Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 676628, 2021.
Article in English | MEDLINE | ID: mdl-34054868

ABSTRACT

For poultry producers, chronic low-grade intestinal inflammation has a negative impact on productivity by impairing nutrient absorption and allocation of nutrients for growth. Understanding the triggers of chronic intestinal inflammation and developing a non-invasive measurement is crucial to managing gut health in poultry. In this study, we developed two novel models of low-grade chronic intestinal inflammation in broiler chickens: a chemical model using dextran sodium sulfate (DSS) and a dietary model using a high non-starch polysaccharide diet (NSP). Further, we evaluated the potential of several proteins as biomarkers of gut inflammation. For these experiments, the chemical induction of inflammation consisted of two 5-day cycles of oral gavage of either 0.25mg DSS/ml or 0.35mg DSS/ml; whereas the NSP diet (30% rice bran) was fed throughout the experiment. At four times (14, 22, 28 and 36-d post-hatch), necropsies were performed to collect intestinal samples for histology, and feces and serum for biomarkers quantification. Neither DSS nor NSP treatments affected feed intake or livability. NSP-fed birds exhibited intestinal inflammation through 14-d, which stabilized by 36-d. On the other hand, the cyclic DSS-treatment produced inflammation throughout the entire experimental period. Histological examination of the intestine revealed that the inflammation induced by both models exhibited similar spatial and temporal patterns with the duodenum and jejunum affected early (at 14-d) whereas the ileum was compromised by 28-d. Calprotectin (CALP) was the only serum protein found to be increased due to inflammation. However, fecal CALP and Lipocalin-2 (LCN-2) concentrations were significantly greater in the induced inflammation groups at 28-d. This experiment demonstrated for the first time, two in vivo models of chronic gut inflammation in chickens, a DSS and a nutritional NSP protocols. Based on these models we observed that intestinal inflammation begins in the upper segments of small intestine and moved to the lower region over time. In the searching for a fecal biomarker for intestinal inflammation, LCN-2 showed promising results. More importantly, calprotectin has a great potential as a novel biomarker for poultry measured both in serum and feces.


Subject(s)
Dextran Sulfate/adverse effects , Diet, Carbohydrate Loading/adverse effects , Diet, Carbohydrate Loading/veterinary , Gastroenteritis/blood , Gastroenteritis/chemically induced , Poultry Diseases/blood , Poultry Diseases/chemically induced , Animal Feed , Animals , Biomarkers/metabolism , Chickens , Chronic Disease , Dextran Sulfate/administration & dosage , Dietary Fiber/adverse effects , Disease Models, Animal , Feces/chemistry , Gastroenteritis/immunology , Intestinal Mucosa/immunology , Leukocyte L1 Antigen Complex/metabolism , Lipocalin-2/metabolism , Male , Oryza/adverse effects , Poultry Diseases/immunology
2.
Fish Shellfish Immunol ; 109: 1-11, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33285166

ABSTRACT

This study was conducted to explore the beneficial role of taurine against chronic high carbohydrate diet-induced oxidative stress, endoplasmic reticulum (ER) stress and inflammation, and to understand the underlying molecular mechanisms in turbot. Two 10-week feeding trials were simultaneously conducted. For the one, six experimental diets with graded levels of taurine supplementation (0, 0.4%, 0.8%, 1.2%, 1.6% and, 2.0%, respectively) and 15% of carbohydrate were used. For the other one, three graded levels of dietary taurine supplementation (0.4%, 1.2% and 2.0%, respectively) with 21% of carbohydrate were used. The results showed that higher expression level of inflammation cytokines and ER stress related genes were detected in higher dietary carbohydrate group. In both feeding trials, 1.2% of dietary taurine supplementation improved anti-oxidative status by decreasing the content of malondialdehyde, increasing the catalase activity and total anti-oxidative capacities. In feeding trial 1, appropriate taurine supplementation lowered contents of tumour necrosis factor-a, interleukin-6, aspartate aminotransferase and alkaline phosphatase in plasma, and decreased the expressions of pro-inflammatory cytokines, such as interleukin-8 (il-8) and interferon-γ (ifn-γ). Furthermore, dietary taurine reduced ER stress by decreasing the mRNA levels of activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase and G protein-coupled receptor 78. The optimal dietary taurine content was estimated as 1.40% based on the analysis of specific growth rate. In feeding trial 2, dietary taurine supplementation attenuated liver inflammation partly referring to significantly down-regulated mRNA levels of nuclear transcription factor-κB p65, ifn-γ, interleukin1ß and up-regulate the transcript of ribosomal protein S6 kinase 1. Dietary taurine supplementation in feeding trial 2 significantly increased the Nrf2-related factor 2 protein level and decreased the NFκB p65 protein level only at 21% of dietary carbohydrate level. Taurine can alleviate the oxidative damage and inflammation caused by 21% of dietary carbohydrate to a certain degree. Overall, the present study confirmed that dietary taurine supplementation improved growth performance and anti-oxidative response, and reduced liver inflammatory and ER stress processes induced by high dietary carbohydrate in turbot.


