Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.700
Filter
1.
Molecules ; 29(9)2024 May 05.
Article in English | MEDLINE | ID: mdl-38731634

ABSTRACT

Cellular slime molds are excellent model organisms in the field of cell and developmental biology because of their simple developmental patterns. During our studies on the identification of bioactive molecules from secondary metabolites of cellular slime molds toward the development of novel pharmaceuticals, we revealed the structural diversity of secondary metabolites. Cellular slime molds grow by feeding on bacteria, such as Klebsiella aerogenes and Escherichia coli, without using medium components. Although changing the feeding bacteria is expected to affect dramatically the secondary metabolite production, the effect of the feeding bacteria on the production of secondary metabolites is not known. Herein, we report the isolation and structure elucidation of clavapyrone (1) from Dictyostelium clavatum, intermedipyrone (2) from D. magnum, and magnumiol (3) from D. intermedium. These compounds are not obtained from usual cultural conditions with Klebsiella aerogenes but obtained from coincubated conditions with Pseudomonas spp. The results demonstrate the diversity of the secondary metabolites of cellular slime molds and suggest that widening the range of feeding bacteria for cellular slime molds would increase their application potential in drug discovery.


Subject(s)
Dictyostelium , Pseudomonas , Pyrones , Pyrones/chemistry , Pyrones/pharmacology , Pseudomonas/metabolism , Pseudomonas/chemistry , Molecular Structure , Secondary Metabolism
2.
Nat Commun ; 15(1): 3984, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734736

ABSTRACT

Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.


Subject(s)
Dictyostelium , Protozoan Proteins , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Spores, Protozoan/genetics , Spores, Protozoan/metabolism , Signal Transduction , Mutation , Altruism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Chemotaxis/genetics
3.
PeerJ ; 12: e17445, 2024.
Article in English | MEDLINE | ID: mdl-38784393

ABSTRACT

The evolution of symbiotic interactions may be affected by unpredictable conditions. However, a link between prevalence of these conditions and symbiosis has not been widely demonstrated. We test for these associations using Dictyostelium discoideum social amoebae and their bacterial endosymbionts. D. discoideum commonly hosts endosymbiotic bacteria from three taxa: Paraburkholderia, Amoebophilus and Chlamydiae. Three species of facultative Paraburkholderia endosymbionts are the best studied and give hosts the ability to carry prey bacteria through the dispersal stage to new environments. Amoebophilus and Chlamydiae are obligate endosymbiont lineages with no measurable impact on host fitness. We tested whether the frequency of both single infections and coinfections of these symbionts were associated with the unpredictability of their soil environments by using symbiont presence-absence data from D. discoideum isolates from 21 locations across the eastern United States. We found that symbiosis across all infection types, symbiosis with Amoebophilus and Chlamydiae obligate endosymbionts, and symbiosis involving coinfections were not associated with any of our measures. However, unpredictable precipitation was associated with symbiosis in two species of Paraburkholderia, suggesting a link between unpredictable conditions and symbiosis.


Subject(s)
Dictyostelium , Soil Microbiology , Symbiosis , Dictyostelium/microbiology , Burkholderiaceae/isolation & purification , Soil/chemistry , United States/epidemiology , Chlamydia/isolation & purification
4.
Sci Rep ; 14(1): 11250, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755233

ABSTRACT

The patterns of Formin B and of the Arp2/3 complex formed during mitosis were studied in a mutant of Dictyostelium discoideum that produces multinucleate cells, which divide by the ingression of unilateral cleavage furrows. During cytokinesis the cells of this mutant remain spread on a glass surface where they generate a planar pattern based on the sorting-out of actin-binding proteins. During anaphase, Formin B and Arp2/3 became localized to the regions of microtubule asters around the centrosomes; Formin B in particular in the form of round, quite uniformly covered areas. These areas have been shown to be depleted of myosin II and the actin-filament crosslinker cortexillin, and to be avoided by cleavage furrows on their path into the cell.


