Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.242
Filter
1.
BMC Complement Med Ther ; 24(1): 180, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698382

ABSTRACT

BACKGROUND: Dioscorea bulbifera Linn. has been used for wound care in Thailand. However, a comprehensive evaluation of its antibacterial activity is required. This study aimed to investigate the antibacterial efficacy of D. bulbifera extract against skin-associated bacteria and isolate and characterize its active antibacterial agent, flavanthrinin. METHODS: Air-dried bulbils of D. bulbifera were pulverised and extracted with hexane, dichloromethane, ethyl acetate, methanol, ethanol, and distilled water; vacuum filtered; concentrated; freeze-dried; and stored at -20 ºC. Antibacterial activity of the extracts was assessed using microdilution techniques against several skin-associated bacteria. Thin-layer chromatography (TLC) bioautography was used to identify the active compounds in the extract, which were fractionated by column chromatography and purified by preparative TLC. The chemical structures of the purified compounds were analysed using nuclear magnetic resonance (NMR). The cytotoxicity of the extract and its active compounds was evaluated in Vero cells. RESULTS: The ethyl acetate extract exhibited distinct inhibition zones against bacteria compared to other extracts. Therefore, the ethyl acetate extract of D. bulbifera in the ethyl acetate layer was used for subsequent analyses. D. bulbifera extract exhibited antibacterial activity, with minimum inhibitory concentrations (MICs) of 0.78-1.56 mg/mL. An active compound, identified through TLC-bioautography, demonstrated enhanced antibacterial activity, with MICs of 0.02-0.78 mg/mL. NMR analysis identified this bioactive compound as flavanthrinin. Both D. bulbifera extract and flavanthrinin-containing fraction demonstrated potent antibacterial activity against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and S. epidermidis. The flavanthrinin containing fraction demonstrated low cytotoxicity against Vero cells, showing CC50 values of 0.41 ± 0.03 mg/mL. These values are lower than the MIC value, indicating that this fraction is safer than the initial ethyl acetate extract. CONCLUSIONS: Dioscorea bulbifera extract and its bioactive component flavanthrinin demonstrated significant antibacterial activity against the skin-associated bacteria Staphylococci, including MRSA. Flavanthrinin has potential as a complementary therapeutic agent for managing skin infections owing to its potent antibacterial effects and low cytotoxicity.


Subject(s)
Anti-Bacterial Agents , Dioscorea , Microbial Sensitivity Tests , Plant Extracts , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Vero Cells , Chlorocebus aethiops , Animals , Dioscorea/chemistry , Thailand , Bacteria/drug effects
2.
Food Chem ; 453: 139581, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38754354

ABSTRACT

This study investigated the impact of ultrasound treatment on dioscorin, the primary storage protein found in yam tubers. Three key factors, namely ultrasound power, duration, and frequency, were focused on. The research revealed that ultrasound-induced cavitation effects disrupted non-covalent bonds, resulting in a reduction in α-helix and ß-sheet contents, decreased thermal stability, and a decrease in the apparent hydrodynamic diameter (Dh) of dioscorin. Additionally, previously hidden amino acid groups within the molecule became exposed on its surface, resulting in increased surface hydrophobicity (Ho) and zeta-potential. Under specific ultrasound conditions (200 W, 25 kHz, 30 min), Dh decreased while Ho increased, facilitating the adsorption of dioscorin molecules onto the oil-water interface. Molecular dynamics (MD) simulations showed that at lower frequencies and pressures, the structural flexibility of dioscorin's main chain atoms increased, leading to more significant fluctuations between amino acid residues. This transformation improved dioscorin's emulsifying properties and its oil-water interface affinity.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Molecular Dynamics Simulation , Dioscorea/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Ultrasonic Waves
3.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2776-2782, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812178

