Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31.503
Filter
1.
J Oleo Sci ; 73(6): 839-846, 2024.
Article in English | MEDLINE | ID: mdl-38825537

ABSTRACT

Controlling the morphology of molecular assemblies formed by surfactants by photoirradiation enables the controlled release of incorporated substances, which can be applied to delivery systems for drugs and active ingredients. On the other hand, conventional photoresponsive surfactants and molecular assemblies have a slow response speed, making it difficult to control their functions at the desired time. In this review, I discuss our recent progress in the accelerated control of functions of photoresponsive molecular assemblies by using lophine dimer as a photochromic compound. The lophine dimer derivative dissociates into a pair of lophyl radicals that upon ultraviolet (UV) light irradiation, and these radical species thermally recombine although the recombination reaction is extremely slow due to the diffusion of lophyl radicals. By using the confined inner space of micelles formed by surfactants, the recombination reaction was extremely accelerated. With UV light irradiation, rapid morphological changes in micelles, formed by amphiphilic lophine dimers were observed by using in situ small-angle neutron scattering (in situ SANS) system. Moreover, the rapid controlled release of calcein as a model drug was achieved by UV light irradiation using the photoresponsive micelles. This rapid system can realize the controlled release of drugs truly at the desired time, developing an efficient and precise drug delivery system (DDS). Furthermore, it can be applied in a wide range of fields such as release control of active ingredients, efficient heat exchange control, and actuating systems.


Subject(s)
Delayed-Action Preparations , Micelles , Surface-Active Agents , Ultraviolet Rays , Surface-Active Agents/chemistry , Drug Delivery Systems , Dimerization , Drug Liberation , Fluoresceins/chemistry , Photochemical Processes , Solubility , Free Radicals/chemistry
2.
J Chem Theory Comput ; 20(10): 4363-4376, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38728627

ABSTRACT

Access to the three-dimensional structure of RNA enables an ability to gain a more profound understanding of its biological mechanisms, as well as the ability to design RNA-targeting drugs, which can take advantage of the unique chemical environment imposed by a folded RNA structure. Due to the dynamic and structurally complex properties of RNA, both experimental and traditional computational methods have difficulty in determining RNA's 3D structure. Herein, we introduce TAPERSS (Theoretical Analyses, Prediction, and Evaluation of RNA Structures from Sequence), a physics-based fragment assembly method for predicting 3D RNA structures from sequence. Using a fragment library created using discrete path sampling calculations of RNA dinucleoside monophosphates, TAPERSS can sample the physics-based energy landscapes of any RNA sequence with relatively low computational complexity. We have benchmarked TAPERSS on 21 RNA tetraloops, using a combinatorial algorithm as a proof-of-concept. We show that TAPERSS was successfully able to predict the apo-state structures of all 21 RNA hairpins, with 16 of those structures also having low predicted energies as well. We demonstrate that TAPERSS performs most accurately on GNRA-like tetraloops with mostly stacked loop-nucleotides, while having limited success with more dynamic UNCG and CUYG tetraloops, most likely due to the influence of the RNA force field used to create the fragment library. Moreover, we show that TAPERSS can successfully predict the majority of the experimental non-apo states, highlighting its potential in anticipating biologically significant yet unobserved states. This holds great promise for future applications in drug design and related studies. With discussed improvements and implementation of more efficient sampling algorithms, we believe TAPERSS may serve as a useful tool for a physics-based conformational sampling of large RNA structures.


Subject(s)
Nucleic Acid Conformation , RNA , RNA/chemistry , Thermodynamics , Algorithms , Dimerization
3.
Langmuir ; 40(21): 11098-11105, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739904

ABSTRACT

Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.


