Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.688
Filter
1.
PLoS One ; 19(6): e0301343, 2024.
Article in English | MEDLINE | ID: mdl-38833478

ABSTRACT

The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms, repeatedly causing damage to Chilean coastal waters. The causes and behavior of algal blooms are complex and vary across different regions. As bacterial interactions with algal species are increasingly recognized as a key factor driving algal blooms, the present study identifies several bacterial candidates potentially associated with Chilean Alexandrium catenella. This research narrowed down the selection of bacteria from the Chilean A. catenella culture using antibiotic treatment and 16S rRNA metabarcoding analysis. Subsequently, seawater from two Chilean coastal stations, Isla Julia and Isla San Pedro, was monitored for two years to detect Alexandrium species and the selected bacteria, utilizing 16S and 18S rRNA gene metabarcoding analyses. The results suggested a potential association between Alexandrium species and Spongiibacteraceae at both stations. The proposed candidate bacteria within the Spongiibacteraceae family, potentially engaging in mutualistic relationships with Alexandrium species, included the genus of BD1-7 clade, Spongiibbacter, and Zhongshania.


Subject(s)
Dinoflagellida , RNA, Ribosomal, 16S , Symbiosis , Dinoflagellida/genetics , Dinoflagellida/physiology , Chile , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Bacteria/classification , Harmful Algal Bloom , Seawater/microbiology , Phylogeny , RNA, Ribosomal, 18S/genetics
2.
Sci Rep ; 14(1): 12774, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834652

ABSTRACT

The diversity of marine cyanobacteria has been extensively studied due to their vital roles in ocean primary production. However, little is understood about the diversity of cyanobacterial species involved in symbiotic relationships. In this study, we successfully sequenced the complete genome of a cyanobacterium in symbiosis with Citharistes regius, a dinoflagellate species thriving in the open ocean. A phylogenomic analysis revealed that the cyanobacterium (CregCyn) belongs to the marine picocyanobacterial lineage, akin to another cyanobacterial symbiont (OmCyn) of a different dinoflagellate closely related to Citharistes. Nevertheless, these two symbionts are representing distinct lineages, suggesting independent origins of their symbiotic lifestyles. Despite the distinct origins, the genome analyses of CregCyn revealed shared characteristics with OmCyn, including an obligate symbiotic relationship with the host dinoflagellates and a degree of genome reduction. In contrast, a detailed analysis of genome subregions unveiled that the CregCyn genome carries genomic islands that are not found in the OmCyn genome. The presence of the genomic islands implies that exogenous genes have been integrated into the CregCyn genome at some point in its evolution. This study contributes to our understanding of the complex history of the symbiosis between dinoflagellates and cyanobacteria, as well as the genomic diversity of marine picocyanobacteria.


Subject(s)
Cyanobacteria , Dinoflagellida , Genome, Bacterial , Phylogeny , Symbiosis , Dinoflagellida/genetics , Dinoflagellida/physiology , Symbiosis/genetics , Cyanobacteria/genetics , Cyanobacteria/classification , Evolution, Molecular
3.
Harmful Algae ; 135: 102630, 2024 May.
Article in English | MEDLINE | ID: mdl-38830708

ABSTRACT

Ships' ballast water and sediments have long been linked to the global transport and expansion of invasive species and thus have become a hot research topic and administrative challenge in the past decades. The relevant concerns, however, have been mainly about the ocean-to-ocean invasion and sampling practices have been almost exclusively conducted onboard. We examined and compared the dinoflagellate cysts assemblages in 49 sediment samples collected from ballast tanks of international and domestic routes ships, washing basins associated with a ship-repair yard, Jiangyin Port (PS), and the nearby area of Yangtze River (YR) during 2017-2018. A total of 43 dinoflagellates were fully identified to species level by metabarcoding, single-cyst PCR-based sequencing, cyst germination and phylogenetic analyses, including 12 species never reported from waters of China, 14 HABs-causing, 9 toxic, and 10 not strictly marine species. Our metabarcoding and single-cyst sequencing also detected many OTUs and cysts of dinoflagellates that could not be fully identified, indicating ballast tank sediments being a risky repository of currently unrecognizable invasive species. Particularly important, 10 brackish and fresh water species of dinoflagellate cysts (such as Tyrannodinium edax) were detected from the transoceanic ships, indicating these species may function as alien species potentially invading the inland rivers and adjacent lakes if these ships conduct deballast and other practices in fresh waterbodies. Significantly higher numbers of reads and OTUs of dinoflagellates in the ballast tanks and washing basins than that in PS and YR indicate a risk of releasing cysts by ships and the associated ship-repair yards to the surrounding waters. Phylogenetic analyses revealed high intra-species genetic diversity for multiple cyst species from different ballast tanks. Our work provides novel insights into the risk of bio-invasion to fresh waters conveyed in ship's ballast tank sediments and washing basins of shipyards.


