Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.216
Filter
1.
J R Soc Interface ; 21(215): 20230696, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842440

ABSTRACT

In the area of surgical applications, understanding the interaction between medical device materials and tissue is important since this interaction may cause complications. The interaction often consists of a cell monolayer touching the medical device that can be mimicked in vitro. Prominent examples of this are contact lenses, where epithelial cells interact with the contact lens, or stents and catheters, which are in contact with endothelial cells. To investigate those interactions, in previous studies, expensive microtribometers were used to avoid pressures in the contact area far beyond physiologically relevant levels. Here, we aim to present a new methodology that is cost- and time-efficient, more accessible than those used previously and allows for the application of more realistic pressures, while permitting a quantification of the damage caused to the monolayer. For this, a soft polydimethylsiloxane is employed that better mimics the mechanical properties of blood vessels than materials used in other studies. Furthermore, a technique to account for misalignments within the experiment set-up is presented. This is carried out using the raw spatial and force data recorded by the tribometer and adjusting for misalignments. The methodology is demonstrated using an endothelial cell (human umbilical vein endothelial cells) monolayer.


Subject(s)
Human Umbilical Vein Endothelial Cells , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Friction , Dimethylpolysiloxanes/chemistry
2.
Mikrochim Acta ; 191(6): 301, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709350

ABSTRACT

In the era of wearable electronic devices, which are quite popular nowadays, our research is focused on flexible as well as stretchable strain sensors, which are gaining humongous popularity because of recent advances in nanocomposites and their microstructures. Sensors that are stretchable and flexible based on graphene can be a prospective 'gateway' over the considerable biomedical speciality. The scientific community still faces a great problem in developing versatile and user-friendly graphene-based wearable strain sensors that satisfy the prerequisites of susceptible, ample range of sensing, and recoverable structural deformations. In this paper, we report the fabrication, development, detailed experimental analysis and electronic interfacing of a robust but simple PDMS/graphene/PDMS (PGP) multilayer strain sensor by drop casting conductive graphene ink as the sensing material onto a PDMS substrate. Electrochemical exfoliation of graphite leads to the production of abundant, fast and economical graphene. The PGP sensor selective to strain has a broad strain range of ⁓60%, with a maximum gauge factor of 850, detection of human physiological motion and personalized health monitoring, and the versatility to detect stretching with great sensitivity, recovery and repeatability. Additionally, recoverable structural deformation is demonstrated by the PGP strain sensors, and the sensor response is quite rapid for various ranges of frequency disturbances. The structural designation of graphene's overlap and crack structure is responsible for the resistance variations that give rise to the remarkable strain detection properties of this sensor. The comprehensive detection of resistance change resulting from different human body joints and physiological movements demonstrates that the PGP strain sensor is an effective choice for advanced biomedical and therapeutic electronic device utility.


Subject(s)
Dimethylpolysiloxanes , Graphite , Wearable Electronic Devices , Graphite/chemistry , Humans , Dimethylpolysiloxanes/chemistry , Movement
3.
Biomed Microdevices ; 26(2): 24, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709370

ABSTRACT

We report the fabrication and characterisation of magnetic liquid beads with a solid magnetic shell and liquid core using microfluidic techniques. The liquid beads consist of a fluorinated oil core and a polymer shell with magnetite particles. The beads are generated in a flow-focusing polydimethylsiloxane (PDMS) device and cured by photo polymerisation. We investigated the response of the liquid beads to an external magnetic field by characterising their motion towards a permanent magnet. Magnetic sorting of liquid beads in a channel was achieved with 90% efficiency. The results show that the liquid beads can be controlled magnetically and have potential applications in digital microfluidics including nucleic acid amplification, drug delivery, cell culture, sensing, and tissue engineering. The present paper also discusses the magnetophoretic behaviour of the liquid bead by varying its mass and magnetite concentration in the shell. We also demonstrated the two-dimensional self-assembly of magnetic liquid beads for potential use in digital polymerase chain reaction and digital loop mediated isothermal amplification.


