Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.417
Filter
1.
J Vis Exp ; (207)2024 May 17.
Article in English | MEDLINE | ID: mdl-38829110

ABSTRACT

PyDesigner is a Python-based software package based on the original Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline (Dv1) for dMRI preprocessing and tensor estimation. This software is openly provided for non-commercial research and may not be used for clinical care. PyDesigner combines tools from FSL and MRtrix3 to perform denoising, Gibbs ringing correction, eddy current motion correction, brain masking, image smoothing, and Rician bias correction to optimize the estimation of multiple diffusion measures. It can be used across platforms on Windows, Mac, and Linux to accurately derive commonly used metrics from DKI, DTI, WMTI, FBI, and FBWM datasets as well as tractography ODFs and .fib files. It is also file-format agnostic, accepting inputs in the form of .nii, .nii.gz, .mif, and dicom format. User-friendly and easy to install, this software also outputs quality control metrics illustrating signal-to-noise ratio graphs, outlier voxels, and head motion to evaluate data integrity. Additionally, this dMRI processing pipeline supports multiple echo-time dataset processing and features pipeline customization, allowing the user to specify which processes are employed and which outputs are produced to meet a variety of user needs.


Subject(s)
Diffusion Magnetic Resonance Imaging , Software , Humans , Diffusion Magnetic Resonance Imaging/methods , Image Processing, Computer-Assisted/methods , Brain/diagnostic imaging
2.
Hum Brain Mapp ; 45(7): e26705, 2024 May.
Article in English | MEDLINE | ID: mdl-38716698

ABSTRACT

The global ageing of populations calls for effective, ecologically valid methods to support brain health across adult life. Previous evidence suggests that music can promote white matter (WM) microstructure and grey matter (GM) volume while supporting auditory and cognitive functioning and emotional well-being as well as counteracting age-related cognitive decline. Adding a social component to music training, choir singing is a popular leisure activity among older adults, but a systematic account of its potential to support healthy brain structure, especially with regard to ageing, is currently missing. The present study used quantitative anisotropy (QA)-based diffusion MRI connectometry and voxel-based morphometry to explore the relationship of lifetime choir singing experience and brain structure at the whole-brain level. Cross-sectional multiple regression analyses were carried out in a large, balanced sample (N = 95; age range 21-88) of healthy adults with varying levels of choir singing experience across the whole age range and within subgroups defined by age (young, middle-aged, and older adults). Independent of age, choir singing experience was associated with extensive increases in WM QA in commissural, association, and projection tracts across the brain. Corroborating previous work, these overlapped with language and limbic networks. Enhanced corpus callosum microstructure was associated with choir singing experience across all subgroups. In addition, choir singing experience was selectively associated with enhanced QA in the fornix in older participants. No associations between GM volume and choir singing were found. The present study offers the first systematic account of amateur-level choir singing on brain structure. While no evidence for counteracting GM atrophy was found, the present evidence of enhanced structural connectivity coheres well with age-typical structural changes. Corroborating previous behavioural studies, the present results suggest that regular choir singing holds great promise for supporting brain health across the adult life span.


Subject(s)
Singing , White Matter , Humans , Adult , Male , Middle Aged , Aged , Female , Young Adult , Singing/physiology , Aged, 80 and over , White Matter/diagnostic imaging , White Matter/physiology , White Matter/anatomy & histology , Aging/physiology , Cross-Sectional Studies , Brain/diagnostic imaging , Brain/physiology , Brain/anatomy & histology , Gray Matter/diagnostic imaging , Gray Matter/anatomy & histology , Gray Matter/physiology , Diffusion Magnetic Resonance Imaging , Diffusion Tensor Imaging
3.
Zhonghua Yan Ke Za Zhi ; 60(5): 454-456, 2024 May 11.
Article in Chinese | MEDLINE | ID: mdl-38706085

ABSTRACT

A 47-year-old male patient with a history of Takayasu arteritis presented with prominent symptoms of left eyeball fixation, protrusion, and visual loss. Orbital magnetic resonance imaging revealed hyperintensity on diffusion-weighted imaging of the left optic nerve, with corresponding low signal on apparent diffusion coefficient maps, suggestive of acute infarction of the left optic nerve. Combined with the patient's cranial magnetic resonance imaging findings, the diagnosis of cavernous sinus syndrome was established.


