Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Drug Metab Dispos ; 48(11): 1217-1223, 2020 11.
Article in English | MEDLINE | ID: mdl-32873593

ABSTRACT

Glutathione transferase zeta 1 (GSTZ1), expressed in liver and several extrahepatic tissues, catalyzes dechlorination of dichloroacetate (DCA) to glyoxylate. DCA inactivates GSTZ1, leading to autoinhibition of its metabolism. DCA is an investigational drug for treating several congenital and acquired disorders of mitochondrial energy metabolism, including cancer. The main adverse effect of DCA, reversible peripheral neuropathy, is more common in adults treated long-term than in children, who metabolize DCA more quickly after multiple doses. One dose of DCA to Sprague Dawley rats reduced GSTZ1 expression and activity more in liver than in extrahepatic tissues; however, the effects of multiple doses of DCA that mimic its therapeutic use have not been studied. Here, we examined the expression and activity of GSTZ1 in cytosol and mitochondria of liver, kidney, heart, and brain 24 hours after completion of 8-day oral dosing of 100 mg/kg per day sodium DCA to juvenile and adult Sprague Dawley rats. Activity was measured with DCA and with 1,2-epoxy-3-(4-nitrophenoxy)propane (EPNPP), reported to be a GSTZ1-selective substrate. In DCA-treated rats, liver retained higher expression and activity of GSTZ1 with DCA than other tissues, irrespective of rodent age. DCA-treated juvenile rats retained more GSTZ1 activity with DCA than adults. Consistent with this finding, there was less measurable DCA in tissues of juvenile than adult rats. DCA-treated rats retained activity with EPNPP, despite losing over 98% of GSTZ1 protein. These data provide insight into the differences between children and adults in DCA elimination under a therapeutic regimen and confirm that the liver contributes more to DCA metabolism than other tissues. SIGNIFICANCE STATEMENT: Dichloroacetate (DCA) is one of few drugs exhibiting higher clearance from children than adults, after repeated doses, for reasons that are unclear. We hypothesized that juveniles retain more glutathione transferase zeta 1 (GSTZ1) than adults in tissues after multiple DCA doses and found this was the case for liver and kidney, with rat as a model to assess GSTZ1 protein expression and activity with DCA. Although 1,2-epoxy-3-(4-nitrophenoxy)propane was reported to be a selective GSTZ1 substrate, its activity was not reduced in concert with GSTZ1 protein.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Glutathione Transferase/antagonists & inhibitors , Liver/drug effects , Adult , Age Factors , Animals , Child , Dichloroacetic Acid/administration & dosage , Dose-Response Relationship, Drug , Energy Metabolism/drug effects , Epoxy Compounds/pharmacokinetics , Female , Glutathione Transferase/metabolism , Humans , Liver/metabolism , Male , Mitochondrial Diseases/drug therapy , Models, Animal , Nitrophenols/pharmacokinetics , Rats
2.
Integr Cancer Ther ; 19: 1534735420911437, 2020.
Article in English | MEDLINE | ID: mdl-32248711

ABSTRACT

Dichloroacetate (DCA) is a metabolic modulator that inhibits pyruvate dehydrogenase activity and promotes the influx of pyruvate into the tricarboxylic acid cycle for complete oxidation of glucose. DCA stimulates oxidative phosphorylation (OXPHOS) more than glycolysis by altering the morphology of the mitochondria and supports mitochondrial apoptosis. As a consequence, DCA induces apoptosis in cancer cells and inhibits the proliferation of cancer cells. Recently, the role of miRNAs has been reported in regulating gene expression at the transcriptional level and also in reprogramming energy metabolism. In this article, we indicate that DCA treatment leads to the upregulation of let-7a expression, but DCA-induced cancer cell death is independent of let-7a. We observed that the combined effect of DCA and let-7a induces apoptosis, reduces reactive oxygen species generation and autophagy, and stimulates mitochondrial biogenesis. This was later accompanied by stimulation of OXPHOS in combined treatment and was thus involved in metabolic reprogramming of MDA-MB-231 cells.


Subject(s)
Cell Death , Dichloroacetic Acid/pharmacokinetics , MicroRNAs/genetics , Oxidative Phosphorylation/drug effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase , Apoptosis/drug effects , Cell Death/drug effects , Cell Death/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation, Neoplastic , Glucose/metabolism , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism , Up-Regulation
3.
Pharmacol Res Perspect ; 7(6): e00526, 2019 12.
Article in English | MEDLINE | ID: mdl-31624634