Subject(s)
Dinoflagellida , Fresh Water , Introduced Species , Phylogeny , Ships , Dinoflagellida/physiology , Dinoflagellida/genetics , Dinoflagellida/classification , Fresh Water/parasitology , China , Ecosystem , Geologic Sediments , Harmful Algal Bloom
4.
Harmful Algae ; 135: 102648, 2024 May.
Article in English | MEDLINE | ID: mdl-38830713

ABSTRACT

Reports of the benthic dinoflagellate Ostreopsis spp. have been increasing in the last decades, especially in temperate areas. In a context of global warming, evidences of the effects of increasing sea temperatures on its physiology and its distribution are still lacking and need to be investigated. In this study, the influence of temperature on growth, ecophysiology and toxicity was assessed for several strains of O. cf. siamensis from the Bay of Biscay (NE Atlantic) and O. cf. ovata from NW Mediterranean Sea. Cultures were acclimated to temperatures ranging from 14.5 °C to 32 °C in order to study the whole range of each strain-specific thermal niche. Acclimation was successful for temperatures ranging from 14.5 °C to 25 °C for O. cf. siamensis and from 19 °C to 32 °C for O. cf. ovata, with the highest growth rates measured at 22 °C (0.54-1.06 d-1) and 28 °C (0.52-0.75 d-1), respectively. The analysis of cellular content of pigments and lipids revealed some aspects of thermal acclimation processes in Ostreopsis cells. Specific capacities of O. cf. siamensis to cope with stress of cold temperatures were linked with the activation of a xanthophyll cycle based on diadinoxanthin. Lipids (neutral reserve lipids and polar ones) also revealed species-specific variations, with increases in cellular content noted under extreme temperature conditions. Variations in toxicity were assessed through the Artemia franciscana bioassay. For both species, a decrease in toxicity was observed when temperature dropped under the optimal temperature for growth. No PLTX-like compounds were detected in O. cf. siamensis strains. Thus, the main part of the lethal effect observed on A. franciscana was dependent on currently unknown compounds. From a multiclonal approach, this work allowed for defining specificities in the thermal niche and acclimation strategies of O. cf. siamensis and O. cf. ovata towards temperature. Potential impacts of climate change on the toxic risk associated with Ostreopsis blooms in both NW Mediterranean Sea and NE Atlantic coast is further discussed, taking into account variations in the geographic distribution, growth abilities and toxicity of each species.


Subject(s)
Dinoflagellida , Global Warming , Temperature , Dinoflagellida/physiology , Dinoflagellida/growth & development , Mediterranean Sea , Harmful Algal Bloom , Animals , Acclimatization , Oceans and Seas
5.
Harmful Algae ; 135: 102632, 2024 May.
Article in English | MEDLINE | ID: mdl-38830710

ABSTRACT

This article presents the first results on shellfish toxicity in the Slovenian sea (Gulf of Trieste, Adriatic Sea) since the analytical methods for the detection of biotoxins (PSP, ASP, DSP and other lipophilic toxins) in bivalve molluscs were included in the national monitoring program in 2013. In addition to toxins, the composition and abundance of toxic phytoplankton and general environmental characteristics of the seawater (surface temperature and salinity) were also monitored. During the 2014-2019 study period, only lipophilic toxins were detected (78 positive tests out of 446 runs), of which okadaic acid (OA) predominated in 97 % of cases, while dinophysistoxin-2 and yessotoxins only gave a positive result in one sampling event each. The number of samples that did not comply with the EC Regulation for the OA group was 17 or 3.8 % of all tests performed, all of which took place from September to November, while a few positive OA tests were also recorded in December, April, and May. This toxicity pattern was consistent with the occurrence pattern of the five most common DSP-producing dinoflagellates, which was supported by the development of warm and thermohaline stratified waters: Dinophysis caudata, D. fortii, D. sacculus, D. tripos and Phalacroma rotundatum. The strong correlation (r = 0.611, p < 0.001) between D. fortii, reaching abundances of up to 950 cells L-1, and OA suggests that D. fortii is the main cause of OA production in Slovenian waters. Strong interannual variations in OA and phytoplankton dynamics, exacerbated by the effects of anthropogenic impacts in this coastal ecosystem, reduce the predictability of toxicity events and require continuous and efficient monitoring. Our results also show that the introduction of the LC-MS/MS method for lipophilic toxins has improved the management of aquaculture activities, which was not as accurate based on mouse bioassays.


