichloroacetic Acid/toxicity , Dichloroacetic Acid/analysis
5.
Sci Total Environ ; 877: 162815, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921861

ABSTRACT

Harmful algal (cyanobacterial) blooms (HABs) are increasing throughout the world. HABs can be a direct source of toxins in freshwater sources, and associated algal organic matter (AOM) can act as precursors for the formation of disinfection by-products (DBPs) in drinking water. This study investigated the impacts of algae on DBP formation using treatment with chloramine, which has become a popular disinfectant in the U.S. and in several other countries because it can significantly lower the levels of regulated DBPs formed. Controlled laboratory chloraminations were conducted using live field-collected algal biomass dominated by either Phormidium sp. or Microseira wollei (formerly known as Lyngbya wollei) collected from Lake Wateree and Lake Marion, SC. Sixty-six priority, unregulated or regulated DBPs were quantified using gas chromatography (GC)-mass spectrometry (MS). The presence of HAB-dominated microbial communities in source waters led to significant increases in more toxic nitrogen-containing DBPs (1.5-5 fold) relative to lake waters collected in HAB-free waters. Compared to chlorinated Phormidium-impacted waters, chloraminated waters yielded lower total DBP levels (up to 123 µg/L vs. 586 µg/L for low Br-/I- waters), but produced a greater number of brominated, iodinated, and mixed halogenated DBPs in high Br-/I- waters. Among the DBPs formed in Phormidium-impacted chloraminated waters, dichloroacetic acid, trichloromethane, chloroacetic acid, chloropropanone, and dichloroacetamide were dominant. For Microseira wollei-impacted chloraminated waters, total DBP concentrations ranged from 33 to 145 µg/L (approximately 3-5 times lower than chlorination), with dichloroacetic acid, dichloroacetamide, and trichloromethane dominant. Overall, chloramination significantly reduced calculated cytotoxicity and genotoxicity in low Br- and I- waters, but produced 1.3 fold higher calculated cytotoxicity (compared to chlorine) with high Br-/I- waters due to increased formation of more toxic iodo- and mixed halogenated DBPs.


Subject(s)
Disinfectants , Drinking Water , Water Pollutants, Chemical , Water Purification , Drinking Water/chemistry , Chloroform/analysis , Dichloroacetic Acid/analysis , Water Purification/methods , Disinfectants/analysis , Disinfection/methods , Halogenation , Water Pollutants, Chemical/analysis
6.
Environ Technol ; 43(10): 1544-1550, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33089761

ABSTRACT

Significant health risks are caused by trace levels of haloacetic acids (HAAs) in drinking water. We used graphene oxide (GO), a high-performance absorbent, to remove monochloroacetic acid (MCAA), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA). 31.6%, 27.1% and 30.2% of MCAA, DCAA and TCAA in drinking water could be rapidly removed within 2 min by the interaction of intermolecular hydrogen bonds between GO and HAAs. On the other hand, as a type of weak interaction, intermolecular hydrogen bonds are easy to fracture, which leads to the recovery of GO. The removal efficiency of MCAA, DCAA and TCAA monotonously decreased with increasing pH from 3 to 11. Temperature was not an important influence on the removal efficiency of HAAs, and only affected the interaction of intermolecular hydrogen bonds between GO and HAAs. A continuous adsorption process was used for further improving the removal efficiency of HAAs, and the concentration of total HAAs decreased from 436 to 52.5 µg L-1 after five adsorption processes. The total contact time was just 2.25 min, which was faster than other reported adsorbents, and total HAAs could be decreased by 88%. The innovative process in this study provides an effective method for application of GO to rapidly remove HAAs in drinking water.


Subject(s)
Drinking Water , Graphite , Water Pollutants, Chemical , Acetates/chemistry , Adsorption , Dichloroacetic Acid/analysis , Drinking Water/chemistry , Water Pollutants, Chemical/chemistry
7.
Chemosphere ; 242: 125227, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31704522

