Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 348
Filter
1.
Protein J ; 43(3): 613-626, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38743189

ABSTRACT

Glutathione-S-transferase enzymes (GSTs) are essential components of the phase II detoxification system and protect organisms from oxidative stress induced by xenobiotics and harmful toxins such as 1-chloro-2,4-dinitrobenzene (CDNB). In Tetrahymena thermophila, the TtGSTm34 gene was previously reported to be one of the most responsive GST genes to CDNB treatment (LD50 = 0.079 mM). This study aimed to determine the kinetic features of recombinantly expressed and purified TtGSTm34 with CDNB and glutathione (GSH). TtGSTm34-8xHis was recombinantly produced in T. thermophila as a 25-kDa protein after the cloning of the 660-bp full-length ORF of TtGSTm34 into the pIGF-1 vector. A three-dimensional model of the TtGSTm34 protein constructed by the AlphaFold and PyMOL programs confirmed that it has structurally conserved and folded GST domains. The recombinant production of TtGSTm34-8xHis was confirmed by SDS‒PAGE and Western blot analysis. A dual-affinity chromatography strategy helped to purify TtGSTm34-8xHis approximately 3166-fold. The purified recombinant TtGSTm34-8xHis exhibited significantly high enzyme activity with CDNB (190 µmol/min/mg) as substrate. Enzyme kinetic analysis revealed Km values of 0.68 mM with GSH and 0.40 mM with CDNB as substrates, confirming its expected high affinity for CDNB. The optimum pH and temperature were determined to be 7.0 and 25 °C, respectively. Ethacrynic acid inhibited fully TtGSTm34-8xHis enzyme activity. These results imply that TtGSTm34 of T. thermophila plays a major role in the detoxification of xenobiotics, such as CDNB, as a first line of defense in aquatic protists against oxidative damage.


Subject(s)
Cloning, Molecular , Glutathione Transferase , Protozoan Proteins , Recombinant Proteins , Tetrahymena thermophila , Glutathione Transferase/genetics , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Tetrahymena thermophila/enzymology , Tetrahymena thermophila/genetics , Recombinant Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Kinetics , Dinitrochlorobenzene/chemistry , Dinitrochlorobenzene/metabolism , Gene Expression , Glutathione/metabolism , Glutathione/chemistry
2.
Exp Dermatol ; 33(1): e14970, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37975541

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin disease. Skin barrier dysfunction is the initial step in the development of AD. Recently, exosomes have been considered as potential cell-free medicine for skin defects such as aging, psoriasis and wounds. The aim of this study was to investigate the effects of human dermal fibroblast-neonatal-derived exosome (HDFn-Ex) on AD. HDFn-Ex increased the expression of peroxisome proliferator activated receptor α (PPARα) and alleviated the 1-chloro-2,4-dinitrobenzene (DNCB)-mediated downregulation of filaggrin, involucrin, loricrin, hyaluronic acid synthase 1 (HAS1) and HAS2 in human keratinocyte HaCaT cells. However, these effects were inhibited by the PPARα antagonist GW6471. In the artificial skin model, HDFn-Ex significantly inhibited DNCB-induced epidermal hyperplasia and the decrease in filaggrin and HAS1 levels via a PPARα. In the DNCB-induced AD-like mouse model, HDFn-Ex administration reduced epidermis thickening and mast cell infiltration into the dermis compared to DNCB treatment. Moreover, the decreases in PPARα, filaggrin and HAS1 expression, as well as the increases in IgE and IL4 levels induced by DNCB treatment were reversed by HDFn-Ex. These effects were blocked by pre-treatment with GW6471. Furthermore, HDFn-Ex exhibited an anti-inflammatory effect by inhibiting the DNCB-induced increases in IκBα phosphorylation and TNF-α expression. Collectively, HDFn-Ex exhibited a protective effect on AD. Notably, these effects were regulated by PPARα. Based on our results, we suggest that HDFn-Ex is a potential candidate for treating AD by recovering skin barrier dysfunction and exhibiting anti-inflammatory activity.