Subject(s)
Diet, Carbohydrate Loading/veterinary , Endoplasmic Reticulum Stress/drug effects , Flatfishes/immunology , Inflammation/veterinary , Liver/drug effects , Oxidative Stress/drug effects , Taurine/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Diseases/chemically induced , Fish Diseases/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Liver/metabolism , Random Allocation , Taurine/administration & dosage
3.
J Dairy Sci ; 103(5): 4378-4389, 2020 May.
Article in English | MEDLINE | ID: mdl-32197845

ABSTRACT

The objective of this study was to determine the effects of high-starch or high-fat diets formulated to be isoenergetic on energy and N partitioning and utilization of energy. Twelve multiparous Jersey cows (mean ± standard deviation; 192 ± 11 d in milk; 467 ± 47 kg) in a crossover design with 28-d periods (24-d adaptation and 4-d collection) were used to compare 2 treatment diets. Treatments were high starch (HS; 30.8% starch, 31.8% neutral detergent fiber, and 1.9% fatty acids) or high fat (HF; 16.8% starch, 41.7% neutral detergent fiber, and 4.1% fatty acids). Diets were formulated to have net energy for lactation (NEL) content of 1.55 Mcal/kg of dry matter according to the National Research Council (2001) dairy model. Nutrient composition was varied primarily by replacing corn grain in HS with a rumen-inert fat source and cottonseed hulls in HF. Gross energy content was lower for HS (4.43 vs. 4.54 ± 0.01 Mcal/kg of dry matter), whereas digestible (2.93 vs. 2.74 ± 0.035 Mcal/kg of dry matter) and metabolizable energy (2.60 vs. 2.41 ± 0.030 Mcal/kg of dry matter), and NEL (1.83 vs. 1.67 ± 0.036 Mcal/kg of dry matter) content were all greater than for HF. Tissue energy deposited as body fat tended to be greater for HS (4.70 vs. 2.14 ± 1.01 Mcal/d). For N partitioning, HS increased milk N secretion (141 vs. 131 ± 10.5 g/d) and decreased urinary N excretion (123 vs. 150 ± 6.4 g/d). Compared with HF, HS increased apparent total-tract digestibility of dry matter (66.7 vs. 61.7 ± 1.06%), organic matter (68.5 vs. 63.2 ± 0.98%), energy (66.0 vs. 60.4 ± 0.92%), and 18-carbon fatty acids (67.9 vs. 61.2 ± 1.60%). However, apparent total-tract digestibility of starch decreased for HS from 97.0 to 94.5 ± 0.48%. Compared with HF, HS tended to increase milk yield (19.7 vs. 18.9 ± 1.38 kg/d), milk protein content (4.03 vs. 3.93 ± 0.10%), milk protein yield (0.791 vs. 0.740 ± 0.050 kg/d), and milk lactose yield (0.897 vs. 0.864 ± 0.067 kg/d). In addition, HS decreased milk fat content (5.93 vs. 6.37 ± 0.15%) but did not affect milk fat yield (average of 1.19 ± 0.09 kg/d) or energy-corrected milk yield (average of 27.2 ± 1.99 kg/d). Results of the current study suggest that the HS diet had a greater metabolizable energy and NEL content, increased partitioning of N toward milk secretion and away from urinary excretion, and may have increased partitioning of energy toward tissue energy deposited as fat.


Subject(s)
Cattle/physiology , Diet, Carbohydrate Loading/veterinary , Diet, High-Fat/veterinary , Energy Metabolism , Nitrogen/metabolism , Starch/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Lactation , Random Allocation , Starch/administration & dosage
4.
Fish Shellfish Immunol ; 98: 758-765, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31730927

ABSTRACT

With the development of aquaculture industry, high-carbohydrate diet is used to stimulate protein-sparing effect and reduce feed cost. However, fish utilize carbohydrates poorly in general, and instead, high level of carbohydrates in the diet influence the growth condition of fish. How to alleviate the side effects of high carbohydrate diet on fish health has attracted more and more attentions. In the present study, Nile tilapia (Oreochromis niloticus) were fed with 25% and 45% of carbohydrate diet for eight weeks. Higher body weight but lower resistance to pathogen was found in 45% carbohydrate diet group. Higher expression level of inflammation cytokines, increased expression of total NF-κB protein and phosphorylated NF-κB protein (p-NF-κB) were detected in higher carbohydrate group. Concentration of short-chain fatty acids (SCFAs) was measured and the results indicated that high-carbohydrate diet decreased acetate content in the intestine. In order to detect the relationship between the decreased concentration of acetate and lower resistance to pathogen in high-carbohydrate group, 45% of carbohydrate diets (HC) supplemented with different concentrations of sodium acetate (HC + LA, 100 mmol/L; HC + MA, 200 mmol/L; HC + HA, 400 mmol/L) were used to raise Nile Tilapia for eight weeks. The results indicated that addition of 200 mmol/L sodium acetate (HC + MA) reduced the mortality when fish were challenged with Aeromonas hydrophila. Furthermore, we also found that addition of 200 mmol/L sodium acetate mainly inhibited p38 mitogen-activated protein kinase (p38MAPK) and NF-κB phosphorylation to decrease the expression level of inflammation cytokines (IL-8, IL-12, TNF-α and IL-1ß) in the intestine. The present study indicated that certain concentration of sodium acetate could alleviate high-carbohydrate induced intestinal inflammation mainly by suppressing MAPK activation and NF-κB phosphorylation.


Subject(s)
Cichlids/immunology , Fish Diseases/immunology , Inflammation/veterinary , Intestinal Diseases/veterinary , Protective Agents/pharmacology , Signal Transduction/drug effects , Sodium Acetate/pharmacology , Animal Feed/analysis , Animals , Diet/veterinary , Diet, Carbohydrate Loading/adverse effects , Diet, Carbohydrate Loading/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Fish Diseases/chemically induced , Fish Diseases/drug therapy , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/immunology , Intestinal Diseases/chemically induced , Intestinal Diseases/drug therapy , Intestinal Diseases/immunology , Intestines/drug effects , NF-kappa B/metabolism , Protective Agents/administration & dosage , Sodium Acetate/administration & dosage , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...