ABSTRACT

This study explore the molecular mechanism of the synergistic effect of Chinese Yam polysaccharides and nucleoside analogues(NAs) on hepatitis B virus(HBV) resistance. Different concentrations of Chinese Yam polysaccharide and entecavir were ad-ded to HepG2.2.15 cells. After the cytotoxicity was detected by cell counting kit-8(CCK-8), the optimal concentration and time of the two drugs to inhibit HepG2.2.15 cells were screened out. They were divided into control group, Chinese Yam polysaccharide group, entecavir group and combination drug group(Chinese Yam polysaccharide + entecavir). The drugs were added to HepG2.2.15 cells, ELISA was used to detect the effects of each group of drugs on the secretion of hepatitis B virus surface antigen(HBsAg) and hepatitis B virus e antigen(HBeAg) in cell supernatant, probe quantitative real-time PCR(probe qRT-PCR) was used to detect the effects of drugs on HBV-DNA in HepG2.2.15 cells, and Western blot was used to detect the effects of each group of drugs on the expression of p38 MAPK, p-p38 MAPK, NTCP proteins in HepG2.2.15 cells. The qRT-PCR was used to detect the effect of drugs on the expression of p38 MAPK and NTCP mRNA in HepG2.2.15 cells. The results showed that compared with control group, the concentrations of HBeAg and HBsAg in Chinese Yam polysaccharide group, entecavir group and combination group decreased(P<0.01 or P<0.001), and both of them inhibited HBV-DNA in HepG2.2.15 cells(P<0.01), and the HBV-DNA inhibition of HepG2.2.15 cells in the combination group was more obvious(P<0.001), and the protein expression levels of p-p38 MAPK and NTCP were significantly decreased(P<0.05 or P<0.01), the mRNA expression level of p38 MAPK increased, and the mRNA expression level of NTCP decreased(P<0.05 or P<0.01). To sum up, Chinese Yam polysaccharide can reduce the expression of NTCP protein and mRNA through p38 MAPK signaling pathway and cooperate with entecavir in anti-HBV.


Subject(s)
Antiviral Agents , Dioscorea , Hepatitis B virus , Polysaccharides , p38 Mitogen-Activated Protein Kinases , Humans , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Polysaccharides/pharmacology , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Hep G2 Cells , Antiviral Agents/pharmacology , Dioscorea/chemistry , Drug Synergism , Nucleosides/pharmacology , MAP Kinase Signaling System/drug effects , Hepatitis B Surface Antigens/metabolism , Hepatitis B Surface Antigens/genetics , Hepatitis B e Antigens/metabolism , Hepatitis B/drug therapy , Hepatitis B/virology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Guanine/analogs & derivatives , Guanine/pharmacology
4.
PeerJ ; 12: e17016, 2024.
Article in English | MEDLINE | ID: mdl-38560473

ABSTRACT

WRKY transcription factors constitute one of the largest plant-specific gene families, regulating various aspects of plant growth, development, physiological processes, and responses to abiotic stresses. This study aimed to comprehensively analyze the WRKY gene family of yam (Dioscorea opposita Thunb.), to understand their expression patterns during the growth and development process and their response to different treatments of yam and analyze the function of DoWRKY71 in detail. A total of 25 DoWRKY genes were identified from the transcriptome of yam, which were divided into six clades (I, IIa, IIc, IId, IIe, III) based on phylogenetic analysis. The analysis of conserved motifs revealed 10 motifs, varying in length from 16 to 50 amino acids. Based on real-time quantitative PCR (qRT-PCR) analysis, DoWRKY genes were expressed at different stages of growth and development and responded differentially to various abiotic stresses. The expression level of DoWRKY71 genes was up-regulated in the early stage and then down-regulated in tuber enlargement. This gene showed responsiveness to cold and abiotic stresses, such as abscisic acid (ABA) and methyl jasmonate (MeJA). Therefore, further study was conducted on this gene. Subcellular localization analysis revealed that the DoWRKY71 protein was localized in the nucleus. Moreover, the overexpression of DoWRKY71 enhanced the cold tolerance of transgenic tobacco and promoted ABA mediated stomatal closure. This study presents the first systematic analysis of the WRKY gene family in yam, offering new insights for studying WRKY transcription factors in yam. The functional study of DoWRKY71 lays theoretical foundation for further exploring the regulatory function of the DoWRKY71 gene in the growth and development related signaling pathway of yam.


Subject(s)
Abscisic Acid , Dioscorea , Abscisic Acid/pharmacology , Dioscorea/genetics , Phylogeny , Stress, Physiological/genetics , Transcription Factors/genetics
5.
PLoS One ; 19(4): e0301108, 2024.
Article in English | MEDLINE | ID: mdl-38603696