Subject(s)
Dermatitis, Atopic , Exosomes , Skin Diseases , Animals , Mice , Infant, Newborn , Humans , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , PPAR alpha/metabolism , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Filaggrin Proteins , Dinitrobenzenes/adverse effects , Dinitrobenzenes/metabolism , Exosomes/metabolism , Skin/metabolism , Anti-Inflammatory Agents/pharmacology , Skin Diseases/metabolism , Cytokines/metabolism , Mice, Inbred BALB C
3.
Int Arch Allergy Immunol ; 185(1): 84-98, 2024.
Article in English | MEDLINE | ID: mdl-37866360

ABSTRACT

INTRODUCTION: Atopic dermatitis (AD) is a prevalent and chronic inflammatory skin disease characterized by Th2 cell-mediated type 2 inflammation. Emerging evidence indicated that AD patients exhibit an increased incidence of oral disorders. In the present study, we sought mechanistic insights into how AD affects periodontitis. METHODS: Onset of AD was induced by 2,4-dinitrochlorobenzene (DNCB). Furthermore, we induced periodontitis (P) in AD mice. The effect of AD in promoting inflammation and bone resorption in gingiva was evaluated. Hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunofluorescence assay, and flow cytometry were used to investigate histomorphology and cytology analysis, respectively. RNA sequencing of oral mucosa is used tissues to further understand the dynamic transcriptome changes. 16S rRNA microbial analysis is used to profile oral microbial composition. RESULTS: Compared to control group, mice in AD group showed inflammatory signatures and infiltration of a proallergic Th2 (Th2A)-like subset in oral mucosa but not periodontitis, as identified by not substantial changes in mucosa swelling, alveolar bone loss, and TRAP+ osteoclasts infiltration. Similarly, more Th2A-like cell infiltration and interleukin-4 levels were significantly elevated in the oral mucosa of DNCB-P mice compared to P mice. More importantly, AD exacerbates periodontitis when periodontitis has occurred and the severity of periodontitis increased with aggravation of dermatitis. Transcriptional analysis revealed that aggravated periodontitis was positively correlated with more macrophage infiltration and abundant CCL3 secreted. AD also altered oral microbiota, indicating the re-organization of extracellular matrix. CONCLUSIONS: These data provide solid evidence about exacerbation of periodontitis caused by type 2 dermatitis, advancing our understanding in cellular and microbial changes during AD-periodontitis progression.


Subject(s)
Dermatitis, Atopic , Periodontitis , Humans , Animals , Mice , Dermatitis, Atopic/chemically induced , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , RNA, Ribosomal, 16S , Immunoglobulin E/metabolism , Anti-Inflammatory Agents/pharmacology , Skin , Inflammation/metabolism , Periodontitis/complications , Periodontitis/metabolism , Mice, Inbred BALB C , Cytokines/metabolism
4.
Anal Chem ; 95(48): 17450-17457, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37976220

ABSTRACT

Feature-based molecular networking (FBMN) is a powerful analytical tool for mass spectrometry (MS)-based untargeted metabolomics data analysis. FBMN plays an important role in drug metabolism studies, enabling the visualization of complex metabolomics data to achieve metabolite characterization. In this study, we propose a strategy for the characterization of glutathione (GSH) adducts formed via in vitro metabolic activation using FBMN assisted by multivariate analysis (MVA). Acetaminophen was used as a model substrate for method development, and the practical potential of the method was investigated by its application to 2-aminophenol (2-AP) and 2,4-dinitrochlorobenzene (DNCB). Two 2-AP GSH adducts and one DNCB GSH adduct were successfully characterized by forming networks with GSH even though the mass spectral information obtained for the parent compound was deficient. False positives were effectively filtered out by the variable influence on projection cutoff criteria obtained from orthogonal partial least-squares-discriminant analysis. The GSH adducts formed by enzymatic or nonenzymatic reactions were intuitively distinguished by the pie chart of FBMN results. In summary, our approach effectively characterizes GSH adducts, which serve as compelling evidence of bioactivation. It can be widely utilized to enhance risk assessment in the context of drug metabolism.


Subject(s)
Dinitrochlorobenzene , Glutathione , Dinitrochlorobenzene/metabolism , Mass Spectrometry , Glutathione/chemistry , Multivariate Analysis , Microsomes, Liver/metabolism
5.
Cell Stress Chaperones ; 28(6): 935-942, 2023 11.
Article in English | MEDLINE | ID: mdl-37851180

ABSTRACT

Molecular chaperones belonging to the heat shock protein 90 (Hsp90) family are implicated in inflammatory processes and described as potential novel therapeutic targets in autoimmune/inflammatory skin diseases. While the pathological role of circulating Hsp90 has been recently proposed in patients with atopic dermatitis (AD), a chronic inflammatory skin disease characterized by intense itching and recurrent skin lesions, studies aimed at investigating the role of Hsp90 as a potential target of AD therapy have not yet been conducted. Here, the effects of the Hsp90 blocker STA-9090 (Ganetespib) applied systemically or topically were determined in an experimental mouse model of dinitrochlorobenzene (DNCB)-induced AD. Intraperitoneal administration of STA-9090 ameliorated clinical disease severity, histological epidermal thickness, and dermal leukocyte infiltration in AD mice which was associated with reducing the scratching behavior in DNCB-treated animals. Additionally, topically applied STA-9090 led to lowered disease activity in AD mice, reduced serum levels of IgE, and up-regulated filaggrin expression in lesional skin samples. Our observations suggest that Hsp90 may be a promising therapeutic target in atopic dermatitis and potentially other inflammatory or autoimmune dermatoses.