Subject(s)
Disulfides , Doxorubicin , Drug Liberation , Glutathione , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Disulfides/chemistry , Glutathione/chemistry , Amides/chemistry , Nanoparticles/chemistry , Dimerization , Drug Carriers/chemistry
4.
J Agric Food Chem ; 72(19): 11124-11139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38698543

ABSTRACT

Terpenes and pentene dimers are less studied volatile organic compounds (VOCs) but are associated with specific features of extra virgin olive oils (EVOOs). This study aimed to analyze mono- and sesquiterpenes and pentene dimers of Italian monovarietal EVOOs over 3 years (14 cultivars, 225 samples). A head space-solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method recently validated was used for terpene and pentene dimer quantitation. The quantitative data collected were used for both the characterization and clustering of the cultivars. Sesquiterpenes were the molecules that most characterized the different cultivars, ranging from 3.908 to 38.215 mg/kg; different groups of cultivars were characterized by different groups of sesquiterpenes. Pentene dimers (1.336 and 3.860 mg/kg) and monoterpenes (0.430 and 1.794 mg/kg) showed much lower contents and variability among cultivars. The application of Kruskal-Wallis test-PCA-LDA-HCA to the experimental data allowed defining 4 clusters of cultivars and building a predictive model to classify the samples (94.3% correct classification). The model was further tested on 33 EVOOs, correctly classifying 91% of them.


Subject(s)
Gas Chromatography-Mass Spectrometry , Olea , Olive Oil , Quality Control , Solid Phase Microextraction , Terpenes , Volatile Organic Compounds , Solid Phase Microextraction/methods , Olive Oil/chemistry , Italy , Terpenes/chemistry , Terpenes/analysis , Olea/chemistry , Volatile Organic Compounds/chemistry , Chemometrics/methods , Dimerization
5.
J Med Chem ; 67(10): 8460-8472, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38717104

ABSTRACT

Recognizing the significance of SPECT in nuclear medicine and the pivotal role of fibroblast activation protein (FAP) in cancer diagnosis and therapy, this study focuses on the development of 99mTc-labeled dimeric HF2 with high tumor uptake and image contrast. The dimeric HF2 was synthesized and radiolabeled with 99mTc in one pot using various coligands (tricine, TPPTS, EDDA, and TPPMS) to yield [99mTc]Tc-TPPTS-HF2, [99mTc]Tc-EDDA-HF2, and [99mTc]Tc-TPPMS-HF2 dimers. SPECT imaging results indicated that [99mTc]Tc-TPPTS-HF2 exhibited higher tumor uptake and tumor-to-normal tissue (T/NT) ratio than [99mTc]Tc-EDDA-HF2 and [99mTc]Tc-TPPMS-HF2. Notably, [99mTc]Tc-TPPTS-HF2 exhibited remarkable tumor accumulation and retention in HT-1080-FAP and U87-MG tumor-bearing mice, thereby surpassing the monomeric [99mTc]Tc-TPPTS-HF. Moreover, [99mTc]Tc-TPPTS-HF2 achieved acceptable T/NT ratios in the hepatocellular carcinoma patient-derived xenograft (HCC-PDX) model, which provided identifiable contrast and imaging quality. In conclusion, this study presents proof-of-concept research on 99mTc-labeled FAP inhibitor dimers for the visualization of multiple tumor types. Among these candidate compounds, [99mTc]Tc-TPPTS-HF2 showed excellent clinical potential, thereby enriching the SPECT tracer toolbox.


Subject(s)
Organotechnetium Compounds , Tomography, Emission-Computed, Single-Photon , Animals , Humans , Mice , Tomography, Emission-Computed, Single-Photon/methods , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Organotechnetium Compounds/chemical synthesis , Cell Line, Tumor , Drug Design , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Technetium/chemistry , Tissue Distribution , Dimerization , Mice, Nude , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Membrane Proteins/chemistry , Endopeptidases/metabolism , Serine Endopeptidases/metabolism , Serine Endopeptidases/chemistry
6.
J Med Chem ; 67(10): 8361-8371, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38726551