ABSTRACT

This field experiment aimed to investigate the effects of different ratios of organic and inorganic fertilizers with maintaining equal nitrogen application rates on the yield, quality, and nitrogen uptake efficiency of Dioscorea polystachya (yam). Six treatments were set, including a control without fertilizer (CK), sole application of chemical fertilizer (CF), sole application of organic fertilizer (OM), 25% organic fertilizer + 75% chemical fertilizer (25%OM + 75%CF), 50% organic fertilizer + 50% chemical fertilizer (50%OM + 50%CF), and 75% organic fertilizer + 25% chemical fertilizer (75%OM + 25%CF). The experiment followed a randomized complete block design with three replications. Various yield parameters, morphology, quality indicators, and nitrogen utilization were analyzed to assess the differences among treatments. The results indicated that all fertilizer treatments significantly increased the yield, morphology, quality indicators, and nitrogen utilization efficiency compared to the control. Specifically, 25%OM + 75%CF achieved the highest yield of 31.96 t hm-2, which was not significantly different from CF (30.18 t hm-2). 25%OM + 75%CF exhibited the highest values at 69.23 cm in tuber length and 75.86% in commodity rate, 3.14% and 1.57% higher than CF respectively. Tuber thickness and fresh weight of 25%OM + 75%CF showed no significant differences from CF, while OM and 50%OM+50%CF exhibited varying degrees of reduction compared to CF. Applying fertilizer significantly enhanced total sugar, starch, crude protein, total amino acid, and ash contents of D. polystachya (except ash content between CK and OM). Applying organic fertilizer increased the total sugar, starch, crude protein, total amino acid, and ash contents in varying degrees when compared with CF. The treatment with 25%OM+75%CF exhibited the highest increases of 6.31%, 3.78%, 18.40%, 29.70%, and 10%, respectively. Nitrogen content in different plant parts followed the sequence of tuber > leaves > stems > aerial stem, with the highest nitrogen accumulation observed in 25%OM + 75%CF treatment. Nitrogen harvest index did not show significant differences among treatments, fluctuating between 0.69 and 0.74. The nitrogen apparent utilization efficiency was highest in 25%OM + 75%CF (9.89%), followed by CF (9.09%), both significantly higher than OM (5.32%) and 50%OM + 50%CF (6.69%). The nitrogen agronomic efficiency varied significantly among treatments, with 25%OM + 75%CF (33.93 kg kg-1) being the highest, followed by CF (29.68 kg kg-1), 50%OM + 50%CF (21.82 kg kg-1), and OM (11.85 kg kg-1). Nitrogen partial factor productivity was highest in 25%OM + 75%CF treatment (76.37 kg kg-1), followed by CF (72.11 kg kg-1), both significantly higher than 50%OM + 50%CF (64.25 kg kg-1) and OM (54.29 kg kg-1), with OM exhibiting significantly lower values compared to other treatments. In conclusion, the combined application of organic and inorganic fertilizers can effectively enhance the yield, quality, and nitrogen utilization efficiency of D. polystachya. Particularly, the treatment with 25% organic fertilizer and 75% chemical fertilizer showed the most promising results.


Subject(s)
Dioscorea , Soil , Soil/chemistry , Fertilizers , Agriculture/methods , Organic Chemicals , Nitrogen/metabolism , Amino Acids , Starch , Sugars
6.
PLoS One ; 19(4): e0302377, 2024.
Article in English | MEDLINE | ID: mdl-38648204

ABSTRACT

Hereditary, or vertically-transmitted, symbioses affect a large number of animal species and some plants. The precise mechanisms underlying transmission of functions of these associations are often difficult to describe, due to the difficulty in separating the symbiotic partners. This is especially the case for plant-bacteria hereditary symbioses, which lack experimentally tractable model systems. Here, we demonstrate the potential of the leaf symbiosis between the wild yam Dioscorea sansibarensis and the bacterium Orrella dioscoreae (O. dioscoreae) as a model system for hereditary symbiosis. O. dioscoreae is easy to grow and genetically manipulate, which is unusual for hereditary symbionts. These properties allowed us to design an effective antimicrobial treatment to rid plants of bacteria and generate whole aposymbiotic plants, which can later be re-inoculated with bacterial cultures. Aposymbiotic plants did not differ morphologically from symbiotic plants and the leaf forerunner tip containing the symbiotic glands formed normally even in the absence of bacteria, but microscopic differences between symbiotic and aposymbiotic glands highlight the influence of bacteria on the development of trichomes and secretion of mucilage. This is to our knowledge the first leaf symbiosis where both host and symbiont can be grown separately and where the symbiont can be genetically altered and reintroduced to the host.


Subject(s)
Dioscorea , Plant Leaves , Symbiosis , Dioscorea/microbiology , Dioscorea/genetics , Plant Leaves/microbiology
7.
Int J Biol Macromol ; 267(Pt 2): 131597, 2024 May.
Article in English | MEDLINE | ID: mdl-38621567

ABSTRACT

The objective of this study was to compare the structural and functional attributes of Chinese yam starches obtained via different domestic cooking methods. Cooking changed the crystalline type from the C type to the CB type, and disrupted the short- and long-range molecular order of Chinese yam starch. The average chain length of amylopectin in BOS (boiling starch) was the smallest at 22.78, while RWS had the longest average chain length, reaching 24.24. These alterations in molecular structure resulted in variations in functional properties such as solubility, swelling power (SP), pasting characteristics, and rheological properties. Among these alterations, boiling was the most effective method for increasing the water-binding capacity and SP of starch. Specifically, its water holding capacity was 2.12 times that of RWS. In vitro digestion experiments indicated that BOS has a higher digestion rate (k = 0.0272 min-1) and lower RDS (rapidly digestible starch), which may be related to its amylopectin chain length distribution. This study can guide us to utilize yam starch through suitable cooking methods, which is relevant for the processing and application of Chinese yam starch.