Subject(s)
Marine Toxins , Mytilus , Okadaic Acid , Phytoplankton , Okadaic Acid/analysis , Okadaic Acid/toxicity , Animals , Marine Toxins/analysis , Slovenia , Seafood/analysis , Seawater/chemistry , Dinoflagellida
6.
Harmful Algae ; 135: 102634, 2024 May.
Article in English | MEDLINE | ID: mdl-38830711

ABSTRACT

Previous research on phytoplankton blooms has often focused on the initiation of blooms, while studies on the mechanisms underlying bloom decline and termination have been more limited. This study aimed to explore the extent of which Acartia tonsa (copepod) grazing does or does not contribute to Margalefidinium polykrikoides (dinoflagellate) bloom decline. M. polykrikoides is a prominent harmful algal bloom (HAB) species that forms dense blooms in coastal and estuarine systems around the world with known ichthyotoxic effects. Sampling occurred in the lower York River Estuary, Virginia, USA in 2021 and 2022 during two M. polykrikoides blooms. Prey removal experiments were conducted using organisms collected from the field to estimate A. tonsa ingestion rates on M. polykrikoides. While A. tonsa was capable of ingesting M. polykrikoides at low abundance, when M. polykrikoides abundance exceeded 2000 cells mL-1, A. tonsa experienced nearly 100% mortality in the 24-hour prey removal experiments. This suggests that A. tonsa likely cannot exert any top-down control on M. polykrikoides blooms, rather, at high concentrations, M. polykrikoides may act as its own grazing deterrent. Extensive M. polykrikoides blooms could therefore continue to persist due to a reduction in grazing pressure, rather than an increase. This would suggest that the decline of M. polykrikoides blooms is likely caused by another factor. As the frequency, duration, and magnitude of HABs are expected to increase in the future, these findings provide key insights to the trophic interactions that may be influencing the duration of M. polykrikoides blooms.


Subject(s)
Copepoda , Dinoflagellida , Harmful Algal Bloom , Dinoflagellida/physiology , Dinoflagellida/growth & development , Animals , Harmful Algal Bloom/physiology , Copepoda/physiology , Virginia , Food Chain , Estuaries
7.
Harmful Algae ; 135: 102649, 2024 May.
Article in English | MEDLINE | ID: mdl-38830714

ABSTRACT

Protoceratium reticulatum is the main yessotoxin-producer along the Chilean coast. Thus far, the yessotoxin levels recorded in this region have not posed a serious threat to human health. However, a bloom of P. reticulatum during the austral summer of 2022 caused the first ban of shellfish collection, due to the high toxin levels. A bloom of P. reticulatum during the austral summer of 2020 allowed an evaluation of the fine-scale distribution of the dinoflagellate during a tidal cycle. High-resolution measurements of biophysical properties were carried out in mid-summer (February 18-19) at a fixed sampling station in Puyuhuapi Fjord, Chilean Patagonia, as part of an intensive 24-h biophysical experiment to monitor the circadian distributions of P. reticulatum vegetative cells and yessotoxins. High P. reticulatum cell densities (>20 × 103 cells L-1) were found in association with a warmer (14.5-15 °C) and estuarine (23.5-24.5 g kg-1) sub-surface water layer (6-8 m). P. reticulatum cell numbers and yessotoxins followed a synchronic distribution pattern consistent with the excursions of the pycnocline. Nevertheless, the surface aggregation of the cells was modulated by the light cycle, suggesting daily vertical migration. The yessotoxin content per P. reticulatum cell ranged from 9.4 to 52.2 pg. This study demonstrates both the value of fine-scale resolution measurements of biophysical properties in a highly stratified system and the potential ecosystem impact of P. reticulatum strains producing high levels of yessotoxins.