ABSTRACT

Due to the complex heterogeneity in different cancer types, the heterodimeric strategy has been intensively practiced to improve the effectiveness of tumor diagnostics. In this study, we developed a series of novel 18F-labeled biotin/FAPI-conjugated heterobivalent radioligands ([18F]AlF-NSFB, [18F]AlF-NSFBP2, and [18F]AlF-NSFBP4), synergistically targeting both fibroblast activation protein (FAP) and biotin receptor (BR), to enhance specific tumor uptake and retention. The in vitro and in vivo biological properties of these dual-targeting tracers were evaluated, with a particular focus on positron emission tomography imaging in A549 and HT1080-FAP tumor-bearing mice. Notably, in comparison to the corresponding FAP-targeted monomer [18F]AlF-NSF, biotin/FAPI-conjugated heterodimers exhibited a high uptake in tumor and prolong retention. In conclusion, as a proof-of-concept study, the findings validated the superiority of biotin/FAPI-conjugated heterodimers and the positive influence of biotin and linker on pharmacokinetics of radioligands. Within them, the bispecific [18F]AlF-NSFBP4 holds significant promise as a candidate for further clinical translational studies.


Subject(s)
Biotin , Fluorine Radioisotopes , Animals , Humans , Fluorine Radioisotopes/chemistry , Biotin/chemistry , Biotin/pharmacokinetics , Mice , Drug Design , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacology , Positron-Emission Tomography , Mice, Nude , Tissue Distribution , Dimerization , Cell Line, Tumor , Mice, Inbred BALB C
7.
Food Chem ; 453: 139586, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761723

ABSTRACT

To aid valorisation of beer brewing by-products, more insight into their composition is essential. We have analysed the phenolic compound composition of four brewing by-products, namely barley rootlets, spent grain, hot trub, and cold trub. The main phenolics detected were hydroxycinnamoylagmatines and dimers thereof. Barley rootlets contained the highest hydroxycinnamoylagmatine content and cold trub the highest dimer content. Additionally, variations in (dimeric) hydroxycinnamoylagmatine composition and content were observed in fourteen barley rootlet samples. The most abundant compound in all rootlets was the glycosylated 4-O-7'/3-8'-linked heterodimer of coumaroylagmatine and feruloylagmatine, i.e. CouAgm-4-O-7'/3-8'-(4'Hex)-DFerAgm. Structures of glycosylated and hydroxylated derivatives of coumaroylagmatine were elucidated by NMR spectroscopy after their purification from a rootlet extract. An MS-based decision tree was developed, which aids in identifying hydroxycinnamoylagmatine dimers in complex mixtures. In conclusion, this study shows that the diversity of phenolamides and (neo)lignanamides in barley-derived by-products is larger than previously reported.


Subject(s)
Beer , Hordeum , Hordeum/chemistry , Beer/analysis , Dimerization , Waste Products/analysis , Phenols/chemistry , Phenols/analysis , Coumaric Acids/chemistry , Coumaric Acids/analysis , Molecular Structure
8.
Epigenetics Chromatin ; 17(1): 9, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561749

ABSTRACT

BACKGROUND: CTCF is highly likely to be the ancestor of proteins that contain large clusters of C2H2 zinc finger domains, and its conservation is observed across most bilaterian organisms. In mammals, CTCF is the primary architectural protein involved in organizing chromosome topology and mediating enhancer-promoter interactions over long distances. In Drosophila, CTCF (dCTCF) cooperates with other architectural proteins to establish long-range interactions and chromatin boundaries. CTCFs of various organisms contain an unstructured N-terminal dimerization domain (DD) and clusters comprising eleven zinc-finger domains of the C2H2 type. The Drosophila (dCTCF) and human (hCTCF) CTCFs share sequence homology in only five C2H2 domains that specifically bind to a conserved 15 bp motif. RESULTS: Previously, we demonstrated that CTCFs from different organisms carry unstructured N-terminal dimerization domains (DDs) that lack sequence homology. Here we used the CTCFattP(mCh) platform to introduce desired changes in the Drosophila CTCF gene and generated a series of transgenic lines expressing dCTCF with different variants of the N-terminal domain. Our findings revealed that the functionality of dCTCF is significantly affected by the deletion of the N-terminal DD. Additionally, we observed a strong impact on the binding of the dCTCF mutant to chromatin upon deletion of the DD. However, chromatin binding was restored in transgenic flies expressing a chimeric CTCF protein with the DD of hCTCF. Although the chimeric protein exhibited lower expression levels than those of the dCTCF variants, it efficiently bound to chromatin similarly to the wild type (wt) protein. CONCLUSIONS: Our findings suggest that one of the evolutionarily conserved functions of the unstructured N-terminal dimerization domain is to recruit dCTCF to its genomic sites in vivo.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Humans , Animals, Genetically Modified/metabolism , CCCTC-Binding Factor/metabolism , Chromatin/metabolism , Dimerization , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila Proteins/metabolism , Mammals/genetics
9.
Protein Sci ; 33(5): e4990, 2024 May.
Article in English | MEDLINE | ID: mdl-38607241