Subject(s)
Cooking , Dioscorea , Starch , Cooking/methods , Starch/chemistry , Dioscorea/chemistry , Digestion , Solubility , Amylopectin/chemistry , Rheology , Water/chemistry
8.
Nutrients ; 16(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38613011

ABSTRACT

Chinese yam is a "medicine food homology" food with medical properties, but little is known about its health benefits on hyperlipidemia. Furthermore, the effect of peeling processing on the efficacy of Chinese yam is still unclear. In this study, the improvement effects of whole Chinese yam (WY) and peeled Chinese yam (PY) on high-fat-diet (HFD)-induced hyperlipidemic mice were explored by evaluating the changes in physiological, biochemical, and histological parameters, and their modulatory effects on gut microbiota were further illustrated. The results show that both WY and PY could significantly attenuate the HFD-induced obesity phenotype, accompanied by the mitigative effect on epididymis adipose damage and hepatic tissue injury. Except for the ameliorative effect on TG, PY retained the beneficial effects of WY on hyperlipemia. Furthermore, 16S rRNA sequencing revealed that WY and PY reshaped the gut microbiota composition, especially the bloom of several beneficial bacterial strains (Akkermansia, Bifidobacterium, and Faecalibaculum) and the reduction in some HFD-dependent taxa (Mucispirillum, Coriobacteriaceae_UCG-002, and Candidatus_Saccharimonas). PICRUSt analysis showed that WY and PY could significantly regulate lipid transport and metabolism-related pathways. These findings suggest that Chinese yam can alleviate hyperlipidemia via the modulation of the gut microbiome, and peeling treatment had less of an effect on the lipid-lowering efficacy of yam.


Subject(s)
Dioscorea , Gastrointestinal Microbiome , Hyperlipidemias , Male , Animals , Mice , Diet, High-Fat/adverse effects , RNA, Ribosomal, 16S/genetics , Obesity , Lipids
9.
Plant Cell Rep ; 43(4): 95, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472393

ABSTRACT

KEY MESSAGE: Both bacterial and fungal endophytes exhibited one or more plant growth-promoting (PGP) traits. Among these strains, the Paenibacillus peoriae SYbr421 strain demonstrated the greatest activity in the direct biotransformation of tuber powder from D. nipponica into diosgenin. Endophytes play crucial roles in shaping active metabolites within plants, significantly influencing both the quality and yield of host plants. Dioscorea nipponica Makino accumulates abundant steroidal saponins, which can be hydrolyzed to produce diosgenin. However, our understanding of the associated endophytes and their contributions to plant growth and diosgenin production is limited. The present study aimed to assess the PGP ability and potential of diosgenin biotransformation by endophytes isolates associated with D. nipponica for the efficient improvement of plant growth and development of a clean and effective approach for producing the valuable drug diosgenin. Eighteen bacterial endophytes were classified into six genera through sequencing and phylogenetic analysis of the 16S rDNA gene. Similarly, 12 fungal endophytes were categorized into 5 genera based on sequencing and phylogenetic analysis of the ITS rDNA gene. Pure culture experiments revealed that 30 isolated endophytic strains exhibited one or more PGP traits, such as nitrogen fixation, phosphate solubilization, siderophore synthesis, and IAA production. One strain of endophytic bacteria, P. peoriae SYbr421, effectively directly biotransformed the saponin components in D. nipponica. Moreover, a high yield of diosgenin (3.50%) was obtained at an inoculum size of 4% after 6 days of fermentation. Thus, SYbr421 could be used for a cleaner and more eco-friendly diosgenin production process. In addition, based on the assessment of growth-promoting isolates and seed germination results, the strains SYbr421, SYfr1321, and SYfl221 were selected for greenhouse experiments. The results revealed that the inoculation of these promising isolates significantly increased the plant height and fresh weight of the leaves and roots compared to the control plants. These findings underscore the importance of preparing PGP bioinoculants from selected isolates as an additional option for sustainable diosgenin production.