Subject(s)
Antineoplastic Agents , Dermatitis, Atopic , Humans , Animals , Mice , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Immunoglobulin E , Skin/metabolism , Inflammation/metabolism , Antineoplastic Agents/pharmacology , Heat-Shock Proteins/metabolism , Cytokines/metabolism , Mice, Inbred BALB C
6.
Br J Pharmacol ; 180(23): 3059-3070, 2023 12.
Article in English | MEDLINE | ID: mdl-37501600

ABSTRACT

BACKGROUND AND PURPOSE: Pruritic dermatitis is a disease with a considerable unmet need for treatment and appears to present with not only epidermal but also peripheral neuronal complications. Here, we propose a novel pharmacological modulation targeting both peripheral dorsal root ganglion (DRG) sensory neurons and skin keratinocytes. GPR35 is an orphan G-protein-coupled receptor expressed in DRG neurons and has been predicted to downregulate neuronal excitability when activated. Modulator information is currently increasing for GPR35, and pamoic acid (PA), a salt-forming agent for drugs, has been shown to be an activator solely specific for GPR35. Here, we investigated its effects on dermatitic pathology. EXPERIMENTAL APPROACH: We confirmed GPR35 expression in peripheral neurons and tissues. The effect of PA treatment was pharmacologically evaluated in cultured cells in vitro and in in vivo animal models for acute and chronic pruritus. KEY RESULTS: Local PA application mitigated acute non-histaminergic itch and, consistently, obstructed DRG neuronal responses. Keratinocyte fragmentation under dermatitic simulation was also dampened following PA incubation. Chronic pruritus in 1-chloro-2,4-dinitrobenzene and psoriasis models were also moderately but significantly reversed by the repeated applications of PA. Dermatitic scores in the 1-chloro-2,4-dinitrobenzene and psoriatic models were also improved by its application, indicating that it is beneficial for mitigating disease pathology. CONCLUSION AND IMPLICATIONS: Our findings suggest that pamoic acid activation of peripheral GPR35 can contribute to the improvement of pruritus and its associated diseases.


Subject(s)
Dermatitis , Dinitrochlorobenzene , Animals , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Pruritus/drug therapy , Pruritus/metabolism , Skin/metabolism , Dermatitis/metabolism , Ganglia, Spinal/metabolism
7.
Clin Exp Pharmacol Physiol ; 50(11): 844-854, 2023 11.
Article in English | MEDLINE | ID: mdl-37439364

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence. Inflammation and oxidative stress are strongly associated with AD progression. Esculentoside A (EsA) inhibits inflammation and oxidative stress in various diseases. However, whether EsA mitigates AD by suppressing inflammation and oxidative stress remains unknown. A mouse model of AD was constructed by the induction of 1-chloro-2,4-dinitrochlorobenzene (DNCB). The mechanism of EsA and its effects on AD symptoms, pathology, inflammation and oxidative stress were investigated through histopathological staining, enzyme-linked immunosorbent assay, blood cells analysis, colorimetric measurement and western blot analysis. EsA improved the clinical symptoms and increased clinical skin scores in AD mice. Skin thickening of the epidermis and dermal tissues and the mast cell numbers in AD mice were reduced with the EsA treatment. EsA decreased the relative mRNA level of thymic stromal lymphopoietin, interleukin (IL)-4, IL-5 and IL-13; the serum concentrations of immunoglobulin E (IgE) and IL-6; and the numbers of white blood cells (WBC) and WBC subtypes, including basophil, lymphocytes, eosinophil, neutrophil and monocytes in DNCB-induced mice. DNCB caused higher levels of oxidative stress, which was reversed with the administration of EsA. Mechanically, EsA upregulated the expression of Nrf2 but downregulated the level of NLRP3 inflammasome in AD mice. The inhibitor of Nrf2 significantly recovered the EsA-induced changes in the NLRP3 inflammasome proteins in DNCB-treated mice. Therefore, EsA improved the clinical and pathological symptoms, inflammation and oxidative stress experienced by DNCB-induced mice and was involved in the inactivation of NLRP3 inflammasome by activating Nrf2.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene/toxicity , Dinitrochlorobenzene/metabolism , NF-E2-Related Factor 2/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Reactive Oxygen Species/metabolism , Inflammasomes/metabolism , Skin , Cytokines/metabolism , Inflammation/metabolism , Mice, Inbred BALB C
8.
Molecules ; 28(13)2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37446928