Subject(s)
Dinoflagellida , Mollusk Venoms , Oxocins , Dinoflagellida/physiology , Oxocins/analysis , Chile , Estuaries , Light , Harmful Algal Bloom , Marine Toxins/analysis
8.
PeerJ ; 12: e17358, 2024.
Article in English | MEDLINE | ID: mdl-38827291

ABSTRACT

Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St. John, US Virgin Islands, by describing the genetic complement of symbiotic algae in common corals. Seventy-five corals from nine species were marked and sampled in 2017. Of these colonies, 41% were sampled in 2018, and 72% in 2019; 28% could not be found and were assumed to have died. Symbiodiniaceae ITS2 sequencing identified 525 distinct sequences (comprising 42 ITS2 type profiles), and symbiont diversity differed among host species and individuals, but was in most cases preserved within hosts over 3 yrs that were marked by physical disturbances from major hurricanes (2017) and the regional onset of stony coral tissue loss disease (2019). While changes in symbiont communities were slight and stochastic over time within colonies, variation in the dominant symbionts among colonies was observed for all host species. Together, these results indicate that declining host abundances could lead to the loss of rare algal lineages that are found in a low proportion of few coral colonies left on many reefs, especially if coral declines are symbiont-specific. These findings highlight the importance of identifying Symbiodiniaceae as part of a time series of coral communities to support holistic conservation planning. Repeated sampling of tagged corals is unlikely to be viable for this purpose, because many Caribbean corals are dying before they can be sampled multiple times. Instead, random sampling of large numbers of corals may be more effective in capturing the diversity and temporal dynamics of Symbiodiniaceae metacommunities in reef corals.


Subject(s)
Anthozoa , Coral Reefs , Symbiosis , Animals , Anthozoa/microbiology , Caribbean Region , United States Virgin Islands , Dinoflagellida/genetics , Dinoflagellida/physiology
9.
Sci Total Environ ; 935: 173483, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-38796022

ABSTRACT

The innate immunity of bivalves serves as the initial defense mechanism against environmental pollutants, ultimately impacting genetic regulatory networks through synergistic interactions. Previous research has demonstrated variations in the accumulation and tolerance capacities of bivalves; however, the specific mechanism underlying the low accumulation of PSTs in M. unguiculatus remains unclear. This study examined the alterations in feeding behavior and transcriptional regulation of M. unguiculatus following exposure to two Alexandrium strains with distinct toxin profiles, specifically gonyautoxin (AM) and N-sulfocarbamoyl toxin (AC). The total accumulation rate of PSTs in M. unguiculatus was 43.64 % (AC) and 27.80 % (AM), with highest PSTs content in the AM group (455.39 µg STXeq/kg). There were significant variations (P < 0.05) in physiological parameters, such as total hemocyte count, antioxidant superoxide activity and tissue damage in both groups. The absorption rate was identified as the key factor influencing toxin accumulation. Transcriptomic analyses demonstrated that PSTs triggered upregulation of endocytosis, lysosome, and immune-related signaling pathways. Furthermore, PSTs induced a nucleotide imbalance in the AC group, with total PSTs content serving as the most toxic indicator. These results suggested that protein-like substances had a crucial role in the stress response of M. unguiculatus to PSTs. This study provided novel perspectives on the impacts of intricate regulatory mechanisms and varying immune responses to PSTs in bivalves.


Subject(s)
Dinoflagellida , Marine Toxins , Mytilus , Animals , Dinoflagellida/physiology , Mytilus/physiology , Immunity, Innate
10.
Mar Pollut Bull ; 203: 116491, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754321

ABSTRACT

Endosymbionts (Symbiodiniaceae) play a vital role in the health of corals. Seawater pollution can harm these endosymbionts and dispersants used during oil spill cleanup can be extremely toxic to these organisms. Here, we examined the impact of oil and a specific dispersant, Corexit-9500, on two representative endosymbionts - Symbiodinium and Cladocopium - from the Southwestern endemic coral Mussismilia braziliensis. The survival and photosynthetic potential of the endosymbionts decreased dramatically after exposure to the dispersant and oil by ~25 % after 2 h and ~50 % after 7 days. Low concentrations of dispersant (0.005 ml/l) and dispersed oil (Polycyclic Aromatic Hydrocarbons, 1132 µg/l; Total Petroleum Hydrocarbons, 595 µg/l) proved highly toxic to both Symbiodinium and Cladocopium. These levels triggered a reduction in growth rate, cell size, and cell wall thickness. After a few hours of exposure, cellular organelles were damaged or destroyed. These acute toxic effects underline the fragile nature of coral endosymbionts.