Subject(s)
Cavernous Sinus , Diffusion Magnetic Resonance Imaging , Optic Nerve , Takayasu Arteritis , Humans , Male , Middle Aged , Takayasu Arteritis/complications , Takayasu Arteritis/diagnostic imaging , Cavernous Sinus/diagnostic imaging , Cavernous Sinus/pathology , Optic Nerve/diagnostic imaging , Cavernous Sinus Syndromes
4.
Sci Rep ; 14(1): 9835, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744901

ABSTRACT

Biological sex is a crucial variable in neuroscience studies where sex differences have been documented across cognitive functions and neuropsychiatric disorders. While gross statistical differences have been previously documented in macroscopic brain structure such as cortical thickness or region size, less is understood about sex-related cellular-level microstructural differences which could provide insight into brain health and disease. Studying these microstructural differences between men and women paves the way for understanding brain disorders and diseases that manifest differently in different sexes. Diffusion MRI is an important in vivo, non-invasive methodology that provides a window into brain tissue microstructure. Our study develops multiple end-to-end classification models that accurately estimates the sex of a subject using volumetric diffusion MRI data and uses these models to identify white matter regions that differ the most between men and women. 471 male and 560 female healthy subjects (age range, 22-37 years) from the Human Connectome Project are included. Fractional anisotropy, mean diffusivity and mean kurtosis are used to capture brain tissue microstructure characteristics. Diffusion parametric maps are registered to a standard template to reduce bias that can arise from macroscopic anatomical differences like brain size and contour. This study employ three major model architectures: 2D convolutional neural networks, 3D convolutional neural networks and Vision Transformer (with self-supervised pretraining). Our results show that all 3 models achieve high sex classification performance (test AUC 0.92-0.98) across all diffusion metrics indicating definitive differences in white matter tissue microstructure between males and females. We further use complementary model architectures to inform about the pattern of detected microstructural differences and the influence of short-range versus long-range interactions. Occlusion analysis together with Wilcoxon signed-rank test is used to determine which white matter regions contribute most to sex classification. The results indicate that sex-related differences manifest in both local features as well as global features / longer-distance interactions of tissue microstructure. Our highly consistent findings across models provides new insight supporting differences between male and female brain cellular-level tissue organization particularly in the central white matter.


Subject(s)
Deep Learning , Diffusion Magnetic Resonance Imaging , Sex Characteristics , White Matter , Humans , White Matter/diagnostic imaging , Male , Female , Adult , Diffusion Magnetic Resonance Imaging/methods , Young Adult , Brain/diagnostic imaging , Brain/anatomy & histology , Connectome , Image Processing, Computer-Assisted/methods
5.
Radiol Clin North Am ; 62(4): 661-678, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777541

ABSTRACT

Considering the high cost of dynamic contrast-enhanced MR imaging and various contraindications and health concerns related to administration of intravenous gadolinium-based contrast agents, there is emerging interest in non-contrast-enhanced breast MR imaging. Diffusion-weighted MR imaging (DWI) is a fast, unenhanced technique that has wide clinical applications in breast cancer detection, characterization, prognosis, and predicting treatment response. It also has the potential to serve as a non-contrast MR imaging screening method. Standardized protocols and interpretation strategies can help to enhance the clinical utility of breast DWI. A variety of other promising non-contrast MR imaging techniques are in development, but currently, DWI is closest to clinical integration, while others are still mostly used in the research setting.


Subject(s)
Breast Neoplasms , Breast , Magnetic Resonance Imaging , Humans , Breast Neoplasms/diagnostic imaging , Female , Breast/diagnostic imaging , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Contrast Media
6.
Hum Brain Mapp ; 45(8): e26722, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38780442

ABSTRACT

In this study we explore the spatio-temporal trajectory and clinical relevance of microstructural white matter changes within and beyond subcortical stroke lesions detected by free-water imaging. Twenty-seven patients with subcortical infarct with mean age of 66.73 (SD 11.57) and median initial NIHSS score of 4 (IQR 3-7) received diffusion MRI 3-5 days, 1 month, 3 months, and 12 months after symptom-onset. Extracellular free-water and fractional anisotropy of the tissue (FAT) were averaged within stroke lesions and the surrounding tissue. Linear models showed increased free-water and decreased FAT in the white matter of patients with subcortical stroke (lesion [free-water/FAT, mean relative difference in %, ipsilesional vs. contralesional hemisphere at 3-5 days, 1 month, 3 months, and 12 months after symptom-onset]: +41/-34, +111/-37, +208/-26, +251/-18; perilesional tissue [range in %]: +[5-24]/-[0.2-7], +[2-20]/-[3-16], +[5-43]/-[2-16], +[10-110]/-[2-12]). Microstructural changes were most prominent within the lesion and gradually became less pronounced with increasing distance from the lesion. While free-water elevations continuously increased over time and peaked after 12 months, FAT decreases were most evident 1 month post-stroke, gradually returning to baseline values thereafter. Higher perilesional free-water and higher lesional FAT at baseline were correlated with greater reductions in lesion size (rho = -0.51, p = .03) in unadjusted analyses only, while there were no associations with clinical measures. In summary, we find a characteristic spatio-temporal pattern of extracellular and cellular alterations beyond subcortical stroke lesions, indicating a dynamic parenchymal response to ischemia characterized by vasogenic edema, cellular damage, and white matter atrophy.