Subject(s)
Dimethylpolysiloxanes , Dimethylpolysiloxanes/chemistry , Microfluidic Analytical Techniques/instrumentation , Magnetic Fields , Microspheres
4.
Commun Biol ; 7(1): 617, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778159

ABSTRACT

The question of whether material stiffness enhances cell adhesion and clustering is still open to debate. Results from the literature are seemingly contradictory, with some reports illustrating that adhesion increases with surface stiffness and others suggesting that the performance of a system of cells is curbed by high values of elasticity. To address the role of elasticity as a regulator in neuronal cell adhesion and clustering, we investigated the topological characteristics of networks of neurons on polydimethylsiloxane (PDMS) surfaces - with values of elasticity (E) varying in the 0.55-2.65 MPa range. Results illustrate that, as elasticity increases, the number of neurons adhering on the surface decreases. Notably, the small-world coefficient - a topological measure of networks - also decreases. Numerical simulations and functional multi-calcium imaging experiments further indicated that the activity of neuronal cells on soft surfaces improves for decreasing E. Experimental findings are supported by a mathematical model, that explains adhesion and clustering of cells on soft materials as a function of few parameters - including the Young's modulus and roughness of the material. Overall, results indicate that - in the considered elasticity interval - increasing the compliance of a material improves adhesion, improves clustering, and enhances communication of neurons.


Subject(s)
Cell Adhesion , Elasticity , Neurons , Neurons/physiology , Animals , Dimethylpolysiloxanes/chemistry , Surface Properties , Elastic Modulus , Cells, Cultured , Rats
5.
ACS Appl Mater Interfaces ; 16(20): 26943-26953, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38718354

ABSTRACT

The continuous, noninvasive monitoring of human blood pressure (BP) through the accurate detection of pulse waves has extremely stringent requirements on the sensitivity and stability of flexible strain sensors. In this study, a new ultrasensitive flexible strain sensor based on the interlayer synergistic effect was fabricated through drop-casting and drying silver nanowires and graphene films on polydimethylsiloxane substrates and was further successfully applied for continuous monitoring of BP. This strain sensor exhibited ultrahigh sensitivity with a maximum gauge factor of 34357.2 (∼700% sensitivity enhancement over other major sensors), satisfactory response time (∼85 ms), wide strange range (12%), and excellent stability. An interlayer fracture mechanism was proposed to elucidate the working principle of the strain sensor. The real-time BP values can be obtained by analyzing the relationship between the BP and the pulse transit time. To verify our strain sensor for real-time BP monitoring, our strain sensor was compared with a conventional electrocardiogram-photoplethysmograph method and a commercial cuff-based device and showed similar measurement results to BP values from both methods, with only minor differences of 0.693, 0.073, and 0.566 mmHg in the systolic BP, diastolic BP, and mean arterial pressure, respectively. Furthermore, the reliability of the strain sensors was validated by testing 20 human subjects for more than 50 min. This ultrasensitive strain sensor provides a new pathway for continuous and noninvasive BP monitoring.


Subject(s)
Nanowires , Silver , Humans , Nanowires/chemistry , Silver/chemistry , Blood Pressure/physiology , Graphite/chemistry , Blood Pressure Determination/instrumentation , Blood Pressure Determination/methods , Male , Dimethylpolysiloxanes/chemistry , Nanostructures/chemistry , Adult
6.
ACS Appl Mater Interfaces ; 16(21): 27065-27074, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38748094

ABSTRACT

Wearable biomedical sensors have enabled noninvasive and continuous physiological monitoring for daily health management and early detection of chronic diseases. Among biomedical sensors, wearable pH sensors attracted significant interest, as pH influences most biological reactions. However, conformable pH sensors that have sweat absorption ability, are self-adhesive to the skin, and are gas permeable remain largely unexplored. In this study, we present a pioneering approach to this problem by developing a Janus membrane-based pH sensor with self-adhesiveness on the skin. The sensor is composed of a hydrophobic polyurethane-polydimethylsiloxane porous hundreds nanometer-thick substrate and a hydrophilic poly(vinyl alcohol)-poly(acrylic acid) porous nanofiber layer. This Janus membrane exhibits a thickness of around 10 µm, providing a conformable adhesion to the skin. The simultaneous realization of solution absorption, gas permeability, and self-adhesiveness makes it suitable for long-term continuous monitoring without compromising the comfort of the wearer. The pH sensor was tested successfully for continuous monitoring for 7.5 h, demonstrating its potential for stable analysis of skin health conditions. The Janus membrane-based pH sensor holds significant promise for comprehensive skin health monitoring and wearable biomedical applications.