Subject(s)
Dioscorea , Diosgenin , Endophytes/genetics , Endophytes/metabolism , Dioscorea/genetics , Dioscorea/microbiology , Diosgenin/metabolism , Phylogeny , Plant Roots , DNA, Ribosomal/metabolism
10.
Int J Biol Macromol ; 265(Pt 2): 130521, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38553396

ABSTRACT

Obesity was considered as a rapidly growing chronic disease that influences human health worldwide. In this study, we investigated the primary structure characteristics of Chinese yam polysaccharide (CYP) and its role in regulating lipid metabolism in a high-fat diet (HFD)-fed obese mice. The molecular weight of CYP was determined to be 3.16 × 103 kDa. Periodic acid oxidation & smith degradation and nuclear magnetic resonance results suggested that CYP consists of 1 → 2, 1 â†’ 2, 6, 1 â†’ 4, 1 â†’ 4, 6, 1→, or 1 â†’ 6 glycoside bonds. The in vivo experiment results suggested that the biochemical indices, tissue sections, and protein regulation associated with lipid metabolism were changed after administering CYP in obese mice. In addition, the abundances of short-chain fatty acid (SCFA)-producing bacteria Lachnospiraceae, Lachnospiraceae_NK4A136_group, and Ruminococcaceae_UCG-014 were increased, and the abundances of bacteria Desulfovibrionaceae and Ruminococcus and metabolites of arginine, propionylcarnitine, and alloisoleucine were decreased after CYP intervention in obese mice. Spearman's correlation analysis of intestinal flora, metabolites, and lipid metabolism parameters showed that CYP may affect lipid metabolism in obese mice by regulating the intestinal environment. Therefore, CYP may be used as a promising nutritional intervention agent for lipid metabolism.


Subject(s)
Diet, High-Fat , Dioscorea , Mice , Humans , Animals , Diet, High-Fat/adverse effects , Mice, Obese , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism , Lipid Metabolism , Polysaccharides/pharmacology
11.
Food Chem ; 446: 138897, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38430768

ABSTRACT

Yam (Dioscorea) is a tuber crop cultivated for food security, revenue, and medicinal purposes. It has been used to treat diabetes, asthma, diarrhea, and other diseases. The main active ingredients in yam, polysaccharides, are regarded to be the important reason for its widespread applications. Now, a comprehensive review of research developments of yam polysaccharides (YPs) was presented to explore their prospects. We outlined the structural characteristics, biological activities, structure-activity relationships, and potential applications. Around 13 neutral components and 17 acidic components were separated. They exhibited various bioactivities, including immunomodulatory, hypoglycemic, hypolipidemic, antioxidant, gastrointestinal protective, anti-fatigue, and senile disease treatment activities, as well as prebiotic effect. Structure-activity relationships illustrated that unique structural properties, chemical modifications, and carried biopolymers could influence the bioactivities of YPs. The potential applications in medicine, food, and other fields have also been summarized.


Subject(s)
Dioscorea , Dioscorea/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Hypoglycemic Agents
12.
Int J Biol Macromol ; 264(Pt 1): 130461, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428767

ABSTRACT

This paper investigated the effects of twin-screw extrusion treatment on the formation, structure and properties of yam starch-gallic acid complexes. Yam starch and gallic acid were extruded. The microstructure, gelatinization characteristics, and rheological properties of the samples were determined. The microstructure of extruded yam starch-gallic acid complexes presented a rough granular morphology, low swelling, and high solubility. The X-ray diffraction analysis showed that the extruded yam starch-gallic acid complexes exhibited A + V-type crystalline structure. Fourier transform infrared spectroscopy results showed that the extrusion treatment could destroy the internal orderly structure of yam starch, and the addition of gallic acid could further reduce its molecular orderliness. Differential scanning calorimetry analysis showed a decrease in the enthalpy of gelatinization of the sample. Dynamic rheological analysis showed that the storage modulus and loss modulus of the extruded yam starch-gallic acid complexes were significantly reduced, exhibiting a weak gel system. The results of viscosity showed that extrusion synergistic gallic acid reduced the peak viscosity and setback value of starch. In addition, extrusion treatment had an inhibitory effect on the digestibility of yam starch, and enhanced the interaction of gallic acid with yam starch or hydrolytic enzymes. Therefore, extrusion synergistic gallic acid has improved the structure and properties of yam starch-related products, which can provide new directions and new ideas for the development of yam starch.