ABSTRACT

The antigen-binding sites in conventional antibodies are formed by hypervariable complementarity-determining regions (CDRs) from both heavy chains (HCs) and light chains (LCs). A deviation from this paradigm is found in a subset of bovine antibodies that bind antigens via an ultra-long CDR. The HCs bearing ultra-long CDRs pair with a restricted set of highly conserved LCs that convey stability to the antibody. Despite the importance of these LCs, their specific features remained unknown. Here, we show that the conserved bovine LC found in antibodies with ultra-long CDRs exhibits a distinct combination of favorable physicochemical properties such as good secretion from mammalian cells, strong dimerization, high stability, and resistance to aggregation. These physicochemical traits of the LCs arise from a combination of the specific sequences in the germline CDRs and a lambda LC framework. In addition to understanding the molecular architecture of antibodies with ultra-long CDRs, our findings reveal fundamental insights into LC characteristics that can guide the design of antibodies with improved properties.


Subject(s)
Complementarity Determining Regions , Immunoglobulin Light Chains , Animals , Cattle , Immunoglobulin Light Chains/genetics , Antibodies , Dimerization , Phenotype , Mammals
10.
Molecules ; 29(7)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38611876

ABSTRACT

Although the long-term survival rate for leukemia has made significant progress over the years with the development of chemotherapeutics, patients still suffer from relapse, leading to an unsatisfactory outcome. To discover the new effective anti-leukemia compounds, we synthesized a series of dianilinopyrimidines and evaluated the anti-leukemia activities of those compounds by using leukemia cell lines (HEL, Jurkat, and K562). The results showed that the dianilinopyrimidine analog H-120 predominantly displayed the highest cytotoxic potential in HEL cells. It remarkably induced apoptosis of HEL cells by activating the apoptosis-related proteins (cleaved caspase-3, cleaved caspase-9 and cleaved poly ADP-ribose polymerase (PARP)), increasing apoptosis protein Bad expression, and decreasing the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL). Furthermore, it induced cell cycle arrest in G2/M; concomitantly, we observed the activation of p53 and a reduction in phosphorylated cell division cycle 25C (p-CDC25C) / Cyclin B1 levels in treated cells. Additionally, the mechanism study revealed that H-120 decreased these phosphorylated signal transducers and activators of transcription 3, rat sarcoma, phosphorylated cellular RAF proto-oncogene serine / threonine kinase, phosphorylated mitogen-activated protein kinase kinase, phosphorylated extracellular signal-regulated kinase, and cellular myelocytomatosis oncogene (p-STAT3, Ras, p-C-Raf, p-MEK, p-MRK, and c-Myc) protein levels in HEL cells. Using the cytoplasmic and nuclear proteins isolation assay, we found for the first time that H-120 can inhibit the activation of STAT3 and c-Myc and block STAT3 phosphorylation and dimerization. Moreover, H-120 treatment effectively inhibited the disease progression of erythroleukemia mice by promoting erythroid differentiation into the maturation of erythrocytes and activating the immune cells. Significantly, H-120 also improved liver function in erythroleukemia mice. Therefore, H-120 may be a potential chemotherapeutic drug for leukemia patients.