ABSTRACT

Formononetin (FNT) is a plant-derived isoflavone natural product with anti-inflammatory, antioxidant, and anti-allergic properties. We showed previously that FNT inhibits immunoglobulin E (IgE)-dependent mast cell (MC) activation, but the effect of FNT on IgE-independent MC activation is yet unknown. Our aim was to investigate the effects and possible mechanisms of action of FNT on IgE-independent MC activation and pseudoallergic inflammation. We studied the effects of FNT on MC degranulation in vitro with a cell culture model using compound C48/80 to stimulate either mouse bone marrow-derived mast cells (BMMCs) or RBL-2H3 cells. We subsequently measured ß-hexosaminase and histamine release, the expression of inflammatory factors, cell morphological changes, and changes in NF-κB signaling. We also studied the effects of FNT in several in vivo murine models of allergic reaction: C48/80-mediated passive cutaneous anaphylaxis (PCA), active systemic anaphylaxis (ASA), and 2,4-dinitrobenzene (DNCB)-induced atopic dermatitis (AD). The results showed that FNT inhibited IgE-independent degranulation of MCs, evaluated by a decrease in the release of ß-hexosaminase and histamine and a decreased expression of inflammatory factors. Additionally, FNT reduced cytomorphological elongation and F-actin reorganization and attenuated NF-κB p65 phosphorylation and NF-κB-dependent promoter activity. Moreover, the administration of FNT alleviated pseudoallergic responses in vivo in mouse models of C48/80-stimulated PCA and ASA, and DNCB-induced AD. In conclusion, we suggest that FNT may be a novel anti-allergic drug with great potential to alleviate pseudoallergic responses via the inhibition of IgE-independent MC degranulation and NF-κB signaling.


Subject(s)
Anaphylaxis , Anti-Allergic Agents , Isoflavones , Mice , Animals , Mast Cells , p-Methoxy-N-methylphenethylamine/pharmacology , NF-kappa B/metabolism , Cell Degranulation , Dinitrochlorobenzene/metabolism , Anaphylaxis/drug therapy , Isoflavones/metabolism , Immunoglobulin E/metabolism , Anti-Allergic Agents/therapeutic use
9.
Molecules ; 28(9)2023 May 08.
Article in English | MEDLINE | ID: mdl-37175371

ABSTRACT

Isatidis folium or Isatis tinctoria L. is a flowering plant of the Brassicaceae family, commonly known as woad, with an ancient and well-documented history as an indigo dye and medicinal plant. This study aimed to evaluate the anti-atopic dermatitis (AD) effects of Isatidis folium water extract (WIF) using a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model and to investigate the underlying mechanism using tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-activated HaCaT cells. Oral administration of WIF reduced spleen weight, decreased serum IgE and TNF-α levels, reduced epidermal and dermal thickness, and inhibited eosinophil and mast cell recruitment to the dermis compared to DNCB-induced control groups. Furthermore, oral WIF administration suppressed extracellular signal-regulated kinase and p38 mitogen-activated protein kinase protein expression levels, p65 translocation from the cytoplasm to the nucleus, and mRNA expression of TNF-α, IFN-γ, interleukin (IL)-6, and IL-13 in skin lesion tissues. In HaCaT cells, WIF suppressed the production of regulated upon activation, normal T cell expressed and secreted (RANTES), thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), MCP-1, and MIP-3a, which are inflammatory cytokines and chemokines related to AD, and inhibited the mRNA expression of RANTES, TARC, and MDC in TNF-α/IFN-γ-stimulated HaCaT cells. Overall, the results revealed that WIF ameliorated AD-like skin inflammation by suppressing proinflammatory cytokine and chemokine production via nuclear factor-κB pathway inhibition, suggesting WIF as a potential candidate for AD treatment.