Subject(s)
Dictyostelium , Microfilament Proteins , Microtubules , Mitosis , Microtubules/metabolism , Dictyostelium/metabolism , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Actin-Related Protein 2-3 Complex/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protein Transport , Cytokinesis , Actins/metabolism
5.
J Mol Model ; 30(5): 133, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625397

ABSTRACT

CONTEXT: Parkinson's disease is a neurodegenerative condition characterized by the degeneration of dopaminergic neurons, resulting in motor disabilities such as rigidity, bradykinesia, postural instability, and resting tremors. While the exact cause of Parkinson's remains uncertain, both familial and sporadic forms are often associated with the G2019S mutation found in the kinase domain of LRRK2. Roco4 is an analogue of LRRK2 protein in Dictyostelium discoideum which is an established model organism to investigate LRRK2 inhibitors. In this study, the potential treatment of Parkinson's was explored by inhibiting the activity of the mutated LRRK2 protein using Roco4 as the base protein structure. Mongolicain-A and Bacoside-A exhibited significant selectivity towards the G2019S mutation, displaying a binding affinity of - 12.3 Kcal/mol and - 11.4 Kcal/mol respectively. Mongolicain-A demonstrated increased specificity towards Roco4, while Bacoside-A demonstrated significant binding affinity to all 34 kinases proteins alike. The Molecular Dynamics Studies (MDS) results strongly suggests that Mongolicain-A is a significant inhibitor of Roco4 kinase. ADMET and drugability analysis also suggests that among the two best ligands, Mongolicain-A demonstrates significant physicochemical properties to be suitable for best drug like molecule. Based on the in-silico molecular docking, molecular dynamic simulation, ADMET and drugability analyses, it is strongly suggested that, Mongolicain-A could be a potential candidate for treatment and management of Parkinson's disease via inhibition of LRRK2 protein. Further in-vitro and in-vivo investigations are in demand to validate these findings. METHODS: To identify potential inhibitors, 3069 phytochemicals were screened using molecular docking via AutoDock Vina. Molecular Dynamics Simulation was carried out using GROMACS 2022.2 for a duration of 100ns per complex to study the stability and inhibition potential of the protein ligand complexes. ADMET analysis was carriedout using Molinspiration and preADMET web tool.


Subject(s)
Antineoplastic Agents , Dictyostelium , Parkinson Disease , Parkinsonian Disorders , Humans , Parkinson Disease/drug therapy , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Molecular Dynamics Simulation , Molecular Docking Simulation
6.
Cells ; 13(7)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38607049

ABSTRACT

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Subject(s)
Dictyostelium , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney, Autosomal Dominant/genetics , Dictyostelium/metabolism , TRPP Cation Channels/genetics , Calcium/metabolism , Calcium Signaling/physiology , Calcium Channels/metabolism
7.
Sci Rep ; 14(1): 7677, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561423

ABSTRACT

The social amoeba Dictyostelium discoideum switches between solitary growth and social fruitification depending on nutrient availability. Under starvation, cells aggregate and form fruiting bodies consisting of spores and altruistic stalk cells. Once cells socially committed, they complete fruitification, even if a new source of nutrients becomes available. This social commitment is puzzling because it hinders individual cells from resuming solitary growth quickly. One idea posits that traits that facilitate premature de-commitment are hindered from being selected. We studied outcomes of the premature de-commitment through forced refeeding. Our results show that when refed cells interacted with non-refed cells, some of them became solitary, whereas a fraction was redirected to the altruistic stalk, regardless of their original fate. The refed cells exhibited reduced cohesiveness and were sorted out during morphogenesis. Our findings provide an insight into a division of labor of the social amoeba, in which less cohesive individuals become altruists.