Subject(s)
Polyurethanes , Sweat , Wearable Electronic Devices , Hydrogen-Ion Concentration , Humans , Sweat/chemistry , Polyurethanes/chemistry , Permeability , Acrylic Resins/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Adhesiveness , Nanofibers/chemistry , Biosensing Techniques/methods , Biosensing Techniques/instrumentation , Porosity , Gases/chemistry , Gases/analysis
7.
ACS Appl Mater Interfaces ; 16(21): 27728-27740, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38758746

ABSTRACT

In recent decades, extensive research has been directed toward mitigating microbial contamination and preventing biofilm formation. However, many conventional antibiofilm methods rely on hazardous and toxic substances, neglecting potential risks to human health and the environment. Moreover, these approaches often rely on single-strategy mechanisms, utilizing either bactericidal or fouling-resistant agents, which have shown limited efficacy in long-term biofilm suppression. In this study, we propose an efficient and sustainable biofilm-resistant slippery hybrid slippery composite. This composite integrates nontoxic and environmentally friendly materials including chitosan, silicone oil-infused polydimethylsiloxane, and mesoporous silica nanoparticles in a synergistic manner. Leveraging the bacteria-killing properties of chitosan and the antifouling capabilities of the silicone oil layer, the hybrid composite exhibits robust antibiofilm performance against both Gram-positive and Gram-negative bacteria. Furthermore, the inclusion of mesoporous silica nanoparticles enhances the oil absorption capacity and self-replenishing properties, ensuring exceptional biofilm inhibition even under harsh conditions such as exposure to high shear flow and prolonged incubation (7 days). This approach offers promising prospects for developing effective biofilm-resistant materials with a reduced environmental impact and improved long-term performance.


Subject(s)
Anti-Bacterial Agents , Biofilms , Chitosan , Dimethylpolysiloxanes , Nanoparticles , Silicon Dioxide , Biofilms/drug effects , Chitosan/chemistry , Chitosan/pharmacology , Silicon Dioxide/chemistry , Silicon Dioxide/pharmacology , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Porosity , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Microbial Sensitivity Tests
8.
J Mech Behav Biomed Mater ; 155: 106566, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38729087

ABSTRACT

The objective of this study is to develop a reliable tribological model to enable a more thorough investigation of the frictional behavior of fascia tissues connected to non-specific lower back pain. Several models were designed and evaluated based on their coefficient of friction, using a low-frequency, low-load reciprocating motion. The study found that two technical elastomers, layered on PDMS to simulate the fascia and underlying muscle, are suitable substitutes for biological tissue in the model. The influence of tribopair geometry was also examined, and the results showed that greater conformity of contact leads to a lower COF, regardless of the material combination used. Finally, the friction properties of HA of various molecular weights and concentrations were tested.


Subject(s)
Fascia , Friction , Materials Testing , Fascia/physiology , Dimethylpolysiloxanes/chemistry , Biomechanical Phenomena , Models, Biological , Elastomers/chemistry
9.
Anal Chem ; 96(21): 8648-8656, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38716690

ABSTRACT

Microfluidic analytical tools play an important role in miniaturizing targeted proteomic assays for improved detection sensitivity, throughput, and automation. Microfluidic isoelectric focusing (IEF) can resolve proteoforms in lysate from low-to-single cell numbers. However, IEF assays often use carrier ampholytes (CAs) to establish a pH gradient for protein separation, presenting limitations like pH instability in the form of cathodic drift (migration of focused proteins toward the cathode). Immobilized pH gradient (IPG) gels reduce cathodic drift by covalently immobilizing the pH buffering components to a matrix. To our knowledge, efforts to implement IPG gels at the microscale have been limited to glass microdevices. To adapt IEF using IPGs to widely used microfluidic device materials, we introduce a polydimethylsiloxane (PDMS)-based microfluidic device and compare the microscale pH gradient stability of IEF established with IPGs, CAs, and a hybrid formulation of IPG gels and CAs (mixed-bed IEF). The PDMS-based IPG microfluidic device (µIPG) resolved analytes differing by 0.1 isoelectric point within a 3.5 mm separation lane over a 20 min focusing duration. During the 20 min duration, we observed markedly different cathodic drift velocities among the three formulations: 60.1 µm/min in CA-IEF, 2.5 µm/min in IPG-IEF (∼24-fold reduction versus CA-IEF), and 1.4 µm/min in mixed-bed IEF (∼43-fold reduction versus CA-IEF). Lastly, mixed-bed IEF in a PDMS device resolved green fluorescent protein (GFP) proteoforms from GFP-expressing human breast cancer cell lysate, thus establishing stability in lysate from complex biospecimens. µIPG is a promising and stable technique for studying proteoforms from small volumes.