Subject(s)
Dioscorea , Starch , Starch/chemistry , Dioscorea/chemistry , Solubility , Hydrolysis , Viscosity
13.
PLoS One ; 19(3): e0298896, 2024.
Article in English | MEDLINE | ID: mdl-38507346

ABSTRACT

Starch residue analysis was carried out on stone tools recovered from the bottom layer of the Anakena site on Rapa Nui (Easter Island). These deposits have been dated to AD 1000-1300 AD and so far, represent the earliest evidence of human settlement on this island. Twenty obsidian tools were analyzed. Analysis of 46 starch grains recovered from 20 obsidian tools from the earliest dated level of the Anakena site on Rapa Nui provides direct evidence for translocation of traditional crop plants at initial stages of the colonization of this island. The analysis of starch grains was based mainly on statistical methods for species identification but was complemented by visual inspection in some cases. Our results identify taxons previously unknown to have been cultivated on the island, such as breadfruit (Artocarpus altilis), Zingiber officinale (ginger), and starch grains of the Spondias dulcis and Inocarpus fagifer tropical trees. Additionally, starch grains of Colocasia esculenta (taro) and Dioscorea sp. (yam), both common species in Pacific agriculture, were identified. Furthermore, the presence of four American taxa Ipomoea batatas (sweet potato), Canna sp. (achira), Manihot esculenta (manioc), and Xanthosoma sp., was detected. The occurrence of Canna sp., M. esculenta, and Xanthosoma sp. starch grains suggests the translocation of previously not described South American cultivars into the Pacific. The detection of I. batatas from this site in Rapa Nui constitutes the earliest record of this cultigen in the Pacific. Our study provides direct evidence for translocation of a set of traditional Polynesian and South American crop plants at the initial stages of colonization in Rapa Nui.


Subject(s)
Artocarpus , Dioscorea , Ipomoea batatas , Humans , Starch , Racial Groups , Crops, Agricultural , South America
14.
Int J Biol Macromol ; 265(Pt 1): 130734, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462105

ABSTRACT

The purified polysaccharides fraction, DOP-2, was prepared from Dioscorea opposita Thunb (D. opposita). This study combined in vitro and in vivo experiments to comprehensively investigate the index changes in RAW264.7 cells and immunocompromised mice under DOP-2 intervention, aiming to elucidate the potential mechanisms of immunomodulatory effects of DOP-2. DOP-2 (10 âˆ¼ 500 µg/mL) significantly elevated the levels of NO, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) factors secreted by RAW264.7 cells, and restored the body weight of immunosuppressed mice and improve the degree of injury to the immune organ index, resulting in significant immunomodulatory effects. Notably, DOP-2 promoted the production of short-chain fatty acids (SCFAs) in immunosuppressed mice and modulated the composition of their gut microflora. These findings highlight the potential benefits of DOP-2 therapy in improving immune function and gut health, and will provide a theoretical basis for the application of D. opposita polysaccharides as an immunomodulatory adjuvant.


Subject(s)
Dioscorea , Polysaccharides , Mice , Animals , Polysaccharides/pharmacology , Polysaccharides/chemistry , Immunomodulation , Dioscorea/chemistry , Tumor Necrosis Factors , Immunity
15.
J Ethnopharmacol ; 329: 118069, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552992

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Dioscorea, a member of the Dioscoreaceae family, comprises approximately 600 species and is widely distributed across temperate and tropical regions such as Asia, South Africa, and North America. The traditional medicinal uses of Dioscorea have been documented in Asian and African pharmacological systems. In Asia, this genus is traditionally used to treat respiratory illnesses, rheumatism, diabetes, diarrhea, dysentery, and other conditions. In Africa, this genus has been used to treat human immunodeficiency virus and ring worms. However, the traditional medicinal practices in North America rarely mention the use of this genus. AIM OF THE STUDY: The aim of this review is to comprehensively review the genus Dioscorea, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. The research also aims to highlight the valuable bioactive compounds within Dioscorea and emphasize the need for further investigations into acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors to contribute to the discovery of novel pharmaceuticals. MATERIALS AND METHODS: A search for available information on Dioscorea was conducted using scientific databases, including PubMed, ISI-WOS, Scopus, and Google Scholar, as well as recent academic publications from reputable publishers and other literature sources. The search was not limited by language and spanned the literature published between 1950 and 2022. RESULTS: This article provides a comprehensive review of the Dioscorea genus, focusing on its traditional uses, phytochemical constituents, pharmacological activities, and potential toxicities. Extensive research has been conducted on this genus, resulting in the isolation and examination of over 1000 compounds, including steroids, terpenoids, and flavonoids, to determine their biological activities. These activities include anti-tumor, anti-inflammatory, immunomodulatory, neuroprotective, hypoglycemic, and hypolipidemic effects. However, some studies have indicated the potential toxicity of high doses of Dioscorea, highlighting the need for further investigations to assess the safety of this genus. Additionally, this review explores potential avenues for future research and discusses the challenges associated with a comprehensive understanding of the Dioscorea genus. CONCLUSIONS: Based on the existing literature, it can be concluded that Dioscorea is a valuable source of bioactive compounds that have the potential to treat various disorders. Future research should prioritize the investigation of acute and chronic toxicity, activity mechanisms, molecular markers, and other relevant factors. This review provides a comprehensive analysis of the Dioscorea genus, emphasizing its potential to enable a deeper exploration of the biological activity mechanisms of these plants and contribute to the discovery of novel pharmaceuticals.