Subject(s)
Amoeba , Dictyostelium , Humans , Cell Differentiation , Morphogenesis , Cell Movement
8.
PeerJ ; 12: e17118, 2024.
Article in English | MEDLINE | ID: mdl-38562996

ABSTRACT

Cooperation is widespread across life, but its existence can be threatened by exploitation. The rise of obligate social cheaters that are incapable of contributing to a necessary cooperative function can lead to the loss of that function. In the social amoeba Dictyostelium discoideum, obligate social cheaters cannot form dead stalk cells and in chimeras instead form living spore cells. This gives them a competitive advantage within chimeras. However, obligate cheaters of this kind have thus far not been found in nature, probably because they are often enough in clonal populations that they need to retain the ability to produce stalks. In this study we discovered an additional cost to obligate cheaters. Even when there are wild-type cells to parasitize, the chimeric fruiting bodies that result have shorter stalks and these are disadvantaged in spore dispersal. The inability of obligate cheaters to form fruiting bodies when they are on their own combined with the lower functionality of fruiting bodies when they are not represent limits on obligate social cheating as a strategy.


Subject(s)
Amoeba , Dictyostelium , Reproduction , Spores, Protozoan
9.
Biochem Soc Trans ; 52(2): 567-580, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38629621

ABSTRACT

The maintenance of phosphate homeostasis serves as a foundation for energy metabolism and signal transduction processes in all living organisms. Inositol pyrophosphates (PP-InsPs), composed of an inositol ring decorated with monophosphate and diphosphate moieties, and inorganic polyphosphate (polyP), chains of orthophosphate residues linked by phosphoanhydride bonds, are energy-rich biomolecules that play critical roles in phosphate homeostasis. There is a complex interplay between these two phosphate-rich molecules, and they share an interdependent relationship with cellular adenosine triphosphate (ATP) and inorganic phosphate (Pi). In eukaryotes, the enzymes involved in PP-InsP synthesis show some degree of conservation across species, whereas distinct enzymology exists for polyP synthesis among different organisms. In fact, the mechanism of polyP synthesis in metazoans, including mammals, is still unclear. Early studies on PP-InsP and polyP synthesis were conducted in the slime mould Dictyostelium discoideum, but it is in the budding yeast Saccharomyces cerevisiae that a clear understanding of the interplay between polyP, PP-InsPs, and Pi homeostasis has now been established. Recent research has shed more light on the influence of PP-InsPs on polyP in mammals, and the regulation of both these molecules by cellular ATP and Pi levels. In this review we will discuss the cross-talk between PP-InsPs, polyP, ATP, and Pi in the context of budding yeast, slime mould, and mammals. We will also highlight the similarities and differences in the relationship between these phosphate-rich biomolecules among this group of organisms.


Subject(s)
Homeostasis , Inositol Phosphates , Polyphosphates , Polyphosphates/metabolism , Animals , Inositol Phosphates/metabolism , Humans , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphate/metabolism , Dictyostelium/metabolism , Signal Transduction
10.
Biophys J ; 123(9): 1058-1068, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38515298

ABSTRACT

Phosphatidylinositol (3,4,5)-trisphosphate (PIP3) is a signaling lipid on the plasma membrane that plays a fundamental role in cell signaling with a strong impact on cell physiology and diseases. It is responsible for the protruding edge formation, cell polarization, macropinocytosis, and other membrane remodeling dynamics in cells. It has been shown that the membrane confinement and curvature affects the wave formation of PIP3 and F-actin. But, even in the absence of F-actin, a complex self-organization of the spatiotemporal PIP3 waves is observed. In recent findings, we have shown that these waves can be guided and pinned on strongly bended Dictyostelium membranes caused by molecular crowding and curvature-limited diffusion. Based on these experimental findings, we investigate the spatiotemporal PIP3 wave dynamics on realistic three-dimensional cell-like membranes to explore the effect of curvature-limited diffusion, as observed experimentally. We use an established stochastic reaction-diffusion model with enzymatic Michaelis-Menten-type reactions that mimics the dynamics of Dictyostelium cells. As these cells mimic the three-dimensional shape and size observed experimentally, we found that the PIP3 wave directionality can be explained by a Hopf-like and a reverse periodic-doubling bifurcation for uniform diffusion and curvature-limited diffusion properties. Finally, we compare the results with recent experimental findings and discuss the discrepancy between the biological and numerical results.