Subject(s)
Dimethylpolysiloxanes , Isoelectric Focusing , Isoelectric Focusing/methods , Humans , Dimethylpolysiloxanes/chemistry , Hydrogen-Ion Concentration , Electrodes , Microfluidic Analytical Techniques/instrumentation , Proton-Motive Force , Lab-On-A-Chip Devices , Gels/chemistry
10.
Colloids Surf B Biointerfaces ; 239: 113963, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759294

ABSTRACT

Among various biomimetic polymer materials, polydimethylsiloxane (PDMS) stands out as an ideal matrix for surface-enhanced Raman scattering (SERS) due to its unique intrinsic Raman signal and tenacity. In order to realize the precise detection of prostate-specific antigen (PSA), we proposed a sandwich-type SERS-active immunostructure composed of PDMS@silver nanoparticles (Ag NPs)@ZIF-67 biomimetic film as the immunosubstrate and gold nanorods (Au NRs) as immunoprobes. Due to the synergistic effect of electromagnetic enhancement facilitated by biomimetic surfaces and chemical enhancement achieved by ZIF-67, this structure enabled an ultrasensitive and selective detection of PSA across a broad range from 10-3 to 10-9 mg/mL. The achieved limit of detection was as low as 3.0 × 10-10 mg/mL. Particularly, the intrinsic Raman signal of PDMS matrix at 2905 cm-1 was employed as a potential internal standard (IS) in the detection, achieving a high coefficient of determination (R2) value of 0.996. This multifunctional SERS substrate-mediated immunoassay holds vast potential for early diagnosis of prostate cancer, offering promising prospects for clinical applications.


Subject(s)
Dimethylpolysiloxanes , Metal Nanoparticles , Prostate-Specific Antigen , Silver , Spectrum Analysis, Raman , Silver/chemistry , Spectrum Analysis, Raman/methods , Immunoassay/methods , Prostate-Specific Antigen/analysis , Metal Nanoparticles/chemistry , Dimethylpolysiloxanes/chemistry , Humans , Gold/chemistry , Biomimetic Materials/chemistry , Surface Properties , Limit of Detection , Nanotubes/chemistry , Male , Particle Size , Imidazoles , Zeolites
11.
Colloids Surf B Biointerfaces ; 239: 113977, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38776594

ABSTRACT

Adoptive T cell therapy has undergone remarkable advancements in recent decades; nevertheless, the rapid and effective ex vivo expansion of tumor-reactive T cells remains a formidable challenge, limiting their clinical application. Artificial antigen-presenting substrates represent a promising avenue for enhancing the efficiency of adoptive immunotherapy and fostering T cell expansion. These substrates offer significant potential by providing flexibility and modularity in the design of tailored stimulatory environments. Polydimethylsiloxane (PDMS) silicone elastomer stands as a widely utilized biomaterial for exploring the varying sensitivity of T cell activation to substrate properties. This paper explores the optimization of PDMS surface modification and formulation to create customized stimulatory surfaces with the goal of enhancing T cell expansion. By employing soft PDMS elastomer functionalized through silanization and activating agent, coupled with site-directed protein immobilization techniques, a novel T cell stimulatory platform is introduced, facilitating T cell activation and proliferation. Notably, our findings underscore that softer modified elastomers (Young' modulus E∼300 kPa) exhibit superior efficacy in stimulating and activating mouse CD4+ T cells compared to their stiffer counterparts (E∼3 MPa). Furthermore, softened modified PDMS substrates demonstrate enhanced capabilities in T cell expansion and Th1 differentiation, offering promising insights for the advancement of T cell-based immunotherapy.


