Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 541-556, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38091342

ABSTRACT

Ketogenic diets (KD) have been used in the treatment of epilepsy in humans for around a century and, more recently, they have been implanted for cancer patients, as well as in the treatment of obesity. This type of diet consists of high-fat levels, an adequate amount of protein and restricted carbohydrates, or high medium-chain triglycerides. Recently, the ketogenic diet has gained attention in veterinary medicine and studies were published evaluating the effects of KD in dogs with epilepsy. The objective of this review was to highlight recent studies about the application of KD in dogs and cats, to describe the neurobiochemical mechanisms through which KD improves epilepsy crisis, and their adverse effects. Studies were identified by a systematic review of literature available on PubMed, Embase, and Scopus. All cohort and case-control studies were included, and all articles were exported to Mendeley® citation manager, and duplicates were automatically removed. Seven articles and three conference abstracts conducted with dogs were included in the present study. There is evidence that the consumption of diets with medium-chain triglycerides increases the concentration of circulating ketone bodies and improves epilepsy signs, although these diets have higher carbohydrate and lower fat content when compared to the classic KD.


Subject(s)
Cat Diseases , Diet, Ketogenic , Dog Diseases , Epilepsy , Humans , Cats , Dogs , Animals , Diet, Ketogenic/adverse effects , Diet, Ketogenic/veterinary , Epilepsy/veterinary , Triglycerides/metabolism
2.
Br J Nutr ; 114(9): 1438-47, 2015 11 14.
Article in English | MEDLINE | ID: mdl-26337751

ABSTRACT

Despite appropriate antiepileptic drug treatment, approximately one-third of humans and dogs with epilepsy continue experiencing seizures, emphasising the importance for new treatment strategies to improve the quality of life of people or dogs with epilepsy. A 6-month prospective, randomised, double-blinded, placebo-controlled cross-over dietary trial was designed to compare a ketogenic medium-chain TAG diet (MCTD) with a standardised placebo diet in chronically antiepileptic drug-treated dogs with idiopathic epilepsy. Dogs were fed either MCTD or placebo diet for 3 months followed by a subsequent respective switch of diet for a further 3 months. Seizure frequency, clinical and laboratory data were collected and evaluated for twenty-one dogs completing the study. Seizure frequency was significantly lower when dogs were fed the MCTD (2·31/month, 0-9·89/month) in comparison with the placebo diet (2·67/month, 0·33-22·92/month, P=0·020); three dogs achieved seizure freedom, seven additional dogs had ≥50 % reduction in seizure frequency, five had an overall <50 % reduction in seizures (38·87 %, 35·68-43·27 %) and six showed no response. Seizure day frequency were also significantly lower when dogs were fed the MCTD (1·63/month, 0-7·58/month) in comparison with the placebo diet (1·69/month, 0·33-13·82/month, P=0·022). Consumption of the MCTD also resulted in significant elevation of blood ß-hydroxybutyrate concentrations in comparison with placebo diet (0·071 (sd 0·035) v. 0·053 (sd 0·028) mmol/l, P=0·028). There were no significant changes in serum concentrations of glucose (P=0·903), phenobarbital (P=0·422), potassium bromide (P=0·404) and weight (P=0·300) between diet groups. In conclusion, the data show antiepileptic properties associated with ketogenic diets and provide evidence for the efficacy of the MCTD used in this study as a therapeutic option for epilepsy treatment.


Subject(s)
Diet, Ketogenic/veterinary , Epilepsy/diet therapy , Epilepsy/veterinary , Seizures/diet therapy , Seizures/veterinary , Triglycerides/administration & dosage , 3-Hydroxybutyric Acid/blood , Animals , Anticonvulsants/administration & dosage , Blood Glucose/metabolism , Bromides/blood , Cross-Over Studies , Dogs , Double-Blind Method , Female , Male , Phenobarbital/blood , Potassium Compounds/blood , Prospective Studies , Quality of Life , Treatment Outcome
4.
Vet J ; 199(3): 332-9, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24309438