ABSTRACT

Dichloroacetate (DCA) is an investigational drug targeting the glycolytic hallmark of cancer by inhibiting pyruvate dehydrogenase kinases (PDK). It is metabolized by GSTZ1, which has common polymorphisms altering enzyme or promoter activity. GSTZ1 is also irreversibly inactivated by DCA. In the first clinical trial of DCA in a hematological malignancy, DiCAM (DiChloroAcetate in Myeloma), we have examined the relationship between DCA concentrations, GSTZ1 genotype, side effects, and patient response. DiCAM recruited seven myeloma patients in partial remission. DCA was administered orally for 3 months with a loading dose. Pharmacokinetics were performed on day 1 and 8. Trough and peak concentrations of DCA were measured monthly. GSTZ1 genotypes were correlated with drug concentrations, tolerability, and disease outcomes. One patient responded and two patients showed a partial response after one month of DCA treatment, which included the loading dose. The initial half-life of DCA was shorter in two patients, correlating with heterozygosity for GSTZ1*A genotype, a high enzyme activity variant. Over 3 months, one patient maintained DCA trough concentrations approximately threefold higher than other patients, which correlated with a low activity promoter genotype (-1002A, rs7160195) for GSTZ1. This patient displayed the strongest response, but also the strongest neuropathy. Overall, serum concentrations of DCA were sufficient to inhibit the constitutive target PDK2, but unlikely to inhibit targets induced in cancer. Promoter GSTZ1 polymorphisms may be important determinants of DCA concentrations and neuropathy during chronic treatment. Novel dosing regimens may be necessary to achieve effective DCA concentrations in most cancer patients while avoiding neuropathy.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Drug Resistance, Neoplasm/genetics , Glutathione Transferase/genetics , Multiple Myeloma/drug therapy , Peripheral Nervous System Diseases/genetics , Administration, Oral , Aged , Dichloroacetic Acid/administration & dosage , Dichloroacetic Acid/adverse effects , Drugs, Investigational/administration & dosage , Drugs, Investigational/adverse effects , Drugs, Investigational/pharmacokinetics , Female , Genotype , Glutathione Transferase/metabolism , Half-Life , Humans , Male , Middle Aged , Multiple Myeloma/blood , Multiple Myeloma/genetics , Peripheral Nervous System Diseases/chemically induced , Polymorphism, Single Nucleotide , Promoter Regions, Genetic/genetics , Prospective Studies , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/adverse effects , Protein Kinase Inhibitors/pharmacokinetics , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/antagonists & inhibitors , Pyruvate Dehydrogenase Acetyl-Transferring Kinase/metabolism
4.
Int Rev Neurobiol ; 145: 211-238, 2019.
Article in English | MEDLINE | ID: mdl-31208525

ABSTRACT

Dichloroacetate (DCA) has been the focus of research by both environmental toxicologists and biomedical scientists for over 50 years. As a product of water chlorination and a metabolite of certain industrial chemicals, DCA is ubiquitous in our biosphere at low µg/kg body weight daily exposure levels without obvious adverse effects in humans. As an investigational drug for numerous congenital and acquired diseases, DCA is administered orally or parenterally, usually at doses of 10-50mg/kg per day. As a therapeutic, its principal mechanism of action is to inhibit pyruvate dehydrogenase kinase (PDK). In turn, PDK inhibits the key mitochondrial energy homeostat, pyruvate dehydrogenase complex (PDC), by reversible phosphorylation. By blocking PDK, DCA activates PDC and, consequently, the mitochondrial respiratory chain and ATP synthesis. A reversible sensory/motor peripheral neuropathy is the clinically limiting adverse effect of chronic DCA exposure and experimental data implicate the Schwann cell as a toxicological target. It has been postulated that stimulation of PDC and respiratory chain activity by DCA in normally glycolytic Schwann cells causes uncompensated oxidative stress from increased reactive oxygen species production. Additionally, the metabolism of DCA interferes with the catabolism of the amino acids phenylalanine and tyrosine and with heme synthesis, resulting in accumulation of reactive molecules capable of forming adducts with DNA and proteins and also resulting in oxidative stress. Preliminary evidence in rodent models of peripheral neuropathy suggest that DCA-induced neurotoxicity may be mitigated by naturally occurring antioxidants and by a specific class of muscarinic receptor antagonists. These findings generate a number of testable hypotheses regarding the etiology and treatment of DCA peripheral neuropathy.


Subject(s)
Dichloroacetic Acid/toxicity , Peripheral Nervous System Diseases/chemically induced , Animals , Antioxidants/pharmacology , Dichloroacetic Acid/pharmacokinetics , Dichloroacetic Acid/pharmacology , Dichloroacetic Acid/therapeutic use , Humans , Muscarinic Antagonists/pharmacology , Peripheral Nervous System Diseases/prevention & control
5.
Genet Test Mol Biomarkers ; 22(4): 266-269, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29641284