Subject(s)
Dioscorea , Ethnopharmacology , Medicine, Traditional , Phytochemicals , Humans , Dioscorea/chemistry , Phytochemicals/pharmacology , Phytochemicals/toxicity , Phytochemicals/chemistry , Animals , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Extracts/chemistry , Plant Extracts/therapeutic use
16.
BMC Genomics ; 25(1): 248, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443859

ABSTRACT

BACKGROUND: Quality traits are essential determinants of consumer preferences. Dioscorea alata (Greater Yam), is a starchy tuber crop in tropical regions. However, a comprehensive understanding of the genetic basis underlying yam tuber quality remains elusive. To address this knowledge gap, we employed population genomics and candidate gene association approaches to unravel the genetic factors influencing the quality attributes of boiled yam. METHODS AND RESULTS: Comparative genomics analysis of 45 plant species revealed numerous novel genes absent in the existing D. alata gene annotation. This approach, adding 48% more genes, significantly enhanced the functional annotation of three crucial metabolic pathways associated with boiled yam quality traits: pentose and glucuronate interconversions, starch and sucrose metabolism, and flavonoid biosynthesis. In addition, the whole-genome sequencing of 127 genotypes identified 27 genes under selection and 22 genes linked to texture, starch content, and color through a candidate gene association analysis. Notably, five genes involved in starch content and cell wall composition, including 1,3-beta Glucan synthase, ß-amylase, and Pectin methyl esterase, were common to both approaches and their expression levels were assessed by transcriptomic data. CONCLUSIONS: The analysis of the whole-genome of 127 genotypes of D. alata and the study of three specific pathways allowed the identification of important genes for tuber quality. Our findings provide insights into the genetic basis of yam quality traits and will help the enhancement of yam tuber quality through breeding programs.


Subject(s)
Dioscorea , Dioscorea/genetics , Plant Breeding , Genomics , Phenotype , Starch
17.
Int J Biol Macromol ; 263(Pt 2): 130244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387638

ABSTRACT

Oxidative stress disorders and diseases caused by drug-resistant bacteria have emerged as significant public health concerns. Plant-based medications like protease inhibitors are growing despite adverse effects therapies. Consecutively, in this study, trypsin inhibitors from Dioscorea bulbifera L. (DbGTi trypsin inhibitor) ground tubers were isolated, purified, characterized, and evaluated for their potential cytotoxicity, antibacterial, and antioxidant activities. DbGTi protein was purified by Q-Sepharose matrix, followed by trypsin inhibitory activity. The molecular weight of the DbGTi protein was found to be approximately 31 kDa by SDS-PAGE electrophoresis. The secondary structure analysis by circular dichroism (CD) spectroscopy revealed that the DbGTi protein predominantly comprises ß sheets followed by α helix. DbGTi protein showed competitive type of inhibition with Vmax = 2.1372 × 10-1 µM/min, Km = 1.1805 × 102 µM, & Ki = 8.4 × 10-9 M and was stable up to 70 °C. DbGTi protein exhibited 58 % similarity with Dioscorin protein isolated from Dioscorea alata L. as revealed by LC-MS/MS analysis. DbGTi protein showed a non-toxic effect, analyzed by MTT, Haemolytic assay and in vivo studies on zebrafish model. DbGTi protein significantly inhibited K. pneumoniae and has excellent antioxidant properties, confirmed by various antioxidant assays. The results of anti-microbial, cytotoxicity and antioxidant assays demonstrate its bioactive potential and non-toxic nature.