Subject(s)
Dermatitis, Atopic , Tumor Necrosis Factor-alpha , Animals , Mice , Humans , Tumor Necrosis Factor-alpha/metabolism , Dinitrochlorobenzene/adverse effects , Dinitrochlorobenzene/metabolism , Keratinocytes , Interferon-gamma/metabolism , Water/metabolism , HaCaT Cells , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Cytokines/metabolism , NF-kappa B/metabolism , Chemokines/metabolism , RNA, Messenger/genetics
10.
Iran J Immunol ; 20(2): 167-176, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37246779

ABSTRACT

Background: Molecular markers are involved in atopic dermatitis (AD) pathogenesis. The estrogen receptor (ESR)-1 gene, encoding ERα, is reported to express aberrantly in AD patients. Objective: To detect the biological functions of ESR1 in 2,4 dinitrochlorobenzene (DNCB)-treated mice. Methods: The DNCB-treated mice received a topical application of emulsion containing the 1,3-bis(4 hydroxyphenyl)-4-methyl-5-[4-(2-piperidinyl ethoxy) phenol]-1H-pyrazole dihydrochloride (MPP; an ESR1-selective antagonist) to dorsal skins and ears. Then the dermatitis scores, histopathological changes, and cytokine levels were evaluated. Results: MPP specifically downregulated ESR1 expression in DNCB-applied mice. Functionally, application of MPP abolished the DNCB-induced promotion in dermatitis score. Additionally, MPP administration protected against DNCB-induced dermatitis severity, suppressed mast cell infiltration and reduced production of immunoglobulin E (IgE) and thymus and activation-regulated chemokine (TARC). Moreover, MPP treatment inhibited DNCB-induced production of Th2 cytokines and infiltration of CD4+ T cells. Conclusion: ESR1 facilitates Th2-immune response and enhances Th2 cytokines in AD mice.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Cytokines/metabolism , Dermatitis, Atopic/genetics , Dinitrochlorobenzene/adverse effects , Dinitrochlorobenzene/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Immunity , Mice, Inbred BALB C , Skin/metabolism , Skin/pathology
11.
Molecules ; 28(8)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37110740

ABSTRACT

The main pathogenic factor in atopic dermatitis (AD) is Th2 inflammation, and levels of serum CCL17 and CCL22 are related to severity in AD patients. Fulvic acid (FA) is a kind of natural humic acid with anti-inflammatory, antibacterial, and immunomodulatory effects. Our experiments demonstrated the therapeutic effect of FA on AD mice and revealed some potential mechanisms. FA was shown to reduce TARC/CCL17 and MDC/CCL22 expression in HaCaT cells stimulated by TNF-α and IFN-γ. The inhibitors showed that FA inhibits CCL17 and CCL22 production by deactivating the p38 MAPK and JNK pathways. After 2,4-dinitrochlorobenzene (DNCB) induction in mice with atopic dermatitis, FA effectively reduced the symptoms and serum levels of CCL17 and CCL22. In conclusion, topical FA attenuated AD via downregulation of CCL17 and CCL22, via inhibition of P38 MAPK and JNK phosphorylation, and FA is a potential therapeutic agent for AD.


Subject(s)
Dermatitis, Atopic , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Keratinocytes , NF-kappa B/metabolism , Chemokine CCL22/metabolism , Chemokine CCL22/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , Dinitrochlorobenzene/metabolism , Tumor Necrosis Factor-alpha/metabolism , Chemokine CCL17/metabolism , Chemokine CCL17/pharmacology , Chemokine CCL17/therapeutic use
12.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(1): 1-14, 2023 Jan 28.
Article in English, Chinese | MEDLINE | ID: mdl-36935172

ABSTRACT

OBJECTIVES: Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms. METHODS: Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions. RESULTS: Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1ß, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1ß, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05). CONCLUSIONS: Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Subject(s)
Dermatitis, Allergic Contact , Dermatitis, Atopic , Animals , Mice , Dinitrochlorobenzene/toxicity , Dinitrochlorobenzene/metabolism , Skin/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/metabolism , Dermatitis, Allergic Contact/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction , RNA, Messenger/metabolism , Mice, Inbred BALB C
13.
J Cosmet Dermatol ; 22(5): 1602-1612, 2023 May.
Article in English | MEDLINE | ID: mdl-36639978

ABSTRACT

BACKGROUND: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a genetic predisposition, and the traditional Chinese medicine Morinda officinalis and its roots are characterized with anti-inflammatory effects and have been used for the treatment of various disease. However, it is still largely unknown whether Morinda officinalis extract (MOE) can be used for the treatment of AD. OBJECTIVES: In our study we aimed to determine whether MOE could ameliorate 2,4-dinitrochlorobenzene (DNCB)-induced AD and elucidate molecular mechanisms. METHODS: We established an AD mouse model by using DNCB. Skin pathological analysis and ELISA assay were used to detect the effect of MOE on the inflammation of AD model mouse skin and the expression changes of inflammatory factors, and further functional verification was performed in TNF-α/IFN-γ-induced HaCaT cells. RESULTS: Our in vivo experiments confirmed that MOE remarkably reduced DNCB-induced AD lesions and symptoms, such as epidermal and dermal thickness and mast cell infiltration and inflammatory cytokines secretion in the mice models. In addition, the underlying mechanisms by which MOE ameliorated AD had been uncovered, and we verified that MOE inhibited MALAT1 expression in AD, resulting in attenuated expression of C-C chemokine receptor type 7 (CCR7) regulated by MALAT1-sponge miR-590-5p in a competing endogenous RNA (ceRNA) mechanisms-dependent manner, thereby inhibiting TNF-α/IFN-γ-induced cellular proliferation and inflammation.