Subject(s)
Anthozoa , Dinoflagellida , Petroleum Pollution , Petroleum , Symbiosis , Water Pollutants, Chemical , Anthozoa/drug effects , Anthozoa/physiology , Animals , Petroleum/toxicity , Dinoflagellida/physiology , Dinoflagellida/drug effects , Water Pollutants, Chemical/toxicity , Lipids , Surface-Active Agents/toxicity
11.
Mar Pollut Bull ; 203: 116464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759464

ABSTRACT

An Alexandrium affine strain (AAJQ-1) from San José Island, Gulf of California was characterized for growth and toxicology. Fivefold of f/2 + Se cultures were incubated for 34 days in a temperature gradient (21-29 °C). Aliquots were collected every third day for cell counting, toxin determination, and nutrient analyses. In this study ELISA method was used to evaluate the PSP toxin production due to the lower detection limit than the HPLC method. The highest cell density (6724 cells mL-1) and growth rate (0.22 day-1) were obtained at 27 °C and they were related to temperature in all treatments. Cell density showed negative correlation with nitrate at temperatures ≥23 °C, and with orthophosphate 27 °C, furthermore, these correlations promote the toxin production (0.05-0.45 fmol STX cell-1); beyond that nitrite at high temperature seems to promote toxin production, which has not been sufficiently documented.


Subject(s)
Dinoflagellida , Marine Toxins , Temperature , Dinoflagellida/growth & development , California , Nutrients/analysis , Seawater/chemistry
12.
World J Microbiol Biotechnol ; 40(7): 210, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773011

ABSTRACT

Bioactive compounds derived from microalgae have garnered considerable attention as valuable resources for drugs, functional foods, and cosmetics. Among these compounds, photosynthetic pigments and polyunsaturated fatty acids (PUFAs) have gained increasing interest due to their numerous beneficial properties, including anti-oxidant, anti-viral, anti-bacterial, anti-fungal, anti-inflammatory, and anti-tumor effects. Several microalgae species have been identified as rich sources of bioactive compounds, including the Chlorophyceae Dunaliella and Haematococcus, the Bacillariophyta Phaeodactylum and Nitzschia, and the dinoflagellate Crypthecodinium cohnii. However, most of the reported microalgae species primarily grow through autotrophic mechanisms, resulting in low yields and high production costs of bioactive compounds. Consequently, the utilization of heterotrophic microalgae, such as Chromochloris zofingiensis and Nitzschia laevis, has shown significant advantages in the production of astaxanthin and eicosapentaenoic acid (EPA), respectively. These heterotrophic microalgae exhibit superior capabilities in synthesizing target compounds. This comprehensive review provides a thorough examination of the heterotrophic production of bioactive compounds by microalgae. It covers key aspects, including the metabolic pathways involved, the impact of cultivation conditions, and the practical applications of these compounds. The review discusses how heterotrophic cultivation strategies can be optimized to enhance bioactive compound yields, shedding light on the potential of microalgae as a valuable resource for high-value product development.


Subject(s)
Heterotrophic Processes , Microalgae , Microalgae/metabolism , Microalgae/growth & development , Fatty Acids, Unsaturated/metabolism , Fatty Acids, Unsaturated/biosynthesis , Biological Products/metabolism , Dinoflagellida/metabolism , Dinoflagellida/growth & development , Photosynthesis
13.
Genome Biol ; 25(1): 115, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711126

ABSTRACT

BACKGROUND: In dinoflagellates, a unique and extremely divergent genomic and nuclear organization has evolved. The highly unusual features of dinoflagellate nuclei and genomes include permanently condensed liquid crystalline chromosomes, primarily packaged by proteins other than histones, genes organized in very long unidirectional gene arrays, a general absence of transcriptional regulation, high abundance of the otherwise very rare DNA modification 5-hydroxymethyluracil (5-hmU), and many others. While most of these fascinating properties are originally identified in the 1970s and 1980s, they have not yet been investigated using modern genomic tools. RESULTS: In this work, we address some of the outstanding questions regarding dinoflagellate genome organization by mapping the genome-wide distribution of 5-hmU (using both immunoprecipitation-based and basepair-resolution chemical mapping approaches) and of chromatin accessibility in the genome of the Symbiodiniaceae dinoflagellate Breviolum minutum. We find that the 5-hmU modification is preferentially enriched over certain classes of repetitive elements, often coincides with the boundaries between gene arrays, and is generally correlated with decreased chromatin accessibility, the latter otherwise being largely uniform along the genome. We discuss the potential roles of 5-hmU in the functional organization of dinoflagellate genomes and its relationship to the transcriptional landscape of gene arrays. CONCLUSIONS: Our results provide the first window into the 5-hmU and chromatin accessibility landscapes in dinoflagellates.