Subject(s)
Cell Membrane , Dictyostelium , Models, Biological , Phosphatidylinositol Phosphates , Cell Membrane/metabolism , Dictyostelium/cytology , Dictyostelium/metabolism , Phosphatidylinositol Phosphates/metabolism , Diffusion
11.
Biol Cell ; 116(5): e2300067, 2024 May.
Article in English | MEDLINE | ID: mdl-38537110

ABSTRACT

BACKGROUND INFORMATION: Two pore channels (TPCs) are voltage-gated ion channel superfamily members that release Ca2+ from acidic intracellular stores and are ubiquitously present in both animals and plants. Starvation initiates multicellular development in Dictyostelium discoideum. Increased intracellular calcium levels bias Dictyostelium cells towards the stalk pathway and thus we decided to analyze the role of TPC2 in development, differentiation, and autophagy. RESULTS: We showed TPC2 protein localizes in lysosome-like acidic vesicles and the in situ data showed stalk cell biasness. Deletion of tpc2 showed defective and delayed development with formation of multi-tipped structures attached to a common base, while tpc2OE cells showed faster development with numerous small-sized aggregates and wiry fruiting bodies. The tpc2OE cells showed higher intracellular cAMP levels as compared to the tpc2- cells while pinocytosis was found to be higher in the tpc2- cells. Also, TPC2 regulates cell-substrate adhesion and cellular morphology. Under nutrient starvation, deletion of tpc2 reduced autophagic flux as compared to Ax2. During chimera formation, tpc2- cells showed a bias towards the prestalk/stalk region while tpc2OE cells showed a bias towards the prespore/spore region. tpc2 deficient strain exhibits aberrant cell-type patterning and loss of distinct boundary between the prestalk/prespore regions. CONCLUSION: TPC2 is required for effective development and differentiation in Dictyostelium and supports autophagic cell death and cell-type patterning. SIGNIFICANCE: Decreased calcium due to deletion of tpc2 inhibit autophagic flux.


Subject(s)
Autophagy , Dictyostelium , Protozoan Proteins , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/cytology , Dictyostelium/growth & development , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Gene Deletion , Calcium Channels/metabolism , Calcium Channels/genetics , Calcium/metabolism , Cell Differentiation
12.
Dev Comp Immunol ; 155: 105158, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38467323

ABSTRACT

This study investigated the effects of two distinct probiotics, Leuconostoc mesenteroides B4 (B4) and Bacillus pumilus D5 (D5), along with their combination, on the diet of white shrimp (Litopenaeus vannamei) during an eight-week feeding trial. The diets tested included B4 + dextran at 107 CFU/g feed (the B4 group), D5 alone at 107 CFU/g feed (the D5 group), and a combination of B4 + dextran and D5 at 5 × 106 CFU/g feed each (the B4+dextran + D5 group). Relative to the control group, those administered probiotics exhibited moderate enhancements in growth. By the eighth week, the weight gain for the B4, D5, and B4+D5 groups was 696.50 ± 78.15%, 718.53 ± 130.73%, and 693.05 ± 93.79%, respectively, outperforming the control group's 691.66 ± 31.10% gain. The feed conversion ratio was most efficient in the B4 group (2.16 ± 0.06), closely followed by B4+D5 (2.21 ± 0.03) and D5 (2.22 ± 0.06), with the control group having the highest ratio (2.27 ± 0.03). While phenoloxidase activity was somewhat elevated in the B4 and D5 groups, no significant differences were noted in respiratory burst activity or total hemocyte count across all groups. Challenge tests at weeks 4 and 8 showed that the B4 + D5 combination offered superior protection against AHPND-causing Vibrio parahaemolyticus. The 4-week cumulative survival rate was highest in shrimp treated with B4 + dextran + D5 (56.25%), followed by B4 + dextran (31.25%), control (18.75%), and lowest in D5 (12.5%). By week 8, the B4 + dextran + D5 (43.75%) and B4 + dextran (37.5%) groups significantly outperformed the control group (6.25%, p < 0.05), with no significant difference observed between the D5 group (37.5%) and the control group at day 56. Analysis of the shrimp's foregut microbiota revealed an increase in unique OTUs in the B4 and B4 + D5 groups. Compared to the control, Proteobacteria abundance was reduced in all probiotic groups. Potential pathogens like Vibrio, Bacteroides, Neisseria, Botrytis, Clostridioides, and Deltaentomopoxvirus were detected in the control but were reduced or absent in probiotic groups. Beneficial microbes such as Methanobrevibacter and Dictyostelium in the B4+D5 group, and Sugiyamaella in the B4 group, showed significant increases. Probiotics also led to higher transcript levels of nitric oxide synthase in the hemocytes, and lysozyme and transglutaminase in the midgut, along with lysozyme and α2-macroglobulin in the foregut. Notably, the combined B4 + D5 probiotics synergistically enhanced the expression of superoxide dismutase and prophenoloxidase in the foregut, indicating an improved immune response. In summary, this study demonstrates that the probiotics evaluated, especially when used in combination, significantly boost the expression of specific immune-related genes, enhance the bacterial diversity and richness of the intestine, and thus prevent the colonization and proliferation of Vibrio spp. in L. vannamei.