Subject(s)
Dermatitis, Atopic , MicroRNAs , Morinda , RNA, Long Noncoding , Animals , Mice , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Morinda/metabolism , RNA, Long Noncoding/genetics , Tumor Necrosis Factor-alpha/metabolism , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Receptors, CCR7/metabolism , Receptors, CCR7/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Skin/metabolism , Inflammation/pathology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Cytokines/metabolism
14.
Article in English | WPRIM (Western Pacific) | ID: wpr-971365

ABSTRACT

OBJECTIVES@#Ozone is widely applied to treat allergic skin diseases such as eczema, atopic dermatitis, and contact dermatitis. However, the specific mechanism remains unclear. This study aims to investigate the effects of ozonated oil on treating 2,4-dinitrochlorobenzene (DNCB)-induced allergic contact dermatitis (ACD) and the underling mechanisms.@*METHODS@#Besides the blank control (Ctrl) group, all other mice were treated with DNCB to establish an ACD-like mouse model and were randomized into following groups: a model group, a basal oil group, an ozonated oil group, a FcεRI-overexpressed plasmid (FcεRI-OE) group, and a FcεRI empty plasmid (FcεRI-NC) group. The basal oil group and the ozonated oil group were treated with basal oil and ozonated oil, respectively. The FcεRI-OE group and the FcεRI-NC group were intradermally injected 25 µg FcεRI overexpression plasmid and 25 µg FcεRI empty plasmid when treating with ozonated oil, respectively. We recorded skin lesions daily and used reflectance confocal microscope (RCM) to evaluate thickness and inflammatory changes of skin lesions. Hematoxylin-eosin (HE) staining, real-time PCR, RNA-sequencing (RNA-seq), and immunohistochemistry were performed to detct and analyze the skin lesions.@*RESULTS@#Ozonated oil significantly alleviated DNCB-induced ACD-like dermatitis and reduced the expressions of IFN-γ, IL-17A, IL-1β, TNF-α, and other related inflammatory factors (all P<0.05). RNA-seq analysis revealed that ozonated oil significantly inhibited the activation of the DNCB-induced FcεRI/Syk signaling pathway, confirmed by real-time PCR and immunohistochemistry (all P<0.05). Compared with the ozonated oil group and the FcεRI-NC group, the mRNA expression levels of IFN-γ, IL-17A, IL-1β, IL-6, TNF-α, and other inflammatory genes in the FcεRI-OE group were significantly increased (all P<0.05), and the mRNA and protein expression levels of FcεRI and Syk were significantly elevated in the FcεRI-OE group as well (all P<0.05).@*CONCLUSIONS@#Ozonated oil significantly improves ACD-like dermatitis and alleviated DNCB-induced ACD-like dermatitis via inhibiting the FcεRI/Syk signaling pathway.


Subject(s)
Animals , Mice , Dinitrochlorobenzene/metabolism , Skin/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Dermatitis, Allergic Contact/pathology , Dermatitis, Atopic/chemically induced , Signal Transduction , RNA, Messenger/metabolism , Mice, Inbred BALB C
15.
Mar Drugs ; 20(11)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36354992

ABSTRACT

Laminarin is a polysaccharide isolated from brown marine algae and has a wide range of bioactivities, including immunoregulatory and anti-inflammatory properties. However, the effects of laminarin on atopic dermatitis have not been demonstrated. This study investigated the potential effects of topical administration of laminarin using a Balb/c mouse model of oxazolone-induced atopic dermatitis-like skin lesions. Our results showed that topical administration of laminarin to the ear of the mice improved the severity of the dermatitis, including swelling. Histological analysis revealed that topical laminarin significantly decreased the thickening of the epidermis and dermis and the infiltration of mast cells in the skin lesion. Serum immunoglobulin E levels were also significantly decreased by topical laminarin. Additionally, topical laminarin significantly suppressed protein levels of oxazolone-induced proinflammatory cytokines, such as interleukin-1ß, tumor necrosis factor-α, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1α in the skin lesion. These results indicate that topical administration of laminarin can alleviate oxazolone-induced atopic dermatitis by inhibiting hyperproduction of IgE, mast cell infiltration, and expressions of proinflammatory cytokines. Based on these findings, we propose that laminarin can be a useful candidate for the treatment of atopic dermatitis.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Oxazolone/toxicity , Oxazolone/metabolism , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Immunoglobulin E , Plant Extracts/pharmacology , Administration, Topical , Cytokines/metabolism , Mice, Inbred BALB C , Skin
16.
Clin Immunol ; 244: 109102, 2022 11.
Article in English | MEDLINE | ID: mdl-36049600