Subject(s)
Leukemia, Erythroblastic, Acute , Leukemia , Humans , Animals , Mice , Mitogen-Activated Protein Kinase Kinases , Phosphorylation , Dimerization , Protein Serine-Threonine Kinases , STAT3 Transcription Factor
11.
Sci Adv ; 10(15): eadk8157, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38598628

ABSTRACT

Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.


Subject(s)
Antibodies, Bispecific , Immunoglobulin G , Dimerization , Tyrosine/metabolism , Serine/metabolism , Computational Biology
12.
Proc Natl Acad Sci U S A ; 121(16): e2316651121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588418

ABSTRACT

Protecting chromosome ends from misrecognition as double-stranded (ds) DNA breaks is fundamental to eukaryotic viability. The protein complex shelterin prevents a DNA damage response at mammalian telomeres. Mammalian shelterin proteins TRF1 and TRF2 and their homologs in yeast and protozoa protect telomeric dsDNA. N-terminal homodimerization and C-terminal Myb-domain-mediated dsDNA binding are two structural hallmarks of end protection by TRF homologs. Yet our understanding of how Caenorhabditis elegans protects its telomeric dsDNA is limited. Recently identified C. elegans proteins TEBP-1 (also called DTN-1) and TEBP-2 (also called DTN-2) are functional homologs of TRF proteins, but how they bind DNA and whether or how they dimerize is not known. TEBP-1 and TEBP-2 harbor three Myb-containing domains (MCDs) and no obvious dimerization domain. We demonstrate biochemically that only the third MCD binds DNA. We solve the X-ray crystal structure of TEBP-2 MCD3 with telomeric dsDNA to reveal the structural mechanism of telomeric dsDNA protection in C. elegans. Mutagenesis of the DNA-binding site of TEBP-1 and TEBP-2 compromises DNA binding in vitro, and increases DNA damage signaling, lengthens telomeres, and decreases brood size in vivo. Via an X-ray crystal structure, biochemical validation of the dimerization interface, and SEC-MALS analysis, we demonstrate that MCD1 and MCD2 form a composite dimerization module that facilitates not only TEBP-1 and TEBP-2 homodimerization but also heterodimerization. These findings provide fundamental insights into C. elegans telomeric dsDNA protection and highlight how different eukaryotes have evolved distinct strategies to solve the chromosome end protection problem.


Subject(s)
Caenorhabditis elegans Proteins , Telomere-Binding Proteins , Animals , Telomere-Binding Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Dimerization , Telomeric Repeat Binding Protein 1/genetics , Telomeric Repeat Binding Protein 1/chemistry , Telomeric Repeat Binding Protein 1/metabolism , Protein Binding , Telomere/genetics , Telomere/metabolism , Shelterin Complex , DNA/metabolism , Telomeric Repeat Binding Protein 2 , Mammals/genetics
13.
Org Lett ; 26(16): 3375-3379, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38629756

ABSTRACT

The synthesis and structural revision of the dimerized cyclic hexapeptides antatollamides A (1) and B (2) are reported. These are unique peptides with two proline residues and bicyclic peptides combined by a disulfide bond. Cyclization and disulfide bond formation of the linear peptide led to antatollamide A (1). However, the 1H and 13C NMR spectra of synthetic antatollamide A (1) were not consistent with those of isolated antatollamide A (1). Meanwhile, the NMR spectra of the monomeric cyclic hexapeptide cyclo(Pro-Pro-Phe-dCys-Ile-Val) (3) and the isolated antatollamide A (1) were identified completely. In addition, we found that isolated antatollamide B (2) is cyclo(Pro-Pro-dPhe-dCys-Ile-Val) (4).