Subject(s)
Cell Proliferation , Dimethylpolysiloxanes , Lymphocyte Activation , Surface Properties , Dimethylpolysiloxanes/chemistry , Animals , Lymphocyte Activation/drug effects , Mice , Cell Proliferation/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Mice, Inbred C57BL
12.
Biosens Bioelectron ; 257: 116345, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38692247

ABSTRACT

Nitrite (NO2-) is present in a variety of foods, but the excessive intake of NO2- can indirectly lead to carcinogenic, teratogenic, mutagenicity and other risks to the human body. Therefore, the detection of NO2- is crucial for maintaining human health. In this study, an integrated array sensor for NO2- detection is developed based on molybdenum single atom material (IMSMo-SAC) using high-resolution electrohydrodynamic (EHD) printing technology. The sensor comprises three components: a printed electrode array, multichannels designed on polydimethylsiloxane (PDMS) and an electronic signal process device with bluetooth. By utilizing Mo-SAC to facilitate electron transfer during the redox reaction, rapid and efficient detection of NO2- can be achieved. The sensor has a wide linear range of 0.1 µM-107.8 mM, a low detection limit of 33 nM and a high sensitivity of 0.637 mA-1mM-1 cm-2. Furthermore, employing this portable array sensor allows simultaneously measurements of NO2- concentrations in six different foods samples with acceptable recovery rates. This array sensor holds great potential for detecting of small molecules in various fields.


Subject(s)
Biosensing Techniques , Equipment Design , Food Analysis , Limit of Detection , Molybdenum , Nitrites , Molybdenum/chemistry , Biosensing Techniques/instrumentation , Nitrites/analysis , Food Analysis/instrumentation , Humans , Dimethylpolysiloxanes/chemistry , Electrodes , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Food Contamination/analysis
13.
Food Res Int ; 184: 114252, 2024 May.
Article in English | MEDLINE | ID: mdl-38609230

ABSTRACT

Leafy green surface microbiology studies often experience significant variations in results due to the heterogeneous nature of leaf surfaces. To provide a precise and controllable substitute, we microfabricated double-sided artificial leafy green phylloplanes using polydimethylsiloxane (PDMS) with a vinyl-terminated polyethylene glycol chain-based hydrophobicity modifier (PDMS-PEG) to modify PDMS hydrophobicity. We further tested the properties and applications of these artificial leaves, by examining the function of epicuticular wax, growth and survival of E. coli O157:H7 87-23 on the surface, and removal of attached E. coli cells via sanitation. The double-sided PDMS-PDMS-PEG leaves well-replicated their natural counterparts in macroscopic and microscopic structure, hydrophobicity, and E. coli O157:H7 87-23 attachment. After depositing natural epicuticular wax onto artificial leaves, the leaf surface wetting ability decreased, while E. coli O157:H7 87-23 surface retention increased. The artificial leaves supplied with lettuce lysate or bacterial growth media supported E. coli O157:H7 87-23 growth and survival similarly to those on natural leaves. In the sanitation test, the artificial lettuce leaves also displayed patterns similar to those of natural leaves regarding sanitizer efficiency. Overall, this study showcased the microfabrication and applications of double-sided PDMS-PDMS-PEG leaves as a replicable and controllable platform for future leafy green food safety studies.


Subject(s)
Dimethylpolysiloxanes , Escherichia coli O157 , Culture Media , Food Safety , Lactuca
14.
Curr Protoc ; 4(4): e1025, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38600839