Subject(s)
Bacillus , Dictyostelium , Leuconostoc mesenteroides , Penaeidae , Probiotics , Vibrio parahaemolyticus , Animals , Disease Resistance , Muramidase/metabolism , Leuconostoc , Dextrans/metabolism , Vibrio parahaemolyticus/physiology , Diet , Immunity, Innate
13.
Soft Matter ; 20(12): 2739-2749, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38436091

ABSTRACT

Collective cellular behavior plays a crucial role in various biological processes, ranging from developmental morphogenesis to pathological processes such as cancer metastasis. Our previous research has revealed that a mutant cell of Dictyostelium discoideum exhibits collective cell migration, including chain migration and traveling band formation, driven by a unique tail-following behavior at contact sites, which we term "contact following locomotion" (CFL). Here, we uncover an imbalance of forces between the front and rear cells within cell chains, leading to an additional propulsion force in the rear cells. Drawing inspiration from this observation, we introduce a theoretical model that incorporates non-reciprocal cell-cell interactions. Our findings highlight that the non-reciprocal interaction, in conjunction with self-alignment interactions, significantly contributes to the emergence of the observed collective cell migrations. Furthermore, we present a comprehensive phase diagram, showing distinct phases at both low and intermediate cell densities. This phase diagram elucidates a specific regime that corresponds to the experimental system.


Subject(s)
Dictyostelium , Cell Communication , Cell Movement , Locomotion , Morphogenesis
14.
Proc Natl Acad Sci U S A ; 121(14): e2313203121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530891

ABSTRACT

Consumers range from specialists that feed on few resources to generalists that feed on many. Generalism has the clear advantage of having more resources to exploit, but the costs that limit generalism are less clear. We explore two understudied costs of generalism in a generalist amoeba predator, Dictyostelium discoideum, feeding on naturally co-occurring bacterial prey. Both involve costs of combining prey that are suitable on their own. First, amoebas exhibit a reduction in growth rate when they switched to one species of prey bacteria from another compared to controls that experience only the second prey. The effect was consistent across all six tested species of bacteria. These switching costs typically disappear within a day, indicating adjustment to new prey bacteria. This suggests that these costs are physiological. Second, amoebas usually grow more slowly on mixtures of prey bacteria compared to the expectation based on their growth on single prey. There were clear mixing costs in three of the six tested prey mixtures, and none showed significant mixing benefits. These results support the idea that, although amoebas can consume a variety of prey, they must use partially different methods and thus must pay costs to handle multiple prey, either sequentially or simultaneously.