Subject(s)
Peptides, Cyclic , Peptides, Cyclic/chemistry , Peptides, Cyclic/chemical synthesis , Molecular Structure , Cyclization , Dimerization
14.
J Hematol Oncol ; 17(1): 20, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650005

ABSTRACT

BACKGROUND: EGFR and/or HER2 expression in pancreatic cancers is correlated with poor prognoses. We generated homodimeric (EGFRxEGFR or HER2xHER2) and heterodimeric (EGFRxHER2) T cell-engaging bispecific antibodies (T-BsAbs) to direct polyclonal T cells to these antigens on pancreatic tumors. METHODS: EGFR and HER2 T-BsAbs were constructed using the 2 + 2 IgG-[L]-scFv T-BsAbs format bearing two anti-CD3 scFvs attached to the light chains of an IgG to engage T cells while retaining bivalent binding to tumor antigens with both Fab arms. A Fab arm exchange strategy was used to generate EGFRxHER2 heterodimeric T-BsAb carrying one Fab specific for EGFR and one for HER2. EGFR and HER2 T-BsAbs were also heterodimerized with a CD33 control T-BsAb to generate 'tumor-monovalent' EGFRxCD33 and HER2xCD33 T-BsAbs. T-BsAb avidity for tumor cells was studied by flow cytometry, cytotoxicity by T-cell mediated 51Chromium release, and in vivo efficacy against cell line-derived xenografts (CDX) or patient-derived xenografts (PDX). Tumor infiltration by T cells transduced with luciferase reporter was quantified by bioluminescence. RESULTS: The EGFRxEGFR, HER2xHER2, and EGFRxHER2 T-BsAbs demonstrated high avidity and T cell-mediated cytotoxicity against human pancreatic ductal adenocarcinoma (PDAC) cell lines in vitro with EC50s in the picomolar range (0.17pM to 18pM). They were highly efficient in driving human polyclonal T cells into subcutaneous PDAC xenografts and mediated potent T cell-mediated anti-tumor effects. Both EGFRxCD33 and HER2xCD33 tumor-monovalent T-BsAbs displayed substantially reduced avidity by SPR when compared to homodimeric EGFRxEGFR or HER2xHER2 T-BsAbs (∼150-fold and ∼6000-fold respectively), tumor binding by FACS (8.0-fold and 63.6-fold), and T-cell mediated cytotoxicity (7.7-fold and 47.2-fold), while showing no efficacy against CDX or PDX. However, if either EGFR or HER2 was removed from SW1990 by CRISPR-mediated knockout, the in vivo efficacy of heterodimeric EGFRxHER2 T-BsAb was lost. CONCLUSION: EGFR and HER2 were useful targets for driving T cell infiltration and tumor ablation. Two arm Fab binding to either one or both targets was critical for robust anti-tumor effect in vivo. By engaging both targets, EGFRxHER2 heterodimeric T-BsAb exhibited potent anti-tumor effects if CDX or PDX were EGFR+HER2+ double-positive with the potential to spare single-positive normal tissue.


Subject(s)
Antibodies, Bispecific , Carcinoma, Pancreatic Ductal , ErbB Receptors , Pancreatic Neoplasms , Receptor, ErbB-2 , T-Lymphocytes , Antibodies, Bispecific/therapeutic use , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Humans , Animals , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , T-Lymphocytes/immunology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Mice , ErbB Receptors/immunology , Receptor, ErbB-2/immunology , Cell Line, Tumor , Dimerization , Xenograft Model Antitumor Assays , Mice, SCID
15.
Int J Mol Sci ; 25(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38673860