ABSTRACT

It is crucial to explore the source, formation process and interdependence of disinfection byproducts (DBPs) to reduce their risk on public health. In this investigation, a source water was chlorinated to evaluate the initial formation rates and the maximum yields of trichloromethane (TCM), dichloroacetic acid (DCAA), and trichloroacetic acid (TCAA) based on a hyperbola model. The results showed that TCM achieved the highest initial formation rate and maximum theoretical concentration compared with DCAA and TCAA. The TCM yield can be used to forecast the yields of DCAA and TCAA throughout the whole reaction process, and the yields of chloral hydrate (CH), dichloroacetonitrile (DCAN) and 1,1,1-trichloropropanone (1,1,1-TCP) within the initial reaction stage. Besides, the raw water, settled water and filtered water collected from a drinking water treatment plant were divided into five fractions, respectively, by ultrafiltration membranes to evaluate their DBP formation after chlorination. Compared with the medium molecular weight species, high and low molecular weight organic matters exhibited relatively high specific regulated and unregulated DBP yields (expressed as µg/mg C), respectively. Humic acid-like compositions predominantly contributed to regulated DBP yields, while soluble microbial by-product-like compounds preferentially generated DCAN. The correlation study revealed that the TCM could also serve as an indicator for the measured DBPs from chlorination of sample fractions with different molecular weight. Finally, it was found that the theoretical cytotoxicity was enhanced during chlorination of filtered water compared with chlorination of settled water.


Subject(s)
Disinfectants/chemistry , Disinfection/methods , Drinking Water/chemistry , Halogenation , Water Purification/methods , Acetonitriles/analysis , Chloroform/analysis , Dichloroacetic Acid/analysis , Disinfectants/analysis , Drinking Water/analysis , Humic Substances/analysis , Trichloroacetic Acid/analysis , Ultrafiltration/adverse effects , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 651(Pt 2): 1735-1741, 2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30316091

ABSTRACT

People are exposed to chlorinated by-products (CBPs) through the consumption of cold tap water (CTW) (ingestion, inhalation, dermal contact) but also through the use of hot tap water (HTW) in such activities as showering and bathing (inhalation, dermal contact). This study focuses on the impact of residential water heating on CBP levels in tap water. Trihalomethane (THM) and haloacetic acid (HAA) levels were measured in the CTW and HTW of 50 residences located in two distribution systems supplied by chlorinated surface water during summer and winter. Results show important differences between CBP levels measured in cold and hot tap water. However, the magnitude of changes differs according to the specific species of THMs and HAAs, the season, the distribution system and the location within the same distribution system. Residential water heating led to an increase in average THM levels for the two distribution systems studied, which tended to be greater in winter. Residential water heating affected the two main HAA species found in the area studied (dichloroacetic (DCAA) and trichloroacetic (TCAA) acids) differently. In fact, the average DCAA levels increased due to water residential heating while a small change in average levels was observed for TCAA. However, the water heating impact on HAAs (in terms of importance and sometimes of tendency (increase vs. decrease)) may also differed between residences. The influence of seasons on the change in the average DCAA and TCAA levels (in µg/L) from residential water heating was not statistically significant except for TCAA levels in one distribution system. Results show the importance of considering site-specific characteristics of CTW (CBP level, temperature, residual chlorine, etc.) to estimate the levels of CBPs in HTW in CBP exposure assessment studies (and not to generalize for an entire population). The reported data can thus be useful in assessing for exposure to DBPs in epidemiological studies.


Subject(s)
Dichloroacetic Acid/analysis , Disinfectants/analysis , Drinking Water/analysis , Heating , Trichloroacetic Acid/analysis , Trihalomethanes/analysis , Water Pollutants, Chemical/analysis , Environmental Monitoring , Halogenation , Quebec
9.
Med Hypotheses ; 122: 206-209, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30593413

ABSTRACT

Dichloroacetate (DCA) is a promising safe anticancer drug that cured a patient with chemoresistant non-Hodgkin's lymphoma and treated lactic acidosis effectively. The well-known mechanism of DCA action is through stimulating Krebs cycle (stimulating pyruvate dehydrogenase via inhibiting pyruvate dehydrogenase kinase). This prevents lactate formation (Warburg effect) depriving cancer cells of lactate-based benefits e.g. angiogenesis, chemoresistance and radioresistance. Here, we introduce novel evidence-based hypotheses to explain DCA-induced anticancer effects. On pharmacological and biochemical bases, we hypothesize that DCA is a structural antagonist of acetate competing with it for target enzymes and biological reactions. We hypothesize that DCA exerts its anticancer effects via depriving cancer of acetate benefits. We hypothesize also that acetate is an antidote of DCA capable of treating DCA toxicity. Many reports support our hypotheses. Acetate is vital for cancer cells (tumors depend on acetate) and DCA is structurally similar to acetate. DCA exerts opposite effects to acetate. Acetate caused a decrease in serum potassium, phosphorus and glucose, and an increase in serum lactate, citrate, free fatty acids and ketone bodies (serum acetoacetate and beta-hydroxybutyrate levels). Acetate decreased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart. DCA produced quite opposite effects. Intravenous infusion of acetate produced metabolic alkalemia while DCA caused minimal effects on acid-base status. Acetate is important for cancer cells metabolism and survival as elevated acetate can drive resistance to targeted cancer treatments. Acetate is required for epidermal growth factor receptor vIII mutation in lethal brain tumors. Experimentally, DCA inhibited acetate oxidation in hearts of normal rats and reversed inhibitory effects of acetate on the oxidation of glucose. During presence of DCA with no glucose in heart perfusions with [1-14C]acetate, DCA decreased the specific radioactivity of acetyl CoA and its product citrate. This proves our hypotheses that DCA is an antimetabolite that antagonizes acetate for vital reactions in cancer cells. Acetate may be used as an antidote to combat DCA toxicity.