Subject(s)
Diffusion Magnetic Resonance Imaging , Ischemic Stroke , White Matter , Humans , Male , Aged , Female , Middle Aged , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Magnetic Resonance Imaging/methods , Longitudinal Studies , Water , Brain/diagnostic imaging , Brain/pathology , Anisotropy
8.
Radiology ; 311(2): e232508, 2024 May.
Article in English | MEDLINE | ID: mdl-38771179

ABSTRACT

Background Diffusion-weighted imaging (DWI) is increasingly recognized as a powerful diagnostic tool and tested alternative to contrast-enhanced (CE) breast MRI. Purpose To perform a systematic review and meta-analysis that assesses the diagnostic performance of DWI-based noncontrast MRI protocols (ncDWI) for the diagnosis of breast cancer. Materials and Methods A systematic literature search in PubMed for articles published from January 1985 to September 2023 was performed. Studies were excluded if they investigated malignant lesions or selected patients and/or lesions only, used DWI as an adjunct technique to CE MRI, or were technical studies. Statistical analysis included pooling of diagnostic accuracy and investigating between-study heterogeneity. Additional subgroup comparisons of ncDWI to CE MRI and standard mammography were performed. Results A total of 28 studies were included, with 4406 lesions (1676 malignant, 2730 benign) in 3787 patients. The pooled sensitivity and specificity of ncDWI were 86.5% (95% CI: 81.4, 90.4) and 83.5% (95% CI: 76.9, 88.6), and both measures presented with high between-study heterogeneity (I 2 = 81.6% and 91.6%, respectively; P < .001). CE MRI (18 studies) had higher sensitivity than ncDWI (95.1% [95% CI: 92.9, 96.7] vs 88.9% [95% CI: 82.4, 93.1], P = .004) at similar specificity (82.2% [95% CI: 75.0, 87.7] vs 82.0% [95% CI: 74.8, 87.5], P = .97). Compared with ncDWI, mammography (five studies) showed no evidence of a statistical difference for sensitivity (80.3% [95% CI: 56.3, 93.3] vs 56.7%; [95% CI: 41.9, 70.4], respectively; P = .09) or specificity (89.9% [95% CI: 85.5, 93.1] vs 90% [95% CI: 61.3, 98.1], respectively; P = .62), but ncDWI had a higher area under the summary receiver operating characteristic curve (0.93 [95% CI: 0.91, 0.95] vs 0.78 [95% CI: 0.74, 0.81], P < .001). Conclusion A direct comparison with CE MRI showed a modestly lower sensitivity at similar specificity for ncDWI, and higher diagnostic performance indexes for ncDWI than standard mammography. Heterogeneity was high, thus these results must be interpreted with caution. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Kataoka and Iima in this issue.


Subject(s)
Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Humans , Breast Neoplasms/diagnostic imaging , Female , Diffusion Magnetic Resonance Imaging/methods , Sensitivity and Specificity , Breast/diagnostic imaging
9.
Clin Ter ; 175(3): 128-136, 2024.
Article in English | MEDLINE | ID: mdl-38767069

ABSTRACT

Objectives: We assessed the value of histogram analysis (HA) of apparent diffusion coefficient (ADC) maps for grading low-grade (LGG) and high-grade (HGG) gliomas. Methods: We compared the diagnostic performance of two region-of-interest (ROI) placement methods (ROI 1: the entire tumor; ROI 2: the tumor excluding cystic and necrotic portions). We retrospectively evaluated 54 patients with supratentorial gliomas (18 LGG and 36 HGG). All subjects underwent standard 3T contrast-enhanced magnetic resonance imaging. Histogram parameters of ADC maps calculated with the two segmentation methods comprised mean, median, maxi-mum, minimum, kurtosis, skewness, entropy, standard deviation (sd), mean of positive pixels (mpp), uniformity of positive pixels, and their ratios (r) between lesion and normal white matter. They were compared using the independent t-test, chi-square test, or Mann-Whitney U test. For statistically significant results, receiver operating characteristic curves were constructed, and the optimal cutoff value, sensitivity, and specificity were determined by maximizing Youden's index. Results: The ROI 1 method resulted in significantly higher rADC mean, rADC median, and rADC mpp for LGG than for HGG; these parameters had value for predicting the histological glioma grade with a cutoff (sensitivity, specificity) of 1.88 (77.8%, 61.1%), 2.25 (44.4%, 97.2%), and 1.88 (77.8%, 63.9%), respectively. The ROI 2 method resulted in significantly higher ADC mean, ADC median, ADC mpp, ADC sd, ADC max, rADC median, rADC mpp, rADC mean, rADC sd, and rADC max for LGG than for HGG, while skewness was lower for LGG than for HGG (0.27 [0.98] vs 0.91 [0.81], p = 0.014). In ROI 2, ADC median, ADC mpp, ADC mean, rADC median, rADC mpp, and rADC mean performed well in differentiating glioma grade with cutoffs (sensitivity, specificity) of 1.28 (77.8%, 88.9%), 1.28 (77.8%, 88.9%), 1.25 (77.8%, 91.7%), 1.81 (83.3%, 91.7%), 1.74 (83.3%, 91.7%), and 1.81 (83.3%, 91.7%), respectively. Conclusions: HA parameters had value for grading gliomas. Ex-cluding cystic and necrotic portions of the tumor for measuring HA parameters was preferable to using the entire tumor as the ROI. In this segmentation, rADC median showed the highest performance in predicting histological glioma grade, followed by rADC mpp, rADC mean, ADC median, ADC mpp, and ADC mean.