ABSTRACT

AIMS: Dichloroacetate (DCA) represents the first targeted therapy for pyruvate dehydrogenase complex deficiency; it is metabolized by glutathione transferase zeta1 (GSTZ1). Variation in the GSTZ1 haplotype is the principal variable influencing DCA kinetics and dynamics in humans. We aimed to develop a sensitive and rapid clinical genetic screening test for determining GSTZ1 haplotype status in individuals who would be treated with DCA, and then apply the test for the investigation of the plasma pharmacokinetics (PK) of DCA as a function of GSTZ1 haplotype. MATERIALS AND METHODS: DNA samples from 45 healthy volunteer study participants were genotyped for three functional GSTZ1 single nucleotide polymorphisms (rs7975, rs7972, and rs1046428) by TaqMan®. Prior studies showed that subjects with at least one EGT haplotype (EGT carrier) metabolized DCA faster than EGT noncarriers. The clinical genetic test for GSTZ1 was developed and validated at our CLIA-certified Clinical Laboratory. Four fast metabolizer EGT carriers and four slow metabolizer EGT noncarriers were selected to complete a standard PK study. Each participant received a single oral dose of 25 mg/kg of DCA (IND 028625) for 5 days. RESULTS: The EGT haplotype carrier group demonstrated significantly faster metabolism of DCA and higher rates of plasma DCA clearance after 5 days of drug exposure compared with EGT noncarriers (p = 0.04). CONCLUSIONS: These preliminary data establish the validity and practicality of our rapid genotyping/haplotyping procedure for genetic-based DCA dosing to mitigate or prevent adverse effects in patients treated chronically with this drug.


Subject(s)
Dichloroacetic Acid/therapeutic use , Genotype , Glutathione Transferase/genetics , Precision Medicine , Adolescent , Adult , Aged , Dichloroacetic Acid/administration & dosage , Dichloroacetic Acid/pharmacokinetics , Female , Haplotypes , Humans , Male , Middle Aged , Reference Values , Reproducibility of Results , Young Adult
6.
J Pharm Sci ; 106(5): 1396-1404, 2017 05.
Article in English | MEDLINE | ID: mdl-28163135

ABSTRACT

Dichloroacetic acid (DCA), a halogenated organic acid, is a pyruvate dehydrogenase kinase inhibitor that has been used to treat congenital or acquired lactic acidosis and is currently in early-phase clinical trials for cancer treatment. DCA was found to inhibit its own metabolism by irreversibly inactivating glutathione transferase zeta 1 (GSTZ1-1), resulting in nonlinear kinetics and abnormally high accumulation ratio after repeated dosing. In this analysis, a semi-mechanistic pharmacokinetic enzyme turnover model was developed for the first time to capture DCA autoinhibition, gastrointestinal region-dependent absorption, and time-dependent change in bioavailability in rats. The maximum rate constant for DCA-induced GSTZ1-1 inactivation is estimated to be 0.96/h, which is 110 times that of the rate constant for GSTZ1-1 natural degradation (0.00875/h). The model-predicted DCA concentration that corresponds to 50% of maximum enzyme inhibition (EC50) is 4.32 mg/L. The constructed pharmacokinetic enzyme turnover model, when applied to human data, could be used to predict the accumulation of DCA after repeated oral dosing, guide selection of dosing regimens in clinical studies, and facilitate clinical development of DCA.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Liver/drug effects , Liver/enzymology , Nonlinear Dynamics , Animals , Biological Availability , Dichloroacetic Acid/antagonists & inhibitors , Male , Rats , Rats, Sprague-Dawley
7.
Biochim Biophys Acta ; 1858(12): 3061-3070, 2016 12.
Article in English | MEDLINE | ID: mdl-27668346

ABSTRACT

Haloacids are considered to be environmental pollutants, but some of them have also been tested in clinical research. The way that haloacids are transported across biological membranes is important for both biodegradation and drug delivery purposes. In this review, we will first summarize putative haloacids transporters and the information about haloacids transport when studying carboxylates transporters. We will then introduce MCT1 and SLC5A8, which are respective transporter for antitumor agent 3-bromopyruvic acid and dichloroacetic acid, and monochloroacetic acid transporters Deh4p and Dehp2 from a haloacids-degrading bacterium. Phylogenetic analysis of these haloacids transporters and other monocarboxylate transporters reveals their evolutionary relationships. Haloacids transporters are not studied to the extent that they deserve compared with their great application potentials, thus future inter-discipline research are desired to better characterize their transport mechanisms for potential applications in both environmental and clinical fields.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Pyruvates/pharmacokinetics , Animals , Biological Transport , Cell Membrane/metabolism , Humans , Monocarboxylic Acid Transporters/physiology , Phylogeny , Symporters/physiology
8.
Pharmacogenomics ; 17(7): 743-53, 2016 05.
Article in English | MEDLINE | ID: mdl-27143230

ABSTRACT

The investigational drug dichloroacetate (DCA) is a metabolic regulator that has been successfully used to treat acquired and congenital metabolic diseases and, recently, solid tumors. Its clinical use has revealed challenges in selecting appropriate doses. Chronic administration of DCA leads to inhibition of DCA metabolism and potential accumulation to levels that result in side effects. This is because conversion of DCA to glyoxylate is catalyzed by one enzyme, glutathione transferase zeta 1 (GSTZ1-1), which is inactivated by DCA. SNPs in the GSTZ1 gene result in expression of polymorphic variants of the enzyme that differ in activity and rates of inactivation by DCA under physiological conditions: these properties lead to considerable variation between people in the pharmacokinetics of DCA.