Subject(s)
Dichloroacetic Acid/analysis , Evidence-Based Medicine , Neoplasms/metabolism , Acetates/antagonists & inhibitors , Acetates/chemistry , Acetyl Coenzyme A , Animals , Antineoplastic Agents/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Chlorides , Dichloroacetic Acid/toxicity , Glioblastoma/pathology , Heart/drug effects , Humans , Ketones , Lactic Acid/chemistry , Models, Theoretical , Neoplasms/drug therapy , Oxygen/chemistry , Perfusion , Rats
10.
J Occup Environ Med ; 60(2): 109-119, 2018 02.
Article in English | MEDLINE | ID: mdl-29023340

ABSTRACT

OBJECTIVE: The aim of this study was to examine associations between craniofacial birth defects (CFDs) and disinfection by-product (DBP) exposures, including the sum of four trihalomethanes (THM4) and five haloacetic acids (HAA5) (ie, DBP9). METHODS: We calculated first trimester adjusted odds ratios (aORs) for different DBPs in a matched case-control study of 366 CFD cases in Massachusetts towns with complete 1999 to 2004 THM and HAA data. RESULTS: We detected elevated aORs for cleft palate with DBP9 (highest quintile aOR = 3.52; 95% CI: 1.07, 11.60), HAA5, trichloroacetic acid (TCAA), and dichloroacetic acid. We detected elevated aORs for eye defects with TCAA and chloroform. CONCLUSION: This is the first epidemiological study of DBPs to examine eye and ear defects, as well as HAAs and CFDs. The associations for cleft palate and eye defects highlight the importance of examining specific defects and DBPs beyond THM4.


Subject(s)
Craniofacial Abnormalities/epidemiology , Dietary Exposure/statistics & numerical data , Disinfectants/analysis , Drinking Water/chemistry , Prenatal Exposure Delayed Effects/epidemiology , Abnormalities, Multiple/epidemiology , Acetates/analysis , Adult , Case-Control Studies , Chloroform/analysis , Cleft Lip/epidemiology , Cleft Palate/epidemiology , Dichloroacetic Acid/analysis , Ear/abnormalities , Eye Abnormalities/epidemiology , Female , Humans , Infant, Newborn , Male , Pregnancy , Pregnancy Trimester, First , Trichloroacetic Acid/analysis , Trihalomethanes/analysis , Water Purification , Young Adult
11.
Chemosphere ; 161: 19-26, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27411032

ABSTRACT

Water disinfection plays a crucial role in water safety but it is also a matter of concern as the use of disinfectants promotes the formation of disinfection by-products (DBPs). Haloacetic acids (HAAs) are one of the major classes of DBPs since they are frequently found in treated water, are ubiquitous, pervasive and have high water solubility, so a great concern emerged about their formation, occurrence and toxicity. Exposure to HAAs is influenced by consumption patterns and diet of individuals thus their bioavailability is an important parameter to the overall toxicity. In the current study the bioacessibility of the most representative HAAs (chloroacetic acid - MCAA, bromoacetic acid - MBAA, dichloroacetic acid - DCAA, dibromoacetic acid - DBAA, and trichloroacetic acid - TCAA) after simulated in vitro digestion (SIVD) in tap water and transport across Caco-2 monolayers was evaluated. Compounds were monitored in 8 points throughout the digestion phases by an optimized LC-MS/MS methodology. MCAA and MBAA were not bioaccessible after SIVD whereas DCAA, DBAA and TCAA are highly bioaccessible (85 ± 4%, 97 ± 4% and 106 ± 7% respectively). Concerning transport assays, DCAA and DBAA were highly permeable throughout the Caco-2 monolayer (apparent permeability and calculated fraction absorbed of 13.62 × 10(-6) cm/s and 90% for DCAA; and 8.82 × 10(-6) cm/s and 84% for DBAA), whereas TCAA showed no relevant permeability. The present results may contribute to efficient risk analysis studies concerning HAAs oral exposure from tap water taking into account the different biological behaviour of these chemically similar substances.