Subject(s)
Brain Neoplasms , Diffusion Magnetic Resonance Imaging , Glioma , Neoplasm Grading , Humans , Glioma/diagnostic imaging , Glioma/pathology , Female , Middle Aged , Retrospective Studies , Male , Adult , Diffusion Magnetic Resonance Imaging/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Aged , Young Adult
10.
eNeuro ; 11(5)2024 May.
Article in English | MEDLINE | ID: mdl-38719452

ABSTRACT

The corpus callosum is composed of several subregions, distinct in cellular and functional organization. This organization scheme may render these subregions differentially vulnerable to the aging process. Callosal integrity may be further compromised by cardiovascular risk factors, which negatively influence white matter health. Here, we test for heterochronicity of aging, hypothesizing an anteroposterior gradient of vulnerability to aging that may be altered by the effects of cardiovascular health. In 174 healthy adults across the adult lifespan (mean age = 53.56 ± 18.90; range, 20-94 years old, 58.62% women), pulse pressure (calculated as participant's systolic minus diastolic blood pressure) was assessed to determine cardiovascular risk. A deterministic tractography approach via diffusion-weighted imaging was utilized to extract fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) from each of five callosal subregions, serving as estimates of microstructural health. General linear models tested the effects of age, hypertension, and pulse pressure on these cross-sectional metrics. We observed no significant effect of hypertensive diagnosis on callosal microstructure. We found a significant main effect of age and an age-pulse pressure interaction whereby older age and elevated pulse pressure were associated with poorer FA, AD, and RD. Age effects revealed nonlinear components and occurred along an anteroposterior gradient of severity in the callosum. This gradient disappeared when pulse pressure was considered. These results indicate that age-related deterioration across the callosum is regionally variable and that pulse pressure, a proxy of arterial stiffness, exacerbates this aging pattern in a large lifespan cohort.


Subject(s)
Aging , Blood Pressure , Corpus Callosum , Humans , Corpus Callosum/diagnostic imaging , Corpus Callosum/physiology , Female , Middle Aged , Aged , Adult , Male , Aging/physiology , Aging/pathology , Aged, 80 and over , Young Adult , Blood Pressure/physiology , Diffusion Tensor Imaging , Hypertension/physiopathology , Hypertension/pathology , Cross-Sectional Studies , Diffusion Magnetic Resonance Imaging
11.
AJNR Am J Neuroradiol ; 45(5): 568-573, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724189

ABSTRACT

BACKGROUND AND PURPOSE: Early neurologic deterioration (END) often occurs during hospitalization in single small subcortical infarction (SSSI). The objective was to identify imaging predictors of END. MATERIALS AND METHODS: SSSIs in the lenticulostriate artery within 72 hours of stroke onset from January 2015 to June 2021 were consecutively enrolled. The posteriority and laterality indexes were assessed on the second section from the top of the corona radiata section showing the lateral ventricle on DWI. A multivariate logistic analysis was used to explore the predictors of END. RESULTS: A total of 402 patients were included in this study, among whom 93 (23.1%) experienced END. The optimal cutoff points of the posteriority and laterality indexes for predicting END were given by a receiver operating characteristic curve. A multivariate logistic analysis showed that the posteriority index of ≥0.669 (OR: 2.53; 95% CI: 1.41-4.56; P = .002) and the laterality index of ≥0.950 (OR: 2.03; 95% CI: 1.03-4.00; P = .042) were independently associated with the risk of END. Accordingly, the SSSIs were further divided into 4 types: anterior lateral type (AL-type), anterior medial type (AM-type), posterior lateral type (PL-type), and posterior medial type (PM-type). After the multivariate analysis, in comparison with the AL-type, the AM-type (OR: 3.26; 95% CI: 1.10-9.65), PL-type (OR: 4.68; 95% CI: 1.41-15.56), and PM-type (OR: 6.77; 95% CI: 2.53-18.04) carried significantly elevated risks of END. The PM-type was associated with the highest risk of END. CONCLUSIONS: The PM-type was found to be associated with the highest risk of END.