Subject(s)
Chromatin , Dinoflagellida , Pentoxyl , Pentoxyl/analogs & derivatives , Dinoflagellida/genetics , Dinoflagellida/metabolism , Chromatin/metabolism , Pentoxyl/metabolism , Genome, Protozoan
14.
Sci Total Environ ; 931: 172997, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38714256

ABSTRACT

Diatoms and dinoflagellates are two typical functional groups of phytoplankton, playing important roles in ecosystem processes and biogeochemical cycles. Changes in diatoms and dinoflagellates are thought to be one of the possible mechanisms for the increase in harmful algal blooms (HABs), due to changing hydrological conditions associated with climate change and human activities. However, little is known about their ability to adapt to changing ocean environments, thus making it difficult to know whether and how they are adapting. By analyzing a 44-year monitoring dataset in the central Bohai Sea during 1978-2021, we found that the abundance ratio of diatoms to dinoflagellates showed a decreasing trend seasonally and ecologically, indicating that the phytoplankton community underwent distinct successional processes from diatom dominance to diatom-dinoflagellate co-dominance. These processes exhibited varying responses to temperature, nutrient concentrations and ratios, and their interactions, of which temperature primarily drove the seasonal succession whereas nutrients were responsible for the ecological succession. Specifically, diatoms showed a preference for lower temperatures and higher DIP concentrations, and were able to tolerate lower DIN at lower temperatures. In contrast, dinoflagellates tended to prevail at conditions of warming and high N/P ratios. These different traits of diatoms and dinoflagellates reflected the fact that warming as a result of rising temperature and eutrophication as a consequence of nutrient input would favor dinoflagellates over diatoms. Moreover, the increasing dominance of dinoflagellates indicated that dinoflagellate blooms were likely to become more frequent and intense in the central Bohai Sea.


Subject(s)
Climate Change , Diatoms , Dinoflagellida , Eutrophication , Temperature , Phytoplankton , Nutrients/analysis , Environmental Monitoring , China , Harmful Algal Bloom , Ecosystem , Seasons
15.
Harmful Algae ; 134: 102603, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705609

ABSTRACT

Toxic dinoflagellate Alexandrium can produce saxitoxins (STXs) and cause paralytic shellfish poisoning (PSP), and thus they are monitored for environmental safety management. Microscopic discrimination of dinoflagellates is difficult to distinguish between toxic and non-toxic species due to their similar morphology. Meanwhile, an alternative quantitative PCR (qPCR) assay is sensitive, rapid, and cost-effective for harmful species monitoring. Herein, we developed a novel qPCR assay to detect the STXs biosynthesis gene sxtB of Alexandrium catenella and A. pacificum, the leading cause of PSP outbreaks in Asian coasts and worldwide. The newly designed sxtB TaqMan probes target the species without any positive signal in other relative dinoflagellates. Deming regression analysis revealed that the sxtB copy number of A. catenella and A. pacificum was 3.6 and 4.1 copies per cell, respectively. During the blooming periods (April 13th-14th, 2020), only A. catenella cells were detected through the qPCR assay, ranging from 5.0 × 10 to 2.5 × 104 eq cells L-1. In addition, sxtB qPCR quantified more accurately compared to large subunit (LSU) rRNA targeting qPCR assay that overestimate cell density. Besides, the sensitivity of sxtB was higher compared to the microscope when the species were rarely present (5.0 × 102 cells L-1). These suggest that the sxtB qPCR assay can be applied to toxic Alexandrium monitoring in the Korean coast, even in the early stage of bloomings.


Subject(s)
Dinoflagellida , Real-Time Polymerase Chain Reaction , Saxitoxin , Dinoflagellida/genetics , Saxitoxin/genetics , Saxitoxin/biosynthesis , Republic of Korea , Real-Time Polymerase Chain Reaction/methods , Harmful Algal Bloom
16.
Harmful Algae ; 134: 102604, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705610

ABSTRACT

In the North Sea, Tripos and Dinophysis are commonly occurring mixotrophic planktonic dinoflagellate genera. In order to understand their bloom dynamics, an occurring bloom dominated by T. furca and D. norvegica was followed for several days. High cell abundances of these species were located to estimate: in situ growth rates from cell cycle analyses, depth distributions, growth rates sustained by photosynthesis, and parasite infection prevalence in all T. furca, T. fusus, D. norvegica and D. acuminata. Cell abundances were over 10000 cells L-1 for T. furca and up to 18000 cells L-1 for D. norvegica. Cells accumulated between 15-25 m depth and presented low specific in situ growth rates of 0.04-0.15 d-1 for T. furca and 0.02-0.16 d-1 for D. norvegica. Photosynthesis could sustain growth rates of 0.01-0.18 d-1 for T. furca and 0.02 to 0.14 d-1 for D. norvegica, suggesting that these species were relying mainly on photosynthesis. Parasite infections where generally low, with occasional high prevalence in D. norvegica (by Parvilucifera sp.) and T. fusus (by Amoebophrya sp.), while both parasites showed comparable prevalence in D. acuminata, which could offset in situ growth rates by parasite-induced host mortality. The restructuring effect of parasites on dinoflagellate blooms is often overlooked and this study elucidates their effect to cell abundances and their growth at the final stages of a bloom.