Subject(s)
Antioxidants , Dioscorea , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Trypsin Inhibitors/pharmacology , Zebrafish , Dioscorea/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Trypsin/metabolism
18.
J Ethnobiol Ethnomed ; 20(1): 13, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308263

ABSTRACT

BACKGROUND: In Babitonga Bay, southern Brazil, records of yam consumption exist among shellmound builders from at least 4000 years ago. Shellmounds (sambaquis) are anthropogenic structures in the form of mounds with layers of shells associated with other faunal remains, as well as with charcoal, artefacts and burial. Larger sambaquis are considered to be funerary monuments. The indigenous Jê and Guarani people also lived in the region before the European invasion and cultivated yams. Currently, exotic and domesticated yams are cultivated in the region by farmers. Our aim is to describe the long-term history between the people and Dioscorea in the Babitonga Bay region based on its consumption and occurrence in shellmounds and swiddens. METHODS: Surveys of Dioscorea spp. and host were carried out in the vegetation of shellmounds and in the surrounding area using visual detection through intensive searches in transects using the walking method. The survey of Dioscorea species used and cultivated in the precolonial, colonial and current periods was carried out based on the literature. In the present study, only Dioscorea trifida cultivations were recorded. RESULTS: Dioscorea cayennensis, Dioscorea chondrocarpa, Dioscorea dodecaneura, Dioscorea laxiflora, Dioscorea olfersiana, and Dioscorea scabra, all recorded in associated vegetation of shellmounds, in different combinations of the species. In swiddens, D. trifida is most common, followed by Dioscorea alata and, to a lesser extent, Dioscorea bulbifera and D. cayennensis. Records of food use prevail, but they are used as medicinal plants. Yams are integrated on anthropogenic soils of shellmounds and in swiddens in monoculture systems or in intercropping with Zea mays or Colocasia esculenta. The presence of exotic food trees and D. cayennensis in some shellmounds indicates the influence of colonizers on the composition of the vegetation. In sambaquis, there are overlapping processes of construction of cultural niches by different human groups at different times. CONCLUSIONS: The sambaquis and the associated vegetation and swiddens form part of a domesticated landscape. The native species of Dioscorea recorded in shellmounds and surrounding vegetation do not depend on human action to perpetuate themselves in the environment. However, this does not rule out human influence in the past, but it does not indicate horticulture among the Sambaquianos. Greater investment in genetic, archaeobotanical and ethnobotanical research can contribute to a better understanding of the relationship between people and yams over thousands of years.


Subject(s)
Dioscorea , Indians, South American , Plants, Medicinal , Brazil , Ethnobotany
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123956, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38301571

ABSTRACT

Portable Raman spectroscopy coupled with partial least squares regression (PLSR) model was performed for monitoring and predicting four quality indicators, moisture content, water activity, polysaccharide content and microbial content of the fresh-cut Chinese yam at different storage temperatures. The variations in the four key indicators were first depicted through a spider web diagram as the storage temperature changed. More importantly, the four key indicators can be accurately monitored and predicted through optimized PLSR models combining with Raman spectroscopy. Among all of the PLSR models for the four indicators, the regression model for moisture content was relatively the best. In addition, storage temperature played a significant role on the model performance of PLSR. The model performance for all indicators at room temperature and high temperature was better than the corresponding PLSR models at refrigeration and freezing conditions. Especially at 25 ℃, the R2 in the calibration set basically reached 0.9. These observations indicated that portable Raman spectroscopy, a simple and easy-to-use detection technique, can monitor and predict the multiple quality indicators of fresh-cut Chinese yam combined with effectively PLSR model, which would be conducive to their applications in food industry.


Subject(s)
Dioscorea , Least-Squares Analysis , Temperature , Spectrum Analysis, Raman
20.
J Sep Sci ; 47(3): e2300741, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38356225

ABSTRACT

In the present study, twelve compounds from Dioscorea spongiosa were successfully purified by an efficient technique combined bioassay-guided fractionation macroporous resin column chromatography (MRCC) pretreatment and high-speed counter-current chromatography (HSCCC) separation for the first time. Then, D101 MRCC was used to fractionate the crude extract into five parts, which further applied the bioassay-guided fractionation strategy to screen the active fractions of 2 and 4. As for the separation, 200 mg Fr.2 was purified by HSCCC using EtOAc/n-BuOH/H2 O (2:2:3, v/v), leading to annulatomarin (1), dioscoresides C (2), diosniponol C (3), methyl protodioscin (4), pseudoprotodioscin (5), protogracillin (6), as well as 200 mg Fr.4 yielding montroumarin (7), dioscorone A (8), diosniponol D (9), protodioscin (10), gracillin (11), and dioscin (12) using CH2 Cl2 /MeOH/H2 O (3:3:2, v/v) with the purities over 95.0%. Finally, the isolates were assayed for their anti-inflammatory, urico-lowering, and anti-diabetic activities in vitro, which indicated that the steroidal saponins of 5, 6, and 11 showed all these three activities.


Subject(s)
Countercurrent Distribution , Dioscorea , Countercurrent Distribution/methods , Dioscorea/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Biological Assay , Chromatography, High Pressure Liquid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...