Subject(s)
Cerebral Infarction , Humans , Male , Female , Middle Aged , Aged , Cerebral Infarction/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Retrospective Studies , Basal Ganglia Cerebrovascular Disease/diagnostic imaging
12.
Dis Colon Rectum ; 67(6): 782-795, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38701503

ABSTRACT

BACKGROUND: A variety of definitions for a clinical near-complete response after neoadjuvant (chemo) radiotherapy for rectal cancer are currently used. This variety leads to inconsistency in clinical practice, long-term outcome, and trial enrollment. OBJECTIVE: The aim of this study was to reach expert-based consensus on the definition of a clinical near-complete response after (chemo) radiotherapy. DESIGN: A modified Delphi process, including a systematic review, 3 surveys, and 2 meetings, was performed with an international expert panel consisting of 7 surgeons and 4 radiologists. The surveys consisted of individual features, statements, and feature combinations (endoscopy, T2-weighted MRI, and diffusion-weighted MRI). SETTING: The modified Delphi process was performed in an online setting; all 3 surveys were completed online by the expert panel, and both meetings were hosted online. MAIN OUTCOME MEASURES: The main outcome was to reach consensus (80% or more agreement). RESULTS: The expert panel reached consensus on a 3-tier categorization of the near-complete response category based on the likelihood of the response to evolve into a clinical complete response after a longer waiting interval. The panelists agreed that a near-complete response is a temporary entity only to be used in the first 6 months after (chemo)radiotherapy. Furthermore, consensus was reached that the lymph node status should be considered when deciding on a near-complete response and that biopsies are not always needed when a near-complete response is found. No consensus was reached on whether primary staging characteristics have to be taken into account when deciding on a near-complete response. LIMITATIONS: This 3-tier subcategorization is expert-based; therefore, there is no supporting evidence for this subcategorization. Also, it is unclear whether this subcategorization can be generalized into clinical practice. CONCLUSIONS: Consensus was reached on the use of a 3-tier categorization of a near-complete response, which can be helpful in daily practice as guidance for treatment and to inform patients with a near-complete response on the likelihood of successful organ preservation. See Video Abstract. UN CONSENSO INTERNACIONAL BASADO EN EXPERTOS ACERCA DE LA DEFINICIN DE UNA RESPUESTA CLNICA CASI COMPLETA DESPUS DE QUIMIORADIOTERAPIA NEOADYUVANTE CONTRA EL CNCER DE RECTO: ANTECEDENTES:Actualmente, se utilizan una variedad de definiciones para una respuesta clínica casi completa después de quimioradioterapia neoadyuvante contra el cáncer de recto. Esta variedad resulta en inconsistencia en la práctica clínica, los resultados a largo plazo y la inscripción en ensayos.OBJETIVO:El objetivo de este estudio fue llegar a un consenso de expertos sobre la definición de una respuesta clínica casi completa después de quimioradioterapia.DISEÑO:Se realizó un proceso Delphi modificado que incluyó una revisión sistemática, 3 encuestas y 2 reuniones con un panel internacional de expertos compuesto por siete cirujanos y 4 radiólogos. Las encuestas consistieron en características individuales, declaraciones y combinaciones de características (endoscopía, T2W-MRI y DWI).AJUSTE:El proceso Delphi modificado se realizó en un entorno en línea; el panel de expertos completó las tres encuestas en línea y ambas reuniones se realizaron en línea.PRINCIPALES MEDIDAS DE RESULTADO:El resultado principal fue llegar a un consenso (≥80% de acuerdo).RESULTADOS:El panel de expertos llegó a un consenso sobre una categorización de tres niveles de la categoría de respuesta casi completa basada en la probabilidad de que la respuesta evolucione hacia una respuesta clínica completa después de un intervalo de espera más largo. Los panelistas coincidieron en que una respuesta casi completa es una entidad temporal que sólo debe utilizarse en los primeros 6 meses después de la quimioradioterapia. Además, se llegó a un consenso en que se debe considerar el estado de los nódulos linfáticos al decidir sobre una respuesta casi completa y que no siempre se necesitan biopsias cuando se encuentra una respuesta casi completa. No se llegó a un consenso sobre si se deben tener en cuenta las características primarias de estadificación al decidir una respuesta casi completa.LIMITACIONES:Esta subcategorización de 3 niveles está basada en expertos; por lo tanto, no hay evidencia que respalde esta subcategorización. Además, no está claro si esta subcategorización puede generalizarse a la práctica clínica.CONCLUSIONES:Se alcanzó consenso sobre el uso de una categorización de 3 niveles de una respuesta casi completa que puede ser útil en la práctica diaria como guía para el tratamiento y para informar a los pacientes con una respuesta casi completa sobre la probabilidad de una preservación exitosa del órgano. (Traducción - Dr. Aurian Garcia Gonzalez).