Subject(s)
Amoeba , Dictyostelium , Animals , Dictyostelium/microbiology , Eukaryota , Diet , Bacteria , Amoeba/microbiology , Predatory Behavior , Food Chain
15.
Elife ; 122024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393970

ABSTRACT

Serine(S)/threonine(T)-glutamine(Q) cluster domains (SCDs), polyglutamine (polyQ) tracts and polyglutamine/asparagine (polyQ/N) tracts are Q-rich motifs found in many proteins. SCDs often are intrinsically disordered regions that mediate protein phosphorylation and protein-protein interactions. PolyQ and polyQ/N tracts are structurally flexible sequences that trigger protein aggregation. We report that due to their high percentages of STQ or STQN amino acid content, four SCDs and three prion-causing Q/N-rich motifs of yeast proteins possess autonomous protein expression-enhancing activities. Since these Q-rich motifs can endow proteins with structural and functional plasticity, we suggest that they represent useful toolkits for evolutionary novelty. Comparative Gene Ontology (GO) analyses of the near-complete proteomes of 26 representative model eukaryotes reveal that Q-rich motifs prevail in proteins involved in specialized biological processes, including Saccharomyces cerevisiae RNA-mediated transposition and pseudohyphal growth, Candida albicans filamentous growth, ciliate peptidyl-glutamic acid modification and microtubule-based movement, Tetrahymena thermophila xylan catabolism and meiosis, Dictyostelium discoideum development and sexual cycles, Plasmodium falciparum infection, and the nervous systems of Drosophila melanogaster, Mus musculus and Homo sapiens. We also show that Q-rich-motif proteins are expanded massively in 10 ciliates with reassigned TAAQ and TAGQ codons. Notably, the usage frequency of CAGQ is much lower in ciliates with reassigned TAAQ and TAGQ codons than in organisms with expanded and unstable Q runs (e.g. D. melanogaster and H. sapiens), indicating that the use of noncanonical stop codons in ciliates may have coevolved with codon usage biases to avoid triplet repeat disorders mediated by CAG/GTC replication slippage.


Subject(s)
Dictyostelium , Drosophila melanogaster , Animals , Mice , Codon, Terminator/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Dictyostelium/genetics , Fungal Proteins/metabolism , Glutamine/metabolism
16.
Dev Cell ; 59(5): 645-660.e8, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38325371

ABSTRACT

Macropinocytosis, an evolutionarily conserved endocytic pathway, mediates nonselective bulk uptake of extracellular fluid. It is the primary route for axenic Dictyostelium cells to obtain nutrients and has also emerged as a nutrient-scavenging pathway for mammalian cells. How cells adjust macropinocytic activity in various physiological or developmental contexts remains to be elucidated. We discovered that, in Dictyostelium cells, the transcription factors Hbx5 and MybG form a functional complex in the nucleus to maintain macropinocytic activity during the growth stage. In contrast, during starvation-induced multicellular development, the transcription factor complex undergoes nucleocytoplasmic shuttling in response to oscillatory cyclic adenosine 3',5'-monophosphate (cAMP) signals, which leads to increased cytoplasmic retention of the complex and progressive downregulation of macropinocytosis. Therefore, by coupling macropinocytosis-related gene expression to the cAMP oscillation system, which facilitates long-range cell-cell communication, the dynamic translocation of the Hbx5-MybG complex orchestrates a population-level adjustment of macropinocytic activity to adapt to changing environmental conditions.


Subject(s)
Dictyostelium , Animals , Dictyostelium/metabolism , Pinocytosis/physiology , Cytoplasm , Cell Nucleus , Transcription Factors/metabolism , Mammals
17.
Nucleic Acids Res ; 52(6): 3121-3136, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38375870

ABSTRACT

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in both plants and animals. They are thought to have evolved convergently in these lineages and hypothesized to have played a role in the evolution of multicellularity. In line with this hypothesis, miRNAs have so far only been described in few unicellular eukaryotes. Here, we investigate the presence and evolution of miRNAs in Amoebozoa, focusing on species belonging to Acanthamoeba, Physarum and dictyostelid taxonomic groups, representing a range of unicellular and multicellular lifestyles. miRNAs that adhere to both the stringent plant and animal miRNA criteria were identified in all examined amoebae, expanding the total number of protists harbouring miRNAs from 7 to 15. We found conserved miRNAs between closely related species, but the majority of species feature only unique miRNAs. This shows rapid gain and/or loss of miRNAs in Amoebozoa, further illustrated by a detailed comparison between two evolutionary closely related dictyostelids. Additionally, loss of miRNAs in the Dictyostelium discoideum drnB mutant did not seem to affect multicellular development and, hence, demonstrates that the presence of miRNAs does not appear to be a strict requirement for the transition from uni- to multicellular life.