ABSTRACT

Directed structural modifications of natural products offer excellent opportunities to develop selectively acting drug candidates. Natural product hybrids represent a particular compound group. The components of hybrids constructed from different molecular entities may result in synergic action with diminished side effects. Steroidal homo- or heterodimers deserve special attention owing to their potentially high anticancer effect. Inspired by our recently described antiproliferative core-modified estrone derivatives, here, we combined them into heterodimers via Cu(I)-catalyzed azide-alkyne cycloaddition reactions. The two trans-16-azido-3-(O-benzyl)-17-hydroxy-13α-estrone derivatives were reacted with 3-O-propargyl-D-secoestrone alcohol or oxime. The antiproliferative activities of the four newly synthesized dimers were evaluated against a panel of human adherent gynecological cancer cell lines (cervical: Hela, SiHa, C33A; breast: MCF-7, T47D, MDA-MB-231, MDA-MB-361; ovarian: A2780). One heterodimer (12) exerted substantial antiproliferative activity against all investigated cell lines in the submicromolar or low micromolar range. A pronounced proapoptotic effect was observed by fluorescent double staining and flow cytometry on three cervical cell lines. Additionally, cell cycle blockade in the G2/M phase was detected, which might be a consequence of the effect of the dimer on tubulin polymerization. Computational calculations on the taxoid binding site of tubulin revealed potential binding of both steroidal building blocks, mainly with hydrophobic interactions and water bridges.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Estrone , Humans , Estrone/pharmacology , Estrone/analogs & derivatives , Estrone/chemistry , Estrone/chemical synthesis , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Apoptosis/drug effects , Dimerization , Molecular Docking Simulation , Female , Drug Screening Assays, Antitumor , HeLa Cells , Tubulin/metabolism , Tubulin/chemistry , MCF-7 Cells
16.
Phytochemistry ; 222: 114100, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636688

ABSTRACT

Artemyriantholides A-K (1-11) as well as 14 known compounds (12-25) were isolated from Artemisia myriantha var. pleiocephala (Asteraceae). The structures and absolute configuration of compounds 2 and 8-9 were confirmed by the single crystal X-ray diffraction analyses, and the others were elucidated by MS, NMR spectral data and electronic circular dichroism calculations. All compounds were chemically characterized as guaiane-type sesquiterpenoid dimers (GSDs). Compound 1 was the first example of the GSD fused via C-3/C-11' and C-5/C-13' linkages, and compounds 2 and 5 were rare GSDs containing chlorine atoms. Eleven compounds showed obvious inhibitory activity in HepG2, Huh7 and SK-Hep-1 cell lines by antihepatoma assay to provide the IC50 values ranging from 7.9 to 67.1 µM. Importantly, compounds 5 and 8 exhibited the best inhibitory activity with IC50 values of 14.2 and 18.8 (HepG2), 9.0 and 11.5 (Huh7), and 8.8 and 11.3 µM (SK-Hep-1), respectively. The target of compound 5 was predicted to be MAP2K2 by a computational prediction model. The interaction between compound 5 and MAP2K2 was conducted to give docking score of -9.0 kcal/mol by molecular docking and provide KD value of 43.7 µM by Surface Plasmon Resonance assay.


Subject(s)
Artemisia , Artemisia/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes, Guaiane/isolation & purification , Animals , Dimerization , Molecular Docking Simulation , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor
17.
Food Chem ; 450: 139199, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38640539

ABSTRACT

Peppers (Piper nigrum L.) are distinguished by their pungent flavor and aroma. Piperine is a major acid-amide alkaloid with a piperidine ring that gives pepper its flavor and scent. In plant metabolomics research, the accessibility of the chemical standards is critical for scientific credibility. We isolated and identified 10 novel dimers of acid amide alkaloids (9-15 and 20-22), along with 12 known monomers (1-6) and dimers (7, 8, 16-19) from black pepper. Subsequently, we found the distribution of monomers and dimers of acid amide alkaloids in black and white peppers by twenty-two acid amide alkaloids which we obtained using the molecular networking technique and multivariate analysis to reveal the molecular relationships between the acid amide alkaloids in black and white peppers. Our research delved into the chemical diversity of acid amide alkaloids in black and white peppers, which could help inform future culinary and potential medicinal utilization of pepper.