Subject(s)
Dichloroacetic Acid/administration & dosage , Dichloroacetic Acid/pharmacokinetics , Amino Acid Sequence , Animals , Biotransformation , Chlorides/pharmacology , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , In Vitro Techniques , Liver/metabolism , Metabolic Diseases/drug therapy , Metabolic Diseases/genetics , Metabolic Diseases/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , Pharmacogenomic Testing , Pharmacogenomic Variants , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/adverse effects , Pyruvate Dehydrogenase Acetyl-Transferring Kinase
9.
J Pain Palliat Care Pharmacother ; 29(3): 276-80, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26368037

ABSTRACT

The prevalence of cancer pain in patients with cancer is high. The majority of efforts are spent on research in cancer treatment, but only a small fraction focuses on cancer pain. Pain in cancer patients, viewed predominantly as a secondary issue, is considered to be due to the destruction of tissues, compression of the nerves, inflammation, and secretion of biological mediators from the necrotic tumor mass. As a result, opioid drugs have remained as the primary pharmacological therapy for cancer pain for the past hundred years. This report reviews evidence that cancer pain may be produced by the metabolic effects of two byproducts of cancer-high acidity in the cancer microenvironment and the secretion of formaldehyde and its metabolites. We propose the research and development of therapeutic approaches for preemptive, short- and long-term management of cancer pain using available drugs or nutraceutical agents that can suppress or neutralize lactic acid production in combination with formaldehyde scavengers. We believe this approach may not only improve cancer pain control but may also enhance the quality of life for patients.


Subject(s)
Acidosis/drug therapy , Formaldehyde/metabolism , Neoplasms/complications , Pain/drug therapy , Pain/etiology , Aldehyde Dehydrogenase/biosynthesis , Dichloroacetic Acid/pharmacokinetics , Glutathione/pharmacology , Humans , Hydrogen-Ion Concentration , Lactic Acid/metabolism , Pain/physiopathology , Pain Management/methods , Quality of Life , Resveratrol , Sodium Bicarbonate/pharmacology , Stilbenes/pharmacokinetics
10.
Pharmacogenet Genomics ; 25(5): 239-45, 2015 May.
Article in English | MEDLINE | ID: mdl-25738370

ABSTRACT

BACKGROUND/OBJECTIVES: The zeta-1 family isoform of GST biotransforms the investigational drug dichloroacetate (DCA) and certain other halogenated carboxylic acids. Haplotype variability in GSTZ1 influences the kinetics and, possibly, the toxicity of DCA. DCA metabolism correlates with expression of the GSTZ1 protein, so it is important to document variables that affect expression. Following up on a limited previous study, we tested the hypothesis that a coding single nucleotide polymorphism (SNP), the lysine (K) amino acid (E32>K) in GSTZ1 haplotypes linked to a promoter region SNP results in lower hepatic expression of GSTZ1. MATERIALS AND METHODS: The influence of K carrier and non-K carrier haplotypes on GSTZ1 expression was determined by analyzing 78 liver samples from individuals aged 7-84 years of various racial and ethnic backgrounds. GSTZ1 expression data were analyzed on the basis of the presence or absence of lysine 32. RESULTS: GSTZ1 protein expression differed significantly between K carrier and non-K carrier haplotypes (P=0.001) in Whites, but not in African-Americans (P=0.277). We attribute this difference in GSTZ1 expression among K carrier haplotypes in Whites to the linkage disequilibrium between the K or A allele from the G>A SNP (rs7975), within the promoter G>A-1002 SNP (rs7160195) A allele. There is no linkage disequilibrium between these two polymorphisms in African-Americans. CONCLUSION: We conclude that the lower expression of GSTZ1 in Whites who possess the K carrier haplotype results in lower enzymatic activity and slower metabolism of DCA, compared with those who possess the non-K carrier haplotype. These results further define safe, genetics-based dosing regimens for chronic DCA administration.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Glutathione Transferase/genetics , Inactivation, Metabolic/genetics , Liver/metabolism , Adolescent , Adult , Black or African American/genetics , Aged , Aged, 80 and over , Carboxylic Acids/administration & dosage , Carboxylic Acids/pharmacokinetics , Child , Dichloroacetic Acid/administration & dosage , Gene Expression Regulation/drug effects , Glutathione Transferase/metabolism , Haplotypes , Humans , Liver/drug effects , Liver/enzymology , Lysine/genetics , Middle Aged , Polymorphism, Single Nucleotide/genetics , White People/genetics
11.
Invest New Drugs ; 33(3): 603-10, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25762000