ABSTRACT

Cardiac fibroblasts (CF) are an essential cell type in cardiac physiology, playing diverse roles in maintaining structural integrity, extracellular matrix (ECM) synthesis, and tissue repair. Under normal conditions, these cells reside in the interstitium in a quiescent state poised to sense and respond to injury by synthesizing and secreting collagen, vimentin, hyaluronan, and other ECM components. In response to mechanical and chemical stimuli, these "resident" fibroblasts can undergo a transformation through a continuum of activation states into what is commonly known as a "myofibroblast," in a process critical for injury response. Despite progress in understanding the contribution of fibroblasts to cardiac health and disease, much remains unknown about the signaling mediating this activation, in part owing to technical challenges in evaluating CF function and activation status in vitro. Given their role in monitoring the ECM, CFs are acutely sensitive to stiffness and pressure. High basal activation of isolated CFs is common due to the super-physiologic stiffness of traditional cell culture substrates, making assays dependent on quiescent cells challenging. To overcome this problem, cell culture parameters must be tightly controlled, and the use of dishes coated with biocompatible reduced-stiffness substrates, such as 8-kPa polydimethylsiloxane (PDMS), has shown promise in reducing basal activation of fibroblasts. Here, we describe cell culture protocol for maintaining CF quiescence in vitro to enable a dynamic range for the assessment of activation status in response to fibrogenic stimuli using PDMS-coated coverslips. Our protocol provides a cost-effective tool to study fibroblast signaling and activity, allowing researchers to better understand the underlying mechanisms involved in cardiac fibrosis. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of 8-kPa polydimethylsiloxane (PDMS)/gelatin-coated coverslips for cardiac fibroblast cell culture Basic Protocol 2: Isolation of adult cardiac fibroblasts and plating onto PDMS coverslips Basic Protocol 3: Assessment of cardiac fibroblast activation by α smooth muscle actin (αSMA) immunocytochemistry.


Subject(s)
Fibroblasts , Heart , Fibroblasts/metabolism , Myofibroblasts/metabolism , Signal Transduction , Dimethylpolysiloxanes/metabolism , Dimethylpolysiloxanes/pharmacology
15.
Biosensors (Basel) ; 14(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38667181

ABSTRACT

Carbon nanotube (CNT)-based nanocomposites have found applications in making sensors for various types of physiological sensing. However, the sensors' fabrication process is usually complex, multistep, and requires longtime mixing and hazardous solvents that can be harmful to the environment. Here, we report a flexible dry silver (Ag)/CNT/polydimethylsiloxane (PDMS) nanocomposite-based sensor made by a solvent-free, low-temperature, time-effective, and simple approach for electrophysiological recording. By mechanical compression and thermal treatment of Ag/CNT, a connected conductive network of the fillers was formed, after which the PDMS was added as a polymer matrix. The CNTs make a continuous network for electrons transport, endowing the nanocomposite with high electrical conductivity, mechanical strength, and durability. This process is solvent-free and does not require a high temperature or complex mixing procedure. The sensor shows high flexibility and good conductivity. High-quality electroencephalography (EEG) and electrooculography (EOG) were performed using fabricated dry sensors. Our results show that the Ag/CNT/PDMS sensor has comparable skin-sensor interface impedance with commercial Ag/AgCl-coated dry electrodes, better performance for noninvasive electrophysiological signal recording, and a higher signal-to-noise ratio (SNR) even after 8 months of storage. The SNR of electrophysiological signal recording was measured to be 26.83 dB for our developed sensors versus 25.23 dB for commercial Ag/AgCl-coated dry electrodes. Our process of compress-heating the functional fillers provides a universal approach to fabricate various types of nanocomposites with different nanofillers and desired electrical and mechanical properties.


Subject(s)
Dimethylpolysiloxanes , Nanocomposites , Nanotubes, Carbon , Silver , Nanocomposites/chemistry , Nanotubes, Carbon/chemistry , Silver/chemistry , Dimethylpolysiloxanes/chemistry , Electroencephalography , Electric Conductivity , Biosensing Techniques , Humans , Electrooculography , Electrodes , Signal-To-Noise Ratio
16.
Mikrochim Acta ; 191(5): 229, 2024 04 02.
Article in English | MEDLINE | ID: mdl-38565645