ABSTRACT

Atopic dermatitis (AD), a type of skin inflammation, is associated with immune response mediated by T-helper 2 (Th2) cells, and mast cells. Vasicine is an alkaloid isolated from Adhatoda vasica, a popular Ayurvedic herbal medicine used for treating inflammatory conditions. In the present study, the anti-AD effects of vasicine were evaluated on 2,4-dinitrochlorobenzene-induced AD-like skin lesions in BALB/c mice. The potential anti-allergic effects of vasicine were also assessed using the passive cutaneous anaphylaxis (PCA) test. The results showed that the oral administration of vasicine improved the severity of AD-like lesional skin by decreasing histopathological changes and restoring epidermal thickness. Vasicine also inhibited the infiltration of mast cells in the skin and reduced the levels of pro-Th2 and Th2 cytokines as well as immunoglobulin E in the serum. Finally, vasicine inhibited the expression of pro-Th2 and Th2 cytokines in skin tissues, indicating the therapeutic potential of vasicine for AD.


Subject(s)
Alkaloids , Anti-Allergic Agents , Dermatitis, Atopic , Skin Diseases , Alkaloids/metabolism , Alkaloids/pharmacology , Alkaloids/therapeutic use , Animals , Anti-Allergic Agents/adverse effects , Cytokines , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Immunoglobulin E , Mice , Mice, Inbred BALB C , Passive Cutaneous Anaphylaxis , Quinazolines , Skin , Skin Diseases/pathology
17.
Mol Immunol ; 151: 103-113, 2022 11.
Article in English | MEDLINE | ID: mdl-36113363

ABSTRACT

Deinococcus radiodurans is an extremophile, well known to be extremely resistant to external stresses due to its unique physiological system and structure of cellular components. Although the proportion of D. radiodurans has been reported to be negatively correlated with atopic dermatitis, the exact function of D. radiodurans in allergic diseases and its precise mechanisms have not been studied. In the present study, we hypothesize that D. radiodurans or its cellular constituents play a critical role in the skin to prevent allergic inflammatory responses by modulating immunity. Heat-killed D. radiodurans inhibited the production of Th2 cytokines, such as IL-4 and IL-5, induced by ovalbumin (OVA) stimulation in splenocytes from OVA-sensitized mice. Among the cellular constituents of D. radiodurans, such as cell wall (DeinoWall), cell membrane (DeinoMem), and exopolysaccharide (DeinoPol), only DeinoWall inhibited the production of Th2 cytokines and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD), a Th2-predominant allergic disease in mice. Moreover, serum IgE levels and infiltration of mast cells into skin lesions, the markers of Th2 response induced by DNCB application, were significantly inhibited by treatment with DeinoWall. Remarkably, DeinoWall induced the maturation of bone marrow-derived dendritic cells (BMDCs) that promote Th1-biased immunity, which might balance Th1/Th2 and regulate allergic inflammatory responses. Collectively, these results suggest that DeinoWall acts as a major cellular constituent in the negative regulation of allergic inflammatory responses by D. radiodurans and might be a viable candidate for the treatment of allergic diseases.


Subject(s)
Anti-Allergic Agents , Deinococcus , Dermatitis, Atopic , Animals , Anti-Allergic Agents/pharmacology , Cell Wall , Cytokines , Deinococcus/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dinitrochlorobenzene/metabolism , Immunoglobulin E , Interleukin-4/metabolism , Interleukin-5 , Mice , Mice, Inbred BALB C , Ovalbumin/metabolism , Th2 Cells
18.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807237