ABSTRACT

Purpose Preclinical evidence suggests dichloroacetate (DCA) can reverse the Warburg effect and inhibit growth in cancer models. This phase 1 study was undertaken to assess the safety, recommended phase 2 dose (RP2D), and pharmacokinetic (PK) profile of oral DCA in patients with advanced solid tumors. Patients and Methods Twenty-four patients with advanced solid malignancies were enrolled using a standard 3 + 3 protocol at a starting dose of 6.25 mg/kg twice daily (BID). Treatment on 28 days cycles was continued until progression, toxicity, or consent withdrawal. PK samples were collected on days 1 and 15 of cycle 1, and day 1 of subsequent cycles. PET imaging ((18) F-FDG uptake) was investigated as a potential biomarker of response. Results Twenty-three evaluable patients were treated with DCA at two doses: 6.25 mg/kg and 12.5 mg/kg BID (median of 2 cycles each). No DLTs occurred in the 6.25 mg/kg BID cohort so the dose was escalated. Three of seven patients had DLTs (fatigue, vomiting, diarrhea) at 12.5 mg/kg BID. Thirteen additional patients were treated at 6.25 mg/kg BID. Most toxicities were grade 1-2 with the most common being fatigue, neuropathy and nausea. No responses were observed and eight patients had stable disease. The DCA PK profile in cancer patients was consistent with previously published data. There was high variability in PK values and neuropathy among patients. Progressive increase in DCA trough levels and a trend towards decreased (18) F-FDG uptake with length of DCA therapy was observed. Conclusions The RP2D of oral DCA is 6.25 mg/kg BID. Toxicities will require careful monitoring in future trials.


Subject(s)
Dichloroacetic Acid/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Adult , Aged , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cohort Studies , Dichloroacetic Acid/adverse effects , Dichloroacetic Acid/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Male , Middle Aged , Neoplasm Staging , Neoplasms/metabolism
12.
Biochem Biophys Res Commun ; 459(3): 463-8, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25748576

ABSTRACT

We recently reported that, in a concentration-dependent manner, chloride protects hepatic glutathione transferase zeta 1 from inactivation by dichloroacetate, an investigational drug used in treating various acquired and congenital metabolic diseases. Despite the importance of chloride ions in normal physiology, and decades of study of chloride transport across membranes, the literature lacks information on chloride concentrations in animal tissues other than blood. In this study we measured chloride concentrations in human liver samples from male and female donors aged 1 day to 84 years (n = 97). Because glutathione transferase zeta 1 is present in cytosol and, to a lesser extent, in mitochondria, we measured chloride in these fractions by high-performance liquid chromatography analysis following conversion of the free chloride to pentafluorobenzylchloride. We found that chloride concentration decreased with age in hepatic cytosol but increased in liver mitochondria. In addition, chloride concentrations in cytosol, (105.2 ± 62.4 mM; range: 24.7-365.7 mM) were strikingly higher than those in mitochondria (4.2 ± 3.8 mM; range 0.9-22.2 mM). These results suggest a possible explanation for clinical observations seen in patients treated with dichloroacetate, whereby children metabolize the drug more rapidly than adults following repeated doses, and also provide information that may influence our understanding of normal liver physiology.


Subject(s)
Aging/metabolism , Chlorides/metabolism , Liver/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Chromatography, High Pressure Liquid , Cytosol/metabolism , Dichloroacetic Acid/adverse effects , Dichloroacetic Acid/pharmacokinetics , Dichloroacetic Acid/pharmacology , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Female , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/metabolism , Humans , Infant , Infant, Newborn , Ion Transport , Liver/drug effects , Male , Metabolic Diseases/drug therapy , Metabolic Diseases/metabolism , Middle Aged , Mitochondria, Liver/metabolism , Young Adult
13.
J Clin Pharmacol ; 55(1): 50-5, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25079374

ABSTRACT

Dichloroacetate (DCA) is biotransformed by glutathione transferase zeta 1 (GSTZ1), a bifunctional enzyme that, as maleylacetoacetate isomerase (MAAI), catalyzes the penultimate step in tyrosine catabolism. DCA inhibits GSTZ1/MAAI, leading to delayed plasma drug clearance and to accumulation of potentially toxic tyrosine intermediates. Haplotype variability in GSTZ1 influences short-term DCA kinetics in healthy adults, but the impact of genotype in children treated chronically with DCA is unknown. Drug kinetics was studied in 17 children and adolescents with congenital mitochondrial diseases administered 1,2-(13) C-DCA. Plasma drug half-life and trough levels varied 3-6-fold, depending on GSTZ1/MAAI haplotype and correlated directly with urinary maleylacetone, a substrate for MAAI. However, chronic DCA exposure did not lead to progressive accumulation of plasma drug concentration; instead, kinetics parameters plateaued, consistent with the hypothesis that equipoise is established between the inhibitory effect of DCA on GSTZ1/MAAI and new enzyme synthesis. GSTZ1/MAAI haplotype variability affects DCA kinetics and biotransformation. However, these differences appear to be stable in most individuals and are not associated with DCA plasma accumulation or drug-associated toxicity in young children.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Glutathione Transferase/genetics , Acetone/analogs & derivatives , Acetone/urine , Adolescent , Adult , Aminolevulinic Acid/urine , Child , Child, Preschool , Dichloroacetic Acid/blood , Dichloroacetic Acid/urine , Double-Blind Method , Female , Genetic Diseases, Inborn/drug therapy , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Haplotypes , Humans , Infant , Kinetics , Male , Maleates/urine , Mitochondrial Diseases/drug therapy , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Polymorphism, Single Nucleotide , Tyrosine/metabolism , Young Adult
14.
J Cancer Res Clin Oncol ; 140(3): 443-52, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24442098