ABSTRACT

The growing interest in microfluidic biosensors has led to improvements in the analytical performance of various sensing mechanisms. Although various sensors can be integrated with microfluidics, electrochemical ones have been most commonly employed due to their ease of miniaturization, integration ability, and low cost, making them an established point-of-care diagnostic method. This concept can be easily adapted to the detection of biomarkers specific to certain cancer types. Pathological profiling of hepatocellular carcinoma (HCC) is heterogeneous and rather complex, and biopsy samples contain limited information regarding the tumor and do not reflect its heterogeneity. Circulating tumor DNAs (ctDNAs), which can contain information regarding cancer characteristics, have been studied tremendously since liquid biopsy emerged as a new diagnostic method. Recent improvements in the accuracy and sensitivity of ctDNA determination also paved the way for genotyping of somatic genomic alterations. In this study, three-electrode (Au-Pt-Ag) glass chips were fabricated and combined with polydimethylsiloxane (PDMS) microchannels to establish an electrochemical microfluidic sensor for detecting c.747G > T hotspot mutations in the TP53 gene of ctDNAs from HCC. The preparation and analysis times of the constructed sensor were as short as 2 h in total, and a relatively high flow rate of 30 µl/min was used during immobilization and hybridization steps. To the best of our knowledge, this is the first time a PDMS-based microfluidic electrochemical sensor has been developed to target HCC ctDNAs. The system exhibited a limit of detection (LOD) of 24.1 fM within the tested range of 2-200 fM. The sensor demonstrated high specificity in tests conducted with fully noncomplementary and one-base mismatched target sequences. The developed platform is promising for detecting HCC-specific ctDNA at very low concentrations without requiring pre-enrichment steps.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Micro-Electrical-Mechanical Systems , Humans , Microfluidics , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Dimethylpolysiloxanes
17.
Mikrochim Acta ; 191(5): 241, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38573377

ABSTRACT

The culture-based methods for viable Escherichia coli (E. coli) detection suffer from long detection time and laborious procedures, whereas the molecule tests and immune recognition technologies lack live/dead E. coli differentiation. Rapid, easy-to-use, and accessible viable E. coli detection is of benefit to bacterial infection diagnosis and risk warning of E. coli contamination of water and food, safeguarding human health. Herein, we propose a microwell chip-based solution to realize simple and rapid determination of viable E. coli. The vertical channel-well configuration is applied to develop the microwell array chip for increasing the microwell density (6200 wells/cm2), yielding a broad dynamic range from 103 to 107 CFU/mL. We incorporate an inducible enzyme assay with the developed chip and achieve the differentiation of live/dead E. coli within 4 h, significantly shortening the detection time from over 24 h in the standard method. By encapsulating single E. coli into microwells, the concentration of viable cells can be determined simultaneously through counting positive microwells. In addition, the air soluble PDMS that can store negative pressure for independent sample digitalization endows the developed chip with simple operation and less reliance on external equipment. With further developments for increasing the number of microwell and integrating more sample panels, the developed chip can become a useful tool for rapid viable E. coli enumeration with user-friendly operation, simple procedures, and accessibility in decentralized settings, thereby deploying this device for water and food safety monitoring, as well as clinical bacterial infection diagnosis.


Subject(s)
Bacterial Infections , Escherichia coli , Humans , Dimethylpolysiloxanes , Water
18.
Proc Inst Mech Eng H ; 238(5): 537-549, 2024 May.
Article in English | MEDLINE | ID: mdl-38561625

ABSTRACT

Constructing surface topography with a certain roughness is a widely used, non-toxic, cost-effective and effective method for improving the microenvironment of cells, promoting the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs), and promoting the osseointegration of grafts and further improving their biocompatibility under clinical environmental conditions. SIRT1 plays an important regulatory role in the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs). However, it remains unknown whether SIRT1 plays an important regulatory role in the osteogenic differentiation of BM-MSCs with regard to surface morphology. Polydimethylsiloxane (PDMS) with different surface morphologies were prepared using different grits of sandpaper. The value for BMSCs added on different surfaces was detected by cell proliferation assays. RT-qPCR and Western blotting were performed to detect SIRT1 activation and osteogenic differentiation of MSCs. Osteogenesis of MSCs was detected by alkaline phosphatase (ALP) and alizarin red S staining. SIRT1 inhibition experiments were performed to investigate the role of SIRT1 in the osteogenic differentiation of MSCs induced by surface morphology. We found that BM-MSCs have better value and osteogenic differentiation ability on a surface with roughness of PDMS-1000M. SIRT1 showed higher gene and protein expression on a PDMS-1000M surface with a roughness of 13.741 ± 1.388 µm. The promotion of the osteogenic differentiation of MSCs on the PDMS-1000M surface was significantly decreased after inhibiting SIRT1 expression. Our study demonstrated that a surface morphology with certain roughness can activate the SIRT1 pathway of MSCs and promote the osteogenic differentiation of BMSCs via the SIRT1 pathway.