Subject(s)
Consensus , Delphi Technique , Neoadjuvant Therapy , Rectal Neoplasms , Humans , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Rectal Neoplasms/radiotherapy , Neoadjuvant Therapy/methods , Chemoradiotherapy/methods , Treatment Outcome , Diffusion Magnetic Resonance Imaging/methods
13.
J Assoc Physicians India ; 72(3): 18-23, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38736111

ABSTRACT

OBJECTIVES: To study the utility of chemical shift imaging (CSI) and diffusion-weighted images (DWI)/apparent diffusion coefficient (ADC) maps for the evaluation of solid renal tumors. METHODS: Magnetic resonance imaging (MRI) has an equivalent application as computerized tomography (CT) in the characterization of renal masses. It offers a radiation-free imaging technique and has a better soft tissue contrast than CT. Also, MRI is favored in patients with chronic kidney disease. MRI is useful when findings on CT are equivocal. The role of DWI in characterizing solid renal lesions as malignant is encouraging, and DWI can be particularly useful when gadolinium is contraindicated. CSI is useful in differentiating angiomyolipoma (AML) from clear cell (cc) renal cell carcinoma (RCC). We did a cross-sectional study on 24 patients with solid renal masses. MRI of the upper abdomen (from the dome of the diaphragm to the iliac crest) will be done on an MRI machine in our department (1.5T, ACHIEVA, Phillips medical system) using the torso coil. RESULT: There was no significant association seen in terms of ADC values and histological subtypes (χ2 = 11.222, p = 0.082). In our study, 50% (one out of two) of AML showed a signal drop, whereas 40% of cases (6 out of 15) of ccRCC and 66% (two out of three) of papillary RCC showed a signal drop. CONCLUSION: In this article, we concluded CSI, although a useful tool to look for microscopic fat, can't be used as a reliable marker to rule in cc-carcinoma as both AML and papillary cell carcinoma have microscopic fat. Further, no histological classification can be done on the basis of DWI/ADC images.


Subject(s)
Carcinoma, Renal Cell , Diffusion Magnetic Resonance Imaging , Kidney Neoplasms , Humans , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/pathology , Female , Angiomyolipoma/diagnostic imaging , Male , Middle Aged , Adult , Aged
14.
Int Angiol ; 43(2): 298-305, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38801345

ABSTRACT

BACKGROUND: Careful selection of patients for carotid stenting is necessary. We suggest that patients with a shaggy aorta syndrome may be at higher risk for perioperative embolic complications. METHODS: The study is a retrospective subanalysis of the SIBERIA Trial. We included 72 patients undergoing transfemoral carotid artery stenting. Patients were monitored during the procedures using multifrequency transcranial Doppler with embolus detection and differentiation. Pre- and postprocedural (2 and 30 days) cerebral diffusion-weighted cerebral MRIs were performed. RESULTS: Forty-six patients had shaggy aorta syndrome. Intraoperative embolisms were recorded in 82.6% and 46.1% of patients with and without shaggy aorta syndrome, respectively (P=0.001). New asymptomatic ischemic brain lesions in the postoperative period occurred in 78.3% and in 26.9% of patients with and without shaggy aorta syndrome, respectively (P<0.001). There were no cases of stroke within 2 days in both groups. 3 (6.5%) cases of stroke within 30 days after the procedure were observed only in patients with shaggy aorta syndrome. There were no cases of contralateral stroke. Shaggy aorta syndrome (OR 5.54 [1.83:16.7], P=0.001) and aortic arch ulceration (OR 6.67 [1.19: 37.3], P=0.02) were independently associated with cerebral embolism. Shaggy aorta syndrome (OR 9.77 [3.14-30.37], P<0.001) and aortic arch ulceration (OR 12.9 [2.3: 72.8], P=0.003) were independently associated with ipsilateral new asymptomatic ischemic brain lesions. CONCLUSIONS: Shaggy aorta syndrome and aortic arch ulceration significantly increase the odds of intraoperative embolism and new asymptomatic ischemic brain lesions. Carotid endarterectomy or transcervical carotid stent should be selected in patients with shaggy aorta syndrome.


Subject(s)
Intracranial Embolism , Stents , Humans , Intracranial Embolism/etiology , Intracranial Embolism/diagnostic imaging , Male , Female , Stents/adverse effects , Aged , Retrospective Studies , Middle Aged , Risk Factors , Aortic Diseases/diagnostic imaging , Aortic Diseases/complications , Diffusion Magnetic Resonance Imaging , Intraoperative Complications/epidemiology , Treatment Outcome , Carotid Stenosis/diagnostic imaging , Carotid Stenosis/complications , Carotid Stenosis/surgery , Ultrasonography, Doppler, Transcranial , Syndrome , Endovascular Procedures/adverse effects , Endovascular Procedures/instrumentation , Aged, 80 and over
15.
Biomater Adv ; 161: 213884, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38723432