Subject(s)
Acetates/metabolism , Cell Membrane Permeability/drug effects , Drinking Water/standards , Water Pollutants, Chemical/metabolism , Water Purification/methods , Acetates/analysis , Caco-2 Cells , Dichloroacetic Acid/analysis , Dichloroacetic Acid/metabolism , Disinfection , Drinking Water/chemistry , Humans , Tandem Mass Spectrometry , Trichloroacetic Acid/analysis , Trichloroacetic Acid/metabolism , Water Pollutants, Chemical/analysis , Water Supply
12.
Food Chem ; 204: 306-313, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-26988506

ABSTRACT

Cheese can contain regulated disinfection by-products (DBPs), mainly through contact with brine solutions prepared in disinfected water or sanitisers used to clean all contact surfaces, such as processing equipment and tanks. This study has focused on the possible presence of up to 10 trihalomethanes (THMs) and 13 haloacetic acids (HAAs) in a wide range of European cheeses. The study shows that 2 THMs, (in particular trichloromethane) and 3 HAAs (in particular dichloroacetic acid) can be found at µg/kg levels in the 56 cheeses analysed. Of the two types of DBPs, HAAs were generally present at higher concentrations, due to their hydrophilic and non-volatile nature. Despite their different nature (THMs are lipophilic), both of them have an affinity for fatty cheeses, increasing their concentrations as the percentage of water decreased because the DBPs were concentrated in the aqueous phase of the cheeses.


Subject(s)
Cheese/analysis , Disinfectants/analysis , Dichloroacetic Acid/analysis , Disinfection , Food Contamination/analysis , Trihalomethanes/analysis
13.
Sci Total Environ ; 541: 58-64, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26398451

ABSTRACT

A biologically activate carbon (BAC) filter was continuously operated on site for the treatment of haloacetic acids (HAAs) in an outdoor swimming pool at an average empty bed contact time (EBCT) of 5.8 min. Results showed that BAC filtration was a viable technology for direct removal of HAAs from the pool water with a nominal efficiency of 57.7% by the filter while the chlorine residuals were 1.71 ± 0.90 mg/L during the study. THMs and TOC were not removed and thus were not considered as indicators of the effectiveness of BAC filtration. Increased EBCT in the range of 4.5 and 6.4 min led to improved HAA removal performance, which could be best fit by a logarithmic regression model. BAC filtration also affected the HAA speciation by removing more dichloroacetic acid (DCAA) than trichloroacetic acid (TCAA), resulting in a lower ratio of DCAA/TCAA in the filtered effluent. However, the observation of an overall constant ratio could be attributable to a complex formation and degradation mechanism occurring in swimming pools.


Subject(s)
Charcoal/chemistry , Chloroacetates/analysis , Filtration/methods , Swimming Pools , Water Pollutants, Chemical/analysis , Water Purification/methods , Chloroacetates/chemistry , Dichloroacetic Acid/analysis , Dichloroacetic Acid/chemistry , Disinfection , Trichloroacetic Acid , Water Pollutants, Chemical/chemistry
14.
Food Chem ; 173: 685-93, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466077

ABSTRACT

Water used in a food factory is frequently disinfected with chlorine, which originates disinfection by-products: haloacetic acids (HAAs) make up the second most prevalent class of these products. In this paper we propose the first static HS-GC-MS method developed for direct HAA determination in beverages; the method has higher sensitivity, simplicity and reliability than the only alternative available in the literature. From 150 beverages analysed, it is possible to conclude that at least 2 HAAs (dichloro- and trichloroacetic acids, DCAA and TCAA) are always present in beverages prepared with treated water, which remains constant for 2 or 3 months in the beverages. Moreover, beverages of 100% fruit juices and soft drinks prepared with mineral water (free of HAAs) do not contain any HAA at significant values. Therefore, DCAA and TCAA may indicate of the presence of treated water in beverages.