ABSTRACT

OBJECTIVES: Dichloroacetate (DCA) is a highly bioavailable small molecule that inhibits pyruvate dehydrogenase kinase, promoting glucose oxidation and reversing the glycolytic phenotype in preclinical cancer studies. We designed this open-label phase II trial to determine the response rate, safety, and tolerability of oral DCA in patients with metastatic breast cancer and advanced stage non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: This trial was conducted with DCA 6.25 mg/kg orally twice daily in previously treated stage IIIB/IV NSCLC or stage IV breast cancer. Growth inhibition by DCA was also evaluated in a panel of 54 NSCLC cell lines with and without cytotoxic chemotherapeutics (cisplatin and docetaxel) in normoxic and hypoxic conditions. RESULTS AND CONCLUSIONS: Under normoxic conditions in vitro, single-agent IC50 was >2 mM for all evaluated cell lines. Synergy with cisplatin was seen in some cell lines under hypoxic conditions. In the clinical trial, after seven patients were enrolled, the study was closed based on safety concerns. The only breast cancer patient had stable disease after 8 weeks, quickly followed by progression in the brain. Two patients withdrew consent within a week of enrollment. Two patients had disease progression prior to the first scheduled scans. Within 1 week of initiating DCA, one patient died suddenly of unknown cause and one experienced a fatal pulmonary embolism. We conclude that patients with previously treated advanced NSCLC did not benefit from oral DCA. In the absence of a larger controlled trial, firm conclusions regarding the association between these adverse events and DCA are unclear. Further development of DCA should be in patients with longer life expectancy, in whom sustained therapeutic levels can be achieved, and potentially in combination with cisplatin.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , Dichloroacetic Acid/administration & dosage , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Administration, Oral , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/blood , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Hypoxia , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/administration & dosage , Dichloroacetic Acid/blood , Dichloroacetic Acid/pharmacokinetics , Docetaxel , Drug Administration Schedule , Female , Humans , Male , Middle Aged , Oxygen Consumption , Taxoids/administration & dosage , Treatment Failure
15.
Invest New Drugs ; 32(3): 452-64, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24297161

ABSTRACT

BACKGROUND: Recurrent malignant brain tumors (RMBTs) carry a poor prognosis. Dichloroacetate (DCA) activates mitochondrial oxidative metabolism and has shown activity against several human cancers. DESIGN: We conducted an open-label study of oral DCA in 15 adults with recurrent WHO grade III - IV gliomas or metastases from a primary cancer outside the central nervous system. The primary objective was detection of a dose limiting toxicity for RMBTs at 4 weeks of treatment, defined as any grade 4 or 5 toxicity, or grade 3 toxicity directly attributable to DCA, based on the National Cancer Institute's Common Toxicity Criteria for Adverse Events, version 4.0. Secondary objectives involved safety, tolerability and hypothesis-generating data on disease status. Dosing was based on haplotype variation in glutathione transferase zeta 1/maleylacetoacetate isomerase (GSTZ1/MAAI), which participates in DCA and tyrosine catabolism. RESULTS: Eight patients completed at least 1 four week cycle. During this time, no dose-limiting toxicities occurred. No patient withdrew because of lack of tolerance to DCA, although 2 subjects experienced grade 0-1 distal parasthesias that led to elective withdrawal and/or dose-adjustment. All subjects completing at least 1 four week cycle remained clinically stable during this time and remained on DCA for an average of 75.5 days (range 26-312). CONCLUSIONS: Chronic, oral DCA is feasible and well-tolerated in patients with recurrent malignant gliomas and other tumors metastatic to the brain using the dose range established for metabolic diseases. The importance of genetic-based dosing is confirmed and should be incorporated into future trials of chronic DCA administration.