ABSTRACT

Prostate cancer (PCa) is a significant health problem in the male population of the Western world. Magnetic resonance elastography (MRE), an emerging medical imaging technique sensitive to mechanical properties of biological tissues, detects PCa based on abnormally high stiffness and viscosity values. Yet, the origin of these changes in tissue properties and how they correlate with histopathological markers and tumor aggressiveness are largely unknown, hindering the use of tumor biomechanical properties for establishing a noninvasive PCa staging system. To infer the contributions of extracellular matrix (ECM) components and cell motility, we investigated fresh tissue specimens from two PCa xenograft mouse models, PC3 and LNCaP, using magnetic resonance elastography (MRE), diffusion-weighted imaging (DWI), quantitative histology, and nuclear shape analysis. Increased tumor stiffness and impaired water diffusion were observed to be associated with collagen and elastin accumulation and decreased cell motility. Overall, LNCaP, while more representative of clinical PCa than PC3, accumulated fewer ECM components, induced less restriction of water diffusion, and exhibited increased cell motility, resulting in overall softer and less viscous properties. Taken together, our results suggest that prostate tumor stiffness increases with ECM accumulation and cell adhesion - characteristics that influence critical biological processes of cancer development. MRE paired with DWI provides a powerful set of imaging markers that can potentially predict prostate tumor development from benign masses to aggressive malignancies in patients. STATEMENT OF SIGNIFICANCE: Xenograft models of human prostate tumor cell lines, allowing correlation of microstructure-sensitive biophysical imaging parameters with quantitative histological methods, can be investigated to identify hallmarks of cancer.


Subject(s)
Cell Movement , Elasticity Imaging Techniques , Extracellular Matrix , Prostatic Neoplasms , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/diagnostic imaging , Humans , Extracellular Matrix/pathology , Extracellular Matrix/metabolism , Elasticity Imaging Techniques/methods , Animals , Mice , Cell Line, Tumor , Diffusion Magnetic Resonance Imaging/methods
16.
Hum Brain Mapp ; 45(7): e26697, 2024 May.
Article in English | MEDLINE | ID: mdl-38726888

ABSTRACT

Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω $$ \omega $$ , in addition to the diffusion tensor, D $$ \mathbf{D} $$ , and relaxation, R 1 $$ {R}_1 $$ , R 2 $$ {R}_2 $$ , correlations. A D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.


Subject(s)
Image Processing, Computer-Assisted , Humans , Adult , Image Processing, Computer-Assisted/methods , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Male , Female , Diffusion Tensor Imaging/methods , Young Adult
17.
Sci Data ; 11(1): 487, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734679

ABSTRACT

Radiation therapy (RT) is a crucial treatment for head and neck squamous cell carcinoma (HNSCC); however, it can have adverse effects on patients' long-term function and quality of life. Biomarkers that can predict tumor response to RT are being explored to personalize treatment and improve outcomes. While tissue and blood biomarkers have limitations, imaging biomarkers derived from magnetic resonance imaging (MRI) offer detailed information. The integration of MRI and a linear accelerator in the MR-Linac system allows for MR-guided radiation therapy (MRgRT), offering precise visualization and treatment delivery. This data descriptor offers a valuable repository for weekly intra-treatment diffusion-weighted imaging (DWI) data obtained from head and neck cancer patients. By analyzing the sequential DWI changes and their correlation with treatment response, as well as oncological and survival outcomes, the study provides valuable insights into the clinical implications of DWI in HNSCC.


Subject(s)
Diffusion Magnetic Resonance Imaging , Head and Neck Neoplasms , Humans , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/radiotherapy , Radiotherapy, Image-Guided , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Particle Accelerators
18.
PLoS One ; 19(5): e0301520, 2024.
Article in English | MEDLINE | ID: mdl-38758830

ABSTRACT

White matter (WM) changes occur throughout the lifespan at a different rate for each developmental period. We aggregated 10879 structural MRIs and 6186 diffusion-weighted MRIs from participants between 2 weeks to 100 years of age. Age-related changes in gray matter and WM partial volumes and microstructural WM properties, both brain-wide and on 29 reconstructed tracts, were investigated as a function of biological sex and hemisphere, when appropriate. We investigated the curve fit that would best explain age-related differences by fitting linear, cubic, quadratic, and exponential models to macro and microstructural WM properties. Following the first steep increase in WM volume during infancy and childhood, the rate of development slows down in adulthood and decreases with aging. Similarly, microstructural properties of WM, particularly fractional anisotropy (FA) and mean diffusivity (MD), follow independent rates of change across the lifespan. The overall increase in FA and decrease in MD are modulated by demographic factors, such as the participant's age, and show different hemispheric asymmetries in some association tracts reconstructed via probabilistic tractography. All changes in WM macro and microstructure seem to follow nonlinear trajectories, which also differ based on the considered metric. Exponential changes occurred for the WM volume and FA and MD values in the first five years of life. Collectively, these results provide novel insight into how changes in different metrics of WM occur when a lifespan approach is considered.