Subject(s)
Amoebozoa , Evolution, Molecular , MicroRNAs , RNA, Protozoan , Amoebozoa/classification , Amoebozoa/genetics , Dictyostelium/genetics , MicroRNAs/genetics , Phylogeny , RNA, Protozoan/genetics , Conserved Sequence/genetics , RNA Interference
18.
Cells ; 13(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38334655

ABSTRACT

Dictyostelium myosin II displays remarkable dynamism within the cell, continually undergoing polymerization and depolymerization processes. Under low-ion conditions, it assumes a folded structure like muscle myosins and forms thick filaments through polymerization. In our study, we presented intermediate structures observed during the early stages of polymerization of purified myosin via negative staining electron microscopy, immediately crosslinked with glutaraldehyde at the onset of polymerization. We identified folded monomers, dimers, and tetramers in the process. Our findings suggest that Dictyostelium myosin II follows a polymerization pathway in vitro akin to muscle myosin, with folded monomers forming folded parallel and antiparallel dimers that subsequently associate to create folded tetramers. These folded tetramers eventually unfold and associate with other tetramers to produce long filaments. Furthermore, our research revealed that ATP influences filament size, reducing it regardless of the status of RLC phosphorylation while significantly increasing the critical polymerization concentrations from 0.2 to 9 nM. In addition, we demonstrate the morphology of fully matured Dictyostelium myosin II filaments.


Subject(s)
Dictyostelium , Dictyostelium/metabolism , Polymerization , Myosins/metabolism , Myosin Type II/metabolism , Cytoskeleton/metabolism , Polymers
19.
J Pharmacol Sci ; 154(3): 157-165, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395516

ABSTRACT

For the treatment and prevention of autoinflammatory diseases, it is essential to develop the drug, regulating the innate immune system. Although differentiation-inducing factor (DIF) derivatives, extracted from the cellular slime mold, Dictyostelium discoideum, exhibit immunomodulatory effects, their effects on the regulation of innate immunity in brain are unknown. In this study, we used the human cerebral microvascular endothelial cell line, hCMEC/D3, to investigate the effects of DIF derivatives on the generation of C-X-C motif chemokine (CXCL) 10 and interferon (IFN)-ß induced by polyinosinic-polycytidylic acid (poly IC). DIF-3 (1-10 µM), but not DIF-1 and DIF-2, dose-dependently inhibited the biosynthesis of not only CXCL10 but also CXCL16 and C-C motif chemokine 2 induced by poly IC. DIF-3 also strongly decreased IFN-ß mRNA expression and protein release from the cells induced by poly IC through the prohibition of p65, a subtype of NF-ĸB, not interferon regulatory transcription factor 3 phosphorylation. In the docking simulation study, we confirmed that DIF-3 had a high affinity to p65. These results suggest that DIF-3 regulates the innate immune system by inhibiting TLR3/IFN-ß signaling axis through the NF-ĸB phosphorylation inhibition.


Subject(s)
Dictyostelium , Poly I-C , Humans , Poly I-C/pharmacology , Endothelial Cells/metabolism , NF-kappa B/metabolism , Immunity, Innate , Chemokines/metabolism , Chemokines/pharmacology
20.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339168

ABSTRACT

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Subject(s)
Glucose , Malate Dehydrogenase , Animals , Humans , Mice , 3T3-L1 Cells/drug effects , 3T3-L1 Cells/metabolism , Adenylate Kinase/metabolism , Dictyostelium/metabolism , Glucose/metabolism , HeLa Cells/drug effects , HeLa Cells/metabolism , Malate Dehydrogenase/antagonists & inhibitors , Malate Dehydrogenase/metabolism , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...