Subject(s)
Antineoplastic Agents/administration & dosage , Brain Neoplasms/drug therapy , Dichloroacetic Acid/administration & dosage , Acetone/analogs & derivatives , Acetone/urine , Adult , Aged , Alanine Transaminase/blood , Antineoplastic Agents/adverse effects , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacokinetics , Aspartate Aminotransferases/blood , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breath Tests , Dichloroacetic Acid/adverse effects , Dichloroacetic Acid/blood , Dichloroacetic Acid/pharmacokinetics , Female , Glutathione Transferase/genetics , Haplotypes , Humans , Male , Maleates/urine , Middle Aged , Pyruvic Acid/metabolism
16.
J Biochem Mol Toxicol ; 27(12): 522-5, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24038869

ABSTRACT

We characterized the pharmacokinetics and dynamics of dichloroacetate (DCA), an investigational drug for mitochondrial diseases, pulmonary arterial hypertension, and cancer. Adult Beagle dogs were orally administered 6.25 mg/kg q12h DCA for 4 weeks. Plasma kinetics was determined after 1, 14, and 28 days. The activity and expression of glutathione transferase zeta 1 (GSTZ1), which biotransforms DCA to glyoxylate, were determined from liver biopsies at baseline and after 27 days. Dogs demonstrate much slower clearance and greater inhibition of DCA metabolism and GSTZ1 activity and expression than rodents and most humans. Indeed, the plasma kinetics of DCA in dogs is similar to humans with GSTZ1 polymorphisms that confer exceptionally slow plasma clearance. Dogs may be a useful model to further investigate the toxicokinetics and therapeutic potential of DCA.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Acetone/analogs & derivatives , Acetone/urine , Analysis of Variance , Animals , Area Under Curve , Blotting, Western , Dichloroacetic Acid/blood , Dogs , Glutathione Transferase/metabolism , Half-Life , Injections, Intravenous , Male , Maleates/urine , Tyrosine/metabolism , cis-trans-Isomerases/metabolism
17.
J Basic Clin Physiol Pharmacol ; 24(4): 271-6, 2013.
Article in English | MEDLINE | ID: mdl-23612652

ABSTRACT

BACKGROUND: Most cancer cells rely on aerobic glycolysis. Dichloroacetate (DCA) inhibits aerobic glycolysis and is a promising relatively nontoxic anticancer compound. However, rapidly proliferating effector T-cells also rely on aerobic glycolysis, whereas regulatory T-cells (Treg) do not. The effect of DCA on glucose metabolism and Treg differentiation was evaluated in alloreactive lymphocytes. METHODS: Peripheral blood mononuclear cells from healthy volunteers were used in a two-way mixed lymphocyte reaction. Lymphocyte proliferation was assessed by cell counting; DCA cytotoxicity, by lactate dehydrogenase release assay; and glucose uptake and aerobic glycolysis, by measuring in the supernatants the correspondent glucose and lactate concentrations. Interleukin-10 (IL-10) was measured in the supernatants, whereas the Treg signature transcription factor forkhead box P3 (FOXP3) was measured in cell lysates by means of enzyme-linked immunosorbent assay. RESULTS: DCA had a minor effect on lymphocyte proliferation and cytotoxicity. However, DCA decreased glucose uptake and inhibited aerobic glycolysis. Finally, DCA markedly increased the production of IL-10 and the expression of FOXP3. CONCLUSIONS: DCA inhibits aerobic glycolysis and induces Treg differentiation in human alloreactive lymphocytes. This could result in decreased immunosurveillance in case of its use as an anticancer drug. However, DCA could play a role as an immunosuppressant in the fields of transplantation and autoimmunity.


Subject(s)
Autoimmunity/drug effects , Cell Differentiation/drug effects , Dichloroacetic Acid/pharmacokinetics , Glucose/metabolism , T-Lymphocytes, Regulatory/drug effects , Aerobiosis , Cell Culture Techniques , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Forkhead Transcription Factors/genetics , Glycolysis/drug effects , Humans , Interleukin-10/biosynthesis , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/drug effects , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
18.
Magn Reson Imaging ; 31(4): 490-6, 2013 May.
Article in English | MEDLINE | ID: mdl-23107275

ABSTRACT

The development of hyperpolarized technology utilizing dynamic nuclear polarization (DNP) has enabled the rapid measurement of (13)C metabolism in vivo with very high SNR. However, with traditional DNP equipment, consecutive injections of a hyperpolarized compound in an animal have been subject to a practical minimum time between injections governed by the polarization build-up time, which is on the order of an hour for [1-(13)C]pyruvate. This has precluded the monitoring of metabolic changes occurring on a faster time scale. In this study, we demonstrated the ability to acquire in vivo dynamic magnetic resonance spectroscopy (MRS) and 3D magnetic resonance spectroscopic imaging (MRSI) data in normal rats with a 5 min interval between injections of hyperpolarized [1-(13)C]pyruvate using a prototype, sub-Kelvin dynamic nuclear polarizer with the capability to simultaneously polarize up to 4 samples and dissolve them in rapid succession. There were minimal perturbations in the hyperpolarized spectra as a result of the multiple injections, suggesting that such an approach would not confound the investigation of metabolism occurring on this time scale. As an initial demonstration of the application of this technology and approach for monitoring rapid changes in metabolism as a result of a physiological intervention, we investigated the pharmacodynamics of the anti-cancer agent dichloroacetate (DCA), collecting hyperpolarized data before administration of DCA, 1 min after administration, and 6 min after administration. Dramatic increases in (13)C-bicarbonate were detected just 1 min (as well as 6 min) after DCA administration.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Molecular Imaging/methods , Pyruvic Acid/administration & dosage , Pyruvic Acid/pharmacokinetics , Animals , Carbon Isotopes/administration & dosage , Carbon Isotopes/pharmacokinetics , Male , Metabolic Clearance Rate , Organ Specificity , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Sensitivity and Specificity , Tissue Distribution
19.
J Clin Pharmacol ; 52(6): 837-49, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21642471