ABSTRACT

(-)-α-Bisabolol (BIS) is a sesquiterpene alcohol derived mostly from Matricaria recutita L., which is a traditional herb and exhibits multiple biologic activities. BIS has been reported for treatment of skin disorders, but the effect of BIS on anti-atopic dermatitis (AD) remains unclear. Therefore, we investigated the effects of BIS on 2,4-dinitrochlorobenzene (DNCB)-induced AD in BALB/c mice and the underlying mechanism in Bone Marrow-Derived Mast Cells (BMMCs). Topical BIS treatment reduced AD-like symptoms and the release of interleukin (IL)-4 without immunoglobulin (Ig)-E production in DNCB-induced BALB/c mice. Histopathological examination revealed that BIS reduced epidermal thickness and inhibited mast cells in the AD-like lesions skin. Oral administration of BIS effectively and dose-dependently suppressed mast-cell-mediated passive cutaneous anaphylaxis. In IgE-mediated BMMCs, the levels of ß-hexosaminidase (ß-hex), histamine, and tumor necrosis factor (TNF)-α were reduced by blocking the activation of nuclear factor-қB (NF-қB) and c-Jun N-terminal kinase (JNK) without P38 mitogen activated protein (P38) and extracellular regulated protein kinases (Erk1/2). Taken together, our experimental results indicated BIS suppresses AD by inhibiting the activation of JNK and NF-κB in mast cells. BIS may be a promising therapeutic agent for atopic dermatitis and other mast-cell-related diseases.


Subject(s)
Dermatitis, Atopic , Dinitrochlorobenzene , Animals , Anti-Inflammatory Agents/pharmacology , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/metabolism , Mast Cells , Mice , Mice, Inbred BALB C , Monocyclic Sesquiterpenes , NF-kappa B/metabolism , Skin/metabolism , Tumor Necrosis Factor-alpha/metabolism
19.
Molecules ; 27(9)2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35565961

ABSTRACT

Atopic dermatitis (eczema) is a condition that makes skin red and itchy. Though common in children, the condition can occur at any age. Atopic dermatitis is persistent (chronic) and tends to recur periodically. It may be accompanied by asthma or hay fever. No cure has been found for eczema. Therefore, it is very important to develop ingredients that aid the prevention and treatment of atopic dermatitis. Cycloheterophyllin is derived from Artocarpus heterophyllus and has antioxidant and anti-inflammatory activities. However, it still is not understood whether cycloheterophyllin is an anti-atopic dermatitis agent. Keratinocytes (HaCaT cells) and BALB/c mice for inducing AD-like cutaneous lesions were used to evaluate the potential of cycloheterophyllin as an anti-atopic dermatitis agent. The release of pro-inflammatory cytokines induced by treatment of TNF-α/IFN-γ was reduced after pretreatment with cycloheterophyllin. The inhibitory effects could be a contribution from the effect of the MAP kinases pathway. Moreover, the symptoms of atopic dermatitis (such as red skin and itching) were attenuated by pretreatment with cycloheterophyllin. Epidermal hyperplasia and mast cell infiltration were decreased in the histological section. Finally, damage to the skin barrier was also found to recover through assessment of transepidermal water loss. Taken together, prenylflavone-cycloheterophyllin from Artocarpus heterophyllus is a potential anti-atopic dermatitis ingredient that can be used in preventing or treating the condition.


Subject(s)
Dermatitis, Atopic , Eczema , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/metabolism , Eczema/pathology , Flavonoids , HaCaT Cells , Humans , Mice , Mice, Inbred BALB C , Skin
20.
Biosci Biotechnol Biochem ; 86(5): 646-654, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35218182

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory and pruritic disease; it can be treated by inhibiting inflammation. Sarcodia suiae sp. is an edible, artificially cultivable red algae with multiple bioactivities. We assessed the anti-inflammatory activity of the ethyl acetate fraction of S. suiae sp. ethanol extract (PD1) on 1-chloro-2,4-dinitrochlorobenzene (DNCB)-induced AD-like lesions. Results show that PD1 alleviated symptoms and significantly decreased clinical dermatitis score. PD1 inhibited serum immunoglobulin E expression and alleviated swelling in the spleen and subiliac lymph nodes. In skin tissues, PD1 alleviated aberrant hyperplasia, decreased epidermal thickness, and decreased the accumulation of mast cells. PD1 mediated the recovery of skin barrier-related proteins, such as claudin-1 and filaggrin. Our study demonstrated that PD1 has anti-inflammatory effects, alleviates AD symptoms, inhibits inflammatory responses in skin tissues, and restores barrier function in DNCB-induced AD mice. These findings reveal that S. suiae sp. extract provides an alternative protective option against AD.


Subject(s)
Dermatitis, Atopic , Rhodophyta , Acetates , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Cytokines/metabolism , Dermatitis, Atopic/chemically induced , Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/metabolism , Dinitrochlorobenzene/metabolism , Dinitrochlorobenzene/pharmacology , Dinitrochlorobenzene/therapeutic use , Ethanol/metabolism , Inflammation/metabolism , Mice , Mice, Inbred BALB C , Plant Extracts/metabolism , Rhodophyta/metabolism , Skin
SELECTION OF CITATIONS
SEARCH DETAIL
...