Subject(s)
Beverages/analysis , Carbonated Beverages/analysis , Dichloroacetic Acid/analysis , Fruit/chemistry , Trichloroacetic Acid/analysis , Disinfection , Gas Chromatography-Mass Spectrometry , Water Purification
15.
Environ Sci Technol ; 48(1): 139-48, 2014.
Article in English | MEDLINE | ID: mdl-24299068

ABSTRACT

Dissolved organic matter (DOM) represents the major pool of organic precursors for harmful disinfection byproducts, such as haloacetic acids (HAAs), formed during drinking water chlorination, but much of it remains molecularly uncharacterized. Knowledge of model precursors is thus a prerequisite for understanding the more complex whole water DOM. The utility of HAA formation potential data from model DOM precursors, however, is limited due to the lack of comparability to water samples. In this study, the formation kinetics of dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two predominant HAA species, were delineated upon chlorination of seventeen model DOM precursors and sixty-eight inland lake water samples collected from the Upper Midwest region of the United States. Of particular interest was the finding that the DCAA and TCAA formation rate constants could be grouped into four statistically distinct clusters reflecting the core structural features of model DOM precursors (i.e., non-ß-diketone aliphatics, ß-diketone aliphatics, non-ß-diketone phenolics, and ß-diketone phenolics). A comparative approach built upon hierarchical cluster analysis was developed to gain further insight into the chlorine reactivity patterns of HAA precursors in inland lake waters as defined by the relative proximity to four model precursor clusters. This work highlights the potential for implementing an integrated kinetic-clustering approach to constrain the chlorine reactivity of DOM in source waters.


Subject(s)
Chlorine/chemistry , Dichloroacetic Acid/chemistry , Lakes/chemistry , Models, Chemical , Trichloroacetic Acid/chemistry , Water Pollutants, Chemical/chemistry , Cluster Analysis , Dichloroacetic Acid/analysis , Disinfection , Environment , Halogenation , Kinetics , Midwestern United States , Trichloroacetic Acid/analysis , Water Pollutants, Chemical/analysis , Water Supply
16.
Environ Sci Technol ; 47(20): 11584-91, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24044418

ABSTRACT

This paper demonstrates that disinfection byproducts (DBP) concentration profiles in heated water were quite different from the DBP concentrations in the cold tap water. Chloroform concentrations in the heated water remained constant or even decreased slightly with increasing distribution system water age. The amount of dichloroacetic acid (DCAA) was much higher in the heated water than in the cold water; however, the maximum levels in heated water with different distribution system water ages did not differ substantially. The levels of trichloroacetic acid (TCAA) in the heated water were similar to the TCAA levels in the tap water, and a slight reduction was observed after the tap water was heated for 24 h. Regardless of water age, significant reductions of nonregulated DBPs were observed after the tap water was heated for 24 h. For tap water with lower water ages, there were significant increases in dichloroacetonitrile (DCAN), chloropicrin (CP), and 1,1-dichloropropane (1,1-DCP) after a short period of heating. Heating of the tap water with low pH led to a more significant increase of chloroform and a more significant short-term increase of DCAN. High pH accelerated the loss of the nonregulated DBPs in the heated water. The results indicated that as the chlorine doses increased, levels of chloroform and DCAA in the heated water increased significantly. However, for TCAA, the thermally induced increase in concentration was only notable for the chlorinated water with very high chlorine dose. Finally, heating may lead to higher DBP concentrations in chlorinated water with lower distribution system temperatures.


Subject(s)
Chlorine/analysis , Disinfection , Temperature , Water Supply , Water/chemistry , Acetates/analysis , Acetonitriles/analysis , Dichloroacetic Acid/analysis , Drinking Water , Halogenation , Hydrogen-Ion Concentration , Propane/analysis , Time Factors , Trichloroacetic Acid/analysis
17.
J Sep Sci ; 36(21-22): 3635-43, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24019225

ABSTRACT

In this study, we propose a simple strategy based on flow injection and field-amplified sample-stacking CE-ESI-MS/MS to analyze haloacetic acids (HAAs) in tap water. Tap water was passed through a desalination cartridge before field-amplified sample-stacking CE-ESI-MS/MS analysis to reduce sample salinity. With this treatment, the signals of the HAAs increased 300- to 1400-fold. The LODs for tap water analysis were in the range of 10 to 100 ng/L, except for the LOD of monochloroacetic acid (1 µg/L in selected-ion monitoring mode detection). The proposed method is fast, convenient, and sensitive enough to perform on-line analysis of five HAAs in the tap water of Taipei City. Four HAAs, including trichloroacetic acid, dichloroacetic acid, dibromoacetic acid, and monobromoacetic acid, were detected at concentrations of approximately 1.74, 1.15, 0.16, and 0.15 ppb, respectively.