ABSTRACT

Dichloroacetate (DCA), a chemical relevant to environmental science and allopathic medicine, is dehalogenated by the bifunctional enzyme glutathione transferase zeta (GSTz1)/maleylacetoacetate isomerase (MAAI), the penultimate enzyme in the phenylalanine/tyrosine catabolic pathway. The authors postulated that polymorphisms in GSTz1/MAAI modify the toxicokinetics of DCA. GSTz1/MAAI haplotype significantly affected the kinetics and biotransformation of 1,2-¹³C-DCA when it was administered at either environmentally (µg/kg/d) or clinically (mg/kg/d) relevant doses. GSTz1/MAAI haplotype also influenced the urinary accumulation of potentially toxic tyrosine metabolites. Atomic modeling revealed that GSTz1/MAAI variants associated with the slowest rates of DCA metabolism induced structural changes in the enzyme homodimer, predicting protein instability or abnormal protein-protein interactions. Knowledge of the GSTz1/MAAI haplotype can be used prospectively to identify individuals at potential risk of DCA's adverse side effects from environmental or clinical exposure or who may exhibit aberrant amino acid metabolism in response to dietary protein.


Subject(s)
Dichloroacetic Acid/pharmacokinetics , Environmental Pollutants/pharmacokinetics , Glutathione Transferase/genetics , Mutation , Polymorphism, Single Nucleotide , Acetone/analogs & derivatives , Acetone/urine , Adult , Amino Acid Substitution , Dichloroacetic Acid/blood , Dichloroacetic Acid/toxicity , Dichloroacetic Acid/urine , Environmental Pollutants/toxicity , Enzyme Stability/drug effects , Female , Florida , Genetic Association Studies , Glutathione Transferase/blood , Glutathione Transferase/metabolism , Half-Life , Humans , Male , Maleates/urine , Middle Aged , Models, Molecular , Protein Conformation , Tyrosine/analogs & derivatives , Tyrosine/urine , Young Adult
20.
Oncogene ; 30(38): 4026-37, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21499304

ABSTRACT

There has been growing interest among the public and scientists in dichloroacetate (DCA) as a potential anticancer drug. Credible evidence exists for the antitumor activity of this compound, but high concentrations are needed for significant therapeutic effect. Unfortunately, these high concentrations produce detrimental side effects involving the nervous system, thereby precluding its use for cancer treatment. The mechanistic basis of the compound's antitumor activity is its ability to activate the pyruvate dehydrogenase complex through inhibition of pyruvate dehydrogenase kinase. As the compound inhibits the kinase at micromolar concentrations, it is not known why therapeutically prohibitive high doses are needed for suppression of tumor growth. We hypothesized that lack of effective mechanisms for the entry of DCA into tumor cells may underlie this phenomenon. Here we show that SLC5A8 transports DCA very effectively with high affinity. This transporter is expressed in normal cells, but expression is silenced in tumor cells by epigenetic mechanisms. The lack of the transporter makes tumor cells resistant to the antitumor activity of DCA. However, if the transporter is expressed in tumor cells ectopically, the cells become sensitive to the drug at low concentrations. This is evident in breast cancer cells, colon cancer cells and prostate cancer cells. Normal cells, which constitutively express the transporter, are however not affected by the compound, indicating tumor cell-selective therapeutic activity. The mechanism of the compound's antitumor activity still remains its ability to inhibit pyruvate dehydrogenase kinase and force mitochondrial oxidation of pyruvate. As silencing of SLC5A8 in tumors involves DNA methylation and its expression can be induced by treatment with DNA methylation inhibitors, our findings suggest that combining DCA with a DNA methylation inhibitor would offer a means to reduce the doses of DCA to avoid detrimental effects associated with high doses but without compromising antitumor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Cation Transport Proteins/physiology , Dichloroacetic Acid/pharmacology , Tumor Suppressor Proteins/physiology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Dichloroacetic Acid/pharmacokinetics , Humans , Membrane Transport Proteins/physiology , Monocarboxylic Acid Transporters , Pyruvic Acid/metabolism , Sodium/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...