ABSTRACT

Refractory epilepsy is a common disorder both in humans and dogs and treatment protocols are difficult to optimise. In humans, different non-pharmacological treatment modalities currently available include surgery, the ketogenic diet and neurostimulation. Surgery leads to freedom from seizures in 50-75% of patients, but requires strict patient selection. The ketogenic diet is indicated in severe childhood epilepsies, but efficacy is limited and long-term compliance can be problematic. In the past decade, various types of neurostimulation have emerged as promising treatment modalities for humans with refractory epilepsy. Currently, none of these treatment options are used in routine daily clinical practice to treat dogs with the condition. Since many dogs with poorly controlled seizures do not survive, the search for alternative treatment options for canine refractory epilepsy should be prioritised. This review provides an overview of non-pharmacological treatment options for human refractory epilepsy. The current knowledge and limitations of these treatments in canine refractory epilepsy is also discussed.


Subject(s)
Dog Diseases/therapy , Epilepsy/therapy , Epilepsy/veterinary , Animals , Diet, Ketogenic/veterinary , Dog Diseases/drug therapy , Dog Diseases/surgery , Dogs , Epilepsy/diet therapy , Epilepsy/surgery , Humans
5.
J Dairy Sci ; 95(10): 5946-60, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22921630

ABSTRACT

Nine periparturient Holstein cows catheterized in major splanchnic vessels were used in a complete randomized design with repeated measurements to investigate effects of glucogenic and ketogenic feeding strategies on splanchnic metabolism of glucose and amino acids. At parturition, cows were assigned to 1 of 3 feeding strategies: a glucogenic diet (GLCG) based on sodium hydroxide treated wheat grain (56.5% of diet dry matter); a ketogenic diet (KETO) based on fodder beets (40.5% of diet dry matter); or an alfalfa-glucogenic strategy (ALF-GLCG) supplying 100% alfalfa (Medicago sativa L.) haylage at the day of parturition, followed by a 6-d linear shift to the GLCG diet. Samples were obtained 14 d before expected parturition as well as at 4, 15, and 29 d in milk (DIM). The net portal release of glucose was greatest with GLCG, reflecting the higher intake of ruminal escape starch with GLCG, as compared with a lower starch intake with KETO. Postpartum, the portal recovery of feed starch was greater (28 ± 3%, mean ± SEM) with KETO as compared with GLCG (15 ± 4%). At 4 DIM, the net hepatic release of glucose was greatest with KETO and least with ALF-GLCG, whereafter it increased as lactation progressed with ALF-GLCG and GLCG, but not with KETO. The high alfalfa haylage allowance at 4 DIM with the ALF-GLCG treatment induced the lowest net release of nutrients from the splanchnic tissues at 4 DIM. The hepatic removal of lactate as percent of total influx (mean ± SEM) increased from 27 ± 3% prepartum to 56 ± 3% at 4 DIM. The hepatic removal of lactate as percent of net portal release increased from 144 ± 10% prepartum to 329 ± 17% at 4 DIM with ALF-GLCG and KETO as compared with 242 ± 20% in GLCG. No clear evidence for an amino acid sparing effect in splanchnic tissues from increasing small intestinal glucose absorption was observed. In conclusion, the glucogenic feeding strategy induced the highest glucogenic status among the tested feeding strategies due to greater release of glucose from splanchnic tissues. In contrast, the immediate postpartum high allowance of alfalfa haylage provided the lowest amount of nutrients from the splanchnic tissues, inducing low glucogenic status, pointing to the importance of allocating highly digestible diets to postpartum transition cows. Salvaging glucogenic carbon via interorgan transfer of lactate from peripheral tissues supported the immediate postpartum incremental increase in hepatic glucose release rather than hepatic catabolism of amino acids.


Subject(s)
Amino Acids/blood , Blood Glucose/analysis , Diet, Ketogenic/veterinary , Dietary Carbohydrates/pharmacology , Postpartum Period/metabolism , Splanchnic Circulation , Amino Acids/metabolism , Animal Feed , Animal Nutritional Physiological Phenomena/physiology , Animals , Beta vulgaris , Blood Glucose/metabolism , Cattle , Diet, Ketogenic/methods , Female , Liver/metabolism , Liver/physiology , Medicago sativa , Postpartum Period/physiology , Pregnancy , Splanchnic Circulation/physiology , Triticum
SELECTION OF CITATIONS
SEARCH DETAIL