Subject(s)
White Matter , Humans , White Matter/diagnostic imaging , Adult , Male , Female , Adolescent , Middle Aged , Aged , Young Adult , Child , Aged, 80 and over , Infant , Child, Preschool , Aging/physiology , Longevity , Infant, Newborn , Diffusion Tensor Imaging , Diffusion Magnetic Resonance Imaging , Anisotropy , Brain/diagnostic imaging , Brain/growth & development , Gray Matter/diagnostic imaging
19.
Korean J Radiol ; 25(6): 511-517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807333

ABSTRACT

OBJECTIVE: To prospectively investigate the influence of the menstrual cycle on the background parenchymal signal (BPS) and apparent diffusion coefficient (ADC) of the breast on diffusion-weighted MRI (DW-MRI) in healthy premenopausal women. MATERIALS AND METHODS: Seven healthy premenopausal women (median age, 37 years; range, 33-49 years) with regular menstrual cycles participated in this study. DW-MRI was performed during each of the four phases of the menstrual cycle (four examinations in total). Three radiologists independently assessed the BPS visual grade on images with b-values of 800 sec/mm² (b800), 1200 sec/mm² (b1200), and a synthetic 1500 sec/mm² (sb1500). Additionally, one radiologist conducted a quantitative analysis to measure the BPS volume (%) and ADC values of the BPS (ADCBPS) and fibroglandular tissue (ADCFGT). Changes in the visual grade, BPS volume (%), ADCBPS, and ADCFGT during the menstrual cycle were descriptively analyzed. RESULTS: The visual grade of BPS in seven women varied from mild to marked on b800 and from minimal to moderate on b1200 and sb1500. As the b-value increased, the visual grade of BPS decreased. On b800 and sb1500, two of the seven volunteers showed the highest visual grade in the early follicular phase (EFP). On b1200, three of the seven volunteers showed the highest visual grades in EFP. The BPS volume (%) on b800 and b1200 showed the highest value in three of the six volunteers with dense breasts in EFP. Three of the seven volunteers showed the lowest ADCBPS in the EFP. Four of the seven volunteers showed the highest ADCBPS in the early luteal phase (ELP) and the lowest ADCFGT in the late follicular phase (LFP). CONCLUSION: Most volunteers did not exhibit specific BPS patterns during their menstrual cycles. However, the highest BPS and lowest ADCBPS were more frequently observed in EFP than in the other menstrual cycle phases, whereas the highest ADCBPS was more common in ELP. The lowest ADCFGT was more frequent in LFP.


Subject(s)
Breast , Diffusion Magnetic Resonance Imaging , Menstrual Cycle , Premenopause , Humans , Female , Adult , Diffusion Magnetic Resonance Imaging/methods , Prospective Studies , Menstrual Cycle/physiology , Middle Aged , Breast/diagnostic imaging
20.
Transl Psychiatry ; 14(1): 215, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806463

ABSTRACT

Previous observational investigations suggest that structural and diffusion imaging-derived phenotypes (IDPs) are associated with major neurodegenerative diseases; however, whether these associations are causal remains largely uncertain. Herein we conducted bidirectional two-sample Mendelian randomization analyses to infer the causal relationships between structural and diffusion IDPs and major neurodegenerative diseases using common genetic variants-single nucleotide polymorphism (SNPs) as instrumental variables. Summary statistics of genome-wide association study (GWAS) for structural and diffusion IDPs were obtained from 33,224 individuals in the UK Biobank cohort. Summary statistics of GWAS for seven major neurodegenerative diseases were obtained from the largest GWAS for each disease to date. The forward MR analyses identified significant or suggestively statistical causal effects of genetically predicted three structural IDPs on Alzheimer's disease (AD), frontotemporal dementia (FTD), and multiple sclerosis. For example, the reduction in the surface area of the left superior temporal gyrus was associated with a higher risk of AD. The reverse MR analyses identified significantly or suggestively statistical causal effects of genetically predicted AD, Lewy body dementia (LBD), and FTD on nine structural and diffusion IDPs. For example, LBD was associated with increased mean diffusivity in the right superior longitudinal fasciculus and AD was associated with decreased gray matter volume in the right ventral striatum. Our findings might contribute to shedding light on the prediction and therapeutic intervention for the major neurodegenerative diseases at the neuroimaging level.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Genome-Wide Association Study , Mendelian Randomization Analysis , Neurodegenerative Diseases , Phenotype , Polymorphism, Single Nucleotide , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/pathology , Male , Female , Diffusion Magnetic Resonance Imaging , Multiple Sclerosis/genetics , Multiple Sclerosis/diagnostic imaging , Brain/diagnostic imaging , Brain/pathology , Aged , Lewy Body Disease/genetics , Lewy Body Disease/diagnostic imaging , Middle Aged , Magnetic Resonance Imaging , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...