Subject(s)
Acetates/analysis , Dichloroacetic Acid/analysis , Trichloroacetic Acid/analysis , Water Supply/analysis , Electrophoresis, Capillary , Spectrometry, Mass, Electrospray Ionization
18.
Environ Sci Pollut Res Int ; 20(10): 7152-66, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23852584

ABSTRACT

Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.


Subject(s)
Disinfectants/analysis , Disinfection/methods , Drinking Water/chemistry , Models, Chemical , Water Pollutants, Chemical/analysis , Water Purification/methods , Chlorine/analysis , Dichloroacetic Acid/analysis , Egypt , Environmental Monitoring , Humans , Trichloroacetic Acid/analysis , Trihalomethanes/analysis
19.
Sci Total Environ ; 447: 108-15, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23376522

ABSTRACT

Disinfection byproducts were measured in the finished drinking water from ten water treatment plants in three Chinese cities - Guangzhou, Foshan and Zhuhai. A total of 155 water samples were collected in 2011 and 2012. The median (range) of trihalomethane (THM) and haloacetic acid (HAA) levels were 17.7 (0.7-62.7) µg/L and 8.6 (0.3-81.3) µg/L, respectively. Chloroform, dichloroacetic acid and trichloroacetic acid were the dominant species observed in Guangzhou and Foshan water, while brominated THMs predominated in water from Zhuhai. Haloacetonitriles, haloketones, chloral hydrate and trichloronitromethane were usually detected at levels ranging from unquantifiable (<0.2µg/L) to 12.2µg/L (choral hydrate). THMs and HAAs showed clear seasonal variations with the total concentrations higher in winter than in summer. Correlations among DBP levels varied, with the strongest linear correlation observed between chloroform and chloral hydrate levels (R(2)=0.77). The risk of cancer from ingestion, inhalation and dermal contact exposure to THMs was estimated. CHCl2Br contributed the highest percentage of the cancer risk from ingestion pathway and CHCl3 contributed the highest of cancer risk from inhalation pathway.


Subject(s)
Disinfectants/analysis , Drinking Water/analysis , Neoplasms/chemically induced , Water Pollutants, Chemical/analysis , China , Chloroform/analysis , Chloroform/toxicity , Cities , Dichloroacetic Acid/analysis , Dichloroacetic Acid/toxicity , Disinfectants/toxicity , Disinfection , Drinking Water/chemistry , Humans , Neoplasms/etiology , Public Health , Risk Assessment , Rivers , Seasons , Trichloroacetic Acid/analysis , Trichloroacetic Acid/toxicity , Trihalomethanes/analysis , Trihalomethanes/toxicity , Water Pollutants, Chemical/toxicity
20.
Chemosphere ; 90(4): 1563-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23079162

ABSTRACT

An innovative haloacetic acid (HAA) removal process was developed. The process consisted of a zero-valent iron (Fe(0)) column followed by a biologically active carbon (BAC) column that were efficient in degrading tri- and di-HAAs, and mono- and di-HAAs, respectively. The merit of the process was demonstrated by its performance in removing trichloroacetic acid (TCAA). An empty bed contact time of 10 min achieved nearly complete removal of 1.2 µM TCAA and its subsequent products, dichloroacetic acid (DCAA) and monochloroacetic acid (MCAA). HAA removal was a result of chemical dehalogenation and biodegradation rather than physical adsorption. Preliminary kinetic analyses were conducted and the pseudo-first-order rate constants were estimated at ambient conditions for Fe(0) reduction of TCAA and biodegradation of DCAA and MCAA by BAC. This innovative process is highly promising in removing HAAs from drinking water, swimming pool water, and domestic or industrial wastewater.


Subject(s)
Charcoal/chemistry , Chloroacetates/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Adsorption , Chloroacetates/analysis , Dichloroacetic Acid/analysis , Dichloroacetic Acid/chemistry , Kinetics , Trichloroacetic Acid/analysis , Trichloroacetic Acid/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...