Subject(s)
Dinoflagellida , Photosynthesis , Population Dynamics , Dinoflagellida/physiology , Dinoflagellida/growth & development , North Sea , Harmful Algal Bloom
17.
Harmful Algae ; 134: 102626, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705614

ABSTRACT

Harmful algal bloom (HAB) is a rapidly expanding marine ecological hazard. Although numerous studies have been carried out about the ecological impact and the ecological mechanism of HAB outbreaks, few studies have comprehensively addressed the shifts of species composition, metabolic activity level, driving factors and community assembly mechanisms of microeukaryotic plankton in the course of the bloom event. To fill the gap of research, we conducted 18S ribosomal DNA and RNA sequencing during the initiation, development, sustenance and decline stages of a Scrippsiella acuminata (S. acuminata) bloom at the coastal sea of Fujian Province, China. We found that the bloom event caused a decrease in microeukaryotic plankton species diversity and increase in community homogeneity. Our results revealed that the RNA- and DNA-inferred communities were similar, but α-diversity was more dynamic in RNA- than in DNA-inferred communities. The main taxa with high projected metabolic activity (with RNA:DNA ratio as the proxy) during the bloom included dinoflagellates, Cercozoa, Chlorophyta, Protalveolata, and diatoms. The role of deterministic processes in microeukaryotic plankton community assembly increased during the bloom, but stochastic processes were always the dominant assembly mechanism throughout the bloom process. Our findings improve the understanding of temporal patterns, driving factors and assembly mechanisms underlying the microeukarytic plankton community in a dinoflagellate bloom.


Subject(s)
Biodiversity , Dinoflagellida , Harmful Algal Bloom , Dinoflagellida/genetics , Dinoflagellida/physiology , China , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/analysis , Plankton/genetics , Diatoms/genetics , Diatoms/physiology
18.
Harmful Algae ; 134: 102620, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705616

ABSTRACT

The marine dinoflagellate Alexandrium is known to form harmful algal blooms, and at least 14 species within the genus can produce saxitoxins (STXs). STX biosynthesis genes (sxt) are individually revealed in toxic dinoflagellates; however, the evolutionary history remains controversial. Herein, we determined the transcriptome sequences of toxic Alexandrium (A. catenella and A. pacificum) and non-toxic Alexandrium (A. fraterculus and A. fragae) and characterized their sxt by focusing on evolutionary events and STX production. Comparative transcriptome analysis revealed higher homology of the sxt in toxic Alexandrium than in non-toxic species. Notably, non-toxic Alexandrium spp. were found to have lost two sxt core genes, namely sxtA4 and sxtG. Expression levels of 28 transcripts related to eight sxt core genes showed that sxtA, sxtG, and sxtI were relatively high (>1.5) in the toxic group compared to the non-toxic group. In contrast, the non-toxic group showed high expression levels in sxtU (1.9) and sxtD (1.7). Phylogenetic tree comparisons revealed distinct evolutionary patterns between 28S rDNA and sxtA, sxtB, sxtI, sxtD, and sxtU. However, similar topology was observed between 28S rDNA, sxtS, and sxtH/T. In the sxtB and sxtI phylogeny trees, toxic Alexandrium and cyanobacteria were clustered together, separating from non-toxic species. These suggest that Alexandrium may acquire sxt genes independently via horizontal gene transfer from toxic cyanobacteria and other multiple sources, demonstrating monocistronic transcripts of sxt in dinoflagellates.


Subject(s)
Dinoflagellida , Phylogeny , Saxitoxin , Transcriptome , Dinoflagellida/genetics , Dinoflagellida/metabolism , Saxitoxin/genetics , Saxitoxin/biosynthesis , Gene Expression Profiling , Evolution, Molecular
19.
Harmful Algae ; 134: 102609, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705612