Subject(s)
Cell Differentiation , Dimethylpolysiloxanes , Mesenchymal Stem Cells , Osteogenesis , Signal Transduction , Sirtuin 1 , Surface Properties , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Sirtuin 1/metabolism , Sirtuin 1/genetics , Osteogenesis/drug effects , Cell Differentiation/drug effects , Dimethylpolysiloxanes/chemistry , Dimethylpolysiloxanes/pharmacology , Signal Transduction/drug effects , Animals , Cell Proliferation/drug effects
19.
Lab Chip ; 24(9): 2468-2484, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38563430

ABSTRACT

Three-dimensional (3D) in vitro models, superior in simulating physiological conditions compared to 2D models, offer intricate cell-cell and cell-ECM interactions with diverse signaling cues like fluid shear stress and growth factor gradients. Yet, developing 3D tissue barrier models, specifically perfusable luminal structures with dense, multicellular constructs maintained for extended durations with oxygen and nutrients, remains a technical challenge. Here, we describe a molding-based approach for the fabrication of free-standing, perfusable, high cellular density tissue constructs using a self-assembly and migration process to form functional barriers. This technique utilizes a polytetrafluoroethylene (PTFE)-coated stainless-steel wire, held by stainless steel needles, as a template for a perfusable channel within an elongated PDMS well. Upon adding a bio-ink mix of cells and collagen, it self-assembles into a high cell density layer conformally around the wire. Removing the wire reveals a hollow construct, connectable to an inlet and outlet for perfusion. This scalable method allows creating varied dimensions and multicellular configurations. Notably, post-assembly, cells such as human umbilical vein endothelial cells (HUVECs) migrate to the surface and form functional barriers with adherens junctions. Permeability tests and fluorescence imaging confirm that these constructs closely mimic in vivo endothelial barrier permeability, exhibiting the lowest permeability among all in vitro models in the literature. Unlike traditional methods involving uneven post-seeding of endothelial cells leading to subpar barriers, our approach is a straightforward alternative for fabricating complex perfusable 3D tissue constructs and effective tissue barriers for use in various applications, including tissue engineering, drug screening, and disease modeling.


Subject(s)
Cell Movement , Humans , Cell Movement/drug effects , Human Umbilical Vein Endothelial Cells , Polytetrafluoroethylene/chemistry , Membranes, Artificial , Dimethylpolysiloxanes/chemistry , Equipment Design
20.
Int J Biol Macromol ; 267(Pt 1): 131437, 2024 May.
Article in English | MEDLINE | ID: mdl-38614186

ABSTRACT

Improving the durability of wear-resistant superhydrophobic surfaces is crucial for their practical use. To tackle this, research is now delving into self-healing superhydrophobic surfaces. In our study, we developed superhydrophobic cotton fabrics by embedding nano-silica particles, micro-silica powder, and polydimethylsiloxane (PDMS) using a dipping method. This innovative design grants the SiO2/PDMS cotton fabric remarkable superhydrophobicity, reflected by a water contact angle of 155°. Moreover, the PDMS was stored in the amorphous areas of cellulose of cotton fabrics, attaching to the fiber surface and playing a role in connecting micro-blocks and nano-particles. This causes a self-diffusion of PDMS molecules in these fabrics, allowing the surface to regain its superhydrophobicity even after abrasion damage. Impressively, this self-healing property can be renewed at least 8 times, showcasing the fabric's resilience. Moreover, these superhydrophobic cotton fabrics exhibit outstanding self-cleaning abilities and repel various substances such as blood, milk, cola, and tea. This resilience, coupled with its simplicity, low cost-effectiveness, and eco-friendliness, makes this coating highly promising for applications across construction, chemical, and medical fields. Our study also delves into understanding the self-healing mechanism of the SiO2/PDMS cotton fabric, offering insights into their long-term performance and potential advancements in this field.


Subject(s)
Cotton Fiber , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide , Silicon Dioxide/chemistry , Dimethylpolysiloxanes/chemistry , Nanoparticles/chemistry , Surface Properties , Textiles , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...