Subject(s)
Alkaloids , Amides , Piper nigrum , Plant Extracts , Piper nigrum/chemistry , Alkaloids/chemistry , Alkaloids/analysis , Plant Extracts/chemistry , Amides/chemistry , Dimerization , Molecular Structure
18.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643940

ABSTRACT

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Ovary , Female , Animals , Mice , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Ovary/drug effects , Ovary/metabolism , Growth Hormone-Releasing Hormone/metabolism , Fertility/drug effects , Receptors, Neuropeptide/metabolism , Humans , Allosteric Regulation/drug effects , Receptors, Ghrelin/metabolism , Cricetinae , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Dimerization
19.
Chem Commun (Camb) ; 60(37): 4910-4913, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38623638

ABSTRACT

Several natural cytotoxic C2-symmetric bis-lactones, such as swinholide A and rhizopodin, sequester actin dimer from the actin network and potently inhibit actin dynamics. To develop new protein-protein interaction (PPI) modulators, we synthesized structurally simplified actin-binding side-chain dimers of antitumor macrolide aplyronine A. By fixing the two side-chains closer than those of rhizopodin, the C4 linker analog depolymerized filamentous actin more potently than natural aplyronines. Cross-link experiments revealed that actin dimer was formed by treatment with the C4 linker analog. Molecular dynamics simulations showed that this analog significantly changed the interaction and spatial arrangement of the two actins compared to those in rhizopodin to provide a highly distorted and twisted orientation in the complex. Our study may promote the development of PPI-based anticancer and other drug leads related to cytoskeletal dynamics.


Subject(s)
Actins , Macrolides , Protein Multimerization , Actin Depolymerizing Factors/chemistry , Actin Depolymerizing Factors/pharmacology , Actins/metabolism , Actins/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dimerization , Macrolides/chemistry , Macrolides/pharmacology , Macrolides/chemical synthesis , Molecular Dynamics Simulation , Protein Multimerization/drug effects
20.
Nanoscale ; 16(19): 9462-9475, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38639449

ABSTRACT

The dimerization of boron dipyrromethene (BODIPY) moieties is an appealing molecular design approach for developing heavy-atom-free triplet photosensitizers (PSs). However, BODIPY dimer-based PSs generally lack target specificity, which limits their clinical use for photodynamic therapy. This study reports the synthesis of two mitochondria-targeting triphenylphosphonium (TPP)-functionalized meso-ß directly linked BODIPY dimers (BTPP and BeTPP). Both BODIPY dimers exhibited solvent-polarity-dependent singlet oxygen (1O2) quantum yields, with maximum values of 0.84 and 0.55 for BTPP and BeTPP, respectively, in tetrahydrofuran. The compact orthogonal geometry of the BODIPY dimers facilitated the generation of triplet excited states via photoinduced charge separation (CS) and subsequent spin-orbit charge-transfer intersystem crossing (SOCT-ISC) processes and their rates were dependent on the energetic configuration between the frontier molecular orbitals of the two BODIPY subunits. The as-synthesized compounds were amphiphilic and hence formed stable nanoparticles (∼36 nm in diameter) in aqueous solutions, with a zeta potential of ∼33 mV beneficial for mitochondrial targeting. In vitro experiments with MCF-7 and HeLa cancer cells indicated the effective localization of BTPP and BeTPP within cancer-cell mitochondria. Under light irradiation, BTPP and BeTPP exhibited robust photo-induced therapeutic effects in both cell lines, with half-maximal inhibitory concentration (IC50) values of ∼30 and ∼55 nM, respectively.


Subject(s)
Boron Compounds , Mitochondria , Nanoparticles , Organophosphorus Compounds , Photochemotherapy , Photosensitizing Agents , Singlet Oxygen , Humans , Boron Compounds/chemistry , Boron Compounds/pharmacology , Organophosphorus Compounds/chemistry , Organophosphorus Compounds/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Singlet Oxygen/metabolism , Singlet Oxygen/chemistry , MCF-7 Cells , Cell Survival/drug effects , HeLa Cells , Dimerization
SELECTION OF CITATIONS
SEARCH DETAIL
...