ABSTRACT

Modified clay compounds are used globally as a method of controlling harmful algal blooms, and their use is currently under consideration to control Karenia brevis blooms in Florida, USA. In 1400 L mesocosm tanks, chemical dynamics and lethal and sublethal impacts of MC II, a polyaluminum chloride (PAC)-modified kaolinite clay, were evaluated over 72 h on a benthic community representative of Sarasota Bay, which included blue crab (Callinectes sapidus), sea urchin (Lytechinus variegatus), and hard clam (Mercenaria campechiensis). In this experiment, MC II was dosed at 0.2 g L-1 to treat bloom-level densities of K. brevis at 1 × 106 cells L-1. Cell removal in MC II-treated tanks was 57% after 8 h and 95% after 48 h. In the water column, brevetoxin analogs BTx-1 and BTx-2 were found to be significantly higher in untreated tanks at 24 and 48 h, while in MC II-treated tanks, BTx-3 was found to be higher at 48 h and BTx-B5 was found to be higher at 24 and 48 h. In MC II floc, we found no significant differences in BTx-1 or BTx-2 between treatments for any time point, while BTx-3 was found to be significantly higher in the MC II-treated tanks at 48 and 72 h, and BTx-B5 was higher in MC II-treated tanks at 24 and 72 h. Among various chemical dynamics observed, it was notable that dissolved phosphorus was consistently significantly lower in MC II tanks after 2 h, and that turbidity in MC II tanks returned to control levels 48 h after treatment. Dissolved inorganic carbon and total seawater alkalinity were significantly reduced in MC II tanks, and partial pressure of CO2 (pCO2) was significantly higher in the MC II-only treatment after 2 h. In MC II floc, particulate phosphorus was found to be significantly higher in MC II tanks after 24 h. In animals, lethal and sublethal responses to MC II-treated K. brevis did not differ from untreated K. brevis for either of our three species at any time point, suggesting MC II treatment at this dosage has negligible impacts to these species within 72 h of exposure. These results appear promising in terms of the environmental safety of MC II as a potential bloom control option, and we recommend scaling up MC II experiments to field trials in order to gain deeper understanding of MC II performance and dynamics in natural waters.


Subject(s)
Aluminum Hydroxide , Dinoflagellida , Harmful Algal Bloom , Marine Toxins , Animals , Dinoflagellida/drug effects , Dinoflagellida/physiology , Dinoflagellida/chemistry , Clay/chemistry , Bivalvia/physiology , Bivalvia/drug effects , Sea Urchins/physiology , Sea Urchins/drug effects , Florida , Brachyura/physiology , Brachyura/drug effects , Mercenaria/drug effects , Mercenaria/physiology , Aluminum Silicates/pharmacology , Aluminum Silicates/chemistry
20.
Harmful Algae ; 134: 102621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38705617

ABSTRACT

Vulcanodinium rugosum is a benthic dinoflagellate known for producing pinnatoxins, pteriatoxins, portimines and kabirimine. In this study, we aimed to identify unknown analogs of these emerging toxins in mussels collected in the Ingril lagoon, France. First, untargeted data acquisitions were conducted by means of liquid chromatography coupled to hybrid quadrupole-orbitrap mass spectrometry. Data processing involved a molecular networking approach, and a workflow dedicated to the identification of biotransformed metabolites. Additionally, targeted analyses by liquid chromatography coupled to triple quadrupole mass spectrometry were also implemented to further investigate and confirm the identification of new compounds. For the first time, a series of 13-O-acyl esters of portimine-A (n = 13) were identified, with fatty acid chains ranging between C12:0 and C22:6. The profile was dominated by the palmitic acid conjugation. This discovery was supported by fractionation experiments combined with the implementation of a hydrolysis reaction, providing further evidence of the metabolite identities. Furthermore, several analogs were semi-synthesized, definitively confirming the discovery of these metabolization products. A new analog of pinnatoxin, with a molecular formula of C42H65NO9, was also identified across the year 2018, with the highest concentration observed in August (4.5 µg/kg). The MS/MS data collected for this compound exhibited strong structural similarities with PnTX-A and PnTX-G, likely indicating a substituent C2H5O2 in the side chain at C33. The discovery of these new analogs will contribute to deeper knowledge of the chemodiversity of toxins produced by V. rugosum or resulting from shellfish metabolism, thereby improving our ability to characterize the risks associated with these emerging toxins.


Subject(s)
Bivalvia , Dinoflagellida , Esters , Fatty Acids , Marine Toxins , Animals , Bivalvia/metabolism , Bivalvia/chemistry , Dinoflagellida/chemistry , Dinoflagellida/metabolism , Fatty Acids/metabolism , Fatty Acids/analysis , Fatty Acids/chemistry , Esters/metabolism , Esters/chemistry , Marine Toxins/metabolism , Marine Toxins/chemistry , Chromatography, Liquid , France
SELECTION OF CITATIONS
SEARCH DETAIL
...