Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 429
Filter
1.
Arq Neuropsiquiatr ; 82(5): 1-8, 2024 May.
Article in English | MEDLINE | ID: mdl-38763144

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCL) are a group of autosomal recessive, inherited, lysosomal, and neurodegenerative diseases that causes progressive dementia, seizures, movement disorders, language delay/regression, progressive visual failure, and early death. Neuronal ceroid lipofuscinosis type 2 (CLN2), caused by biallelic pathogenic variants of the TPP1 gene, is the only NCL with an approved targeted therapy. The laboratory diagnosis of CLN2 is established through highly specific tests, leading to diagnostic delays and eventually hampering the provision of specific treatment for patients with CLN2. Epilepsy is a common and clinically-identifiable feature among NCLs, and seizure onset is the main driver for families to seek medical care. OBJECTIVE: To evaluate the results of the Latin America Epilepsy and Genetics Program, an epilepsy gene panel, as a comprehensive tool for the investigation of CLN2 among other genetic causes of epilepsy. METHODS: A total of 1,284 patients with epilepsy without a specific cause who had at least 1 symptom associated with CLN2 were screened for variants in 160 genes associated with epilepsy or metabolic disorders presenting with epilepsy through an epilepsy gene panel. RESULTS: Variants of the TPP1 gene were identified in 25 individuals (1.9%), 21 of them with 2 variants. The 2 most frequently reported variants were p.Arg208* and p.Asp276Val, and 2 novel variants were detected in the present study: p.Leu308Pro and c.89 + 3G > C Intron 2. CONCLUSION: The results suggest that these genetic panels can be very useful tools to confirm or exclude CLN2 diagnosis and, if confirmed, provide disease-specific treatment for the patients.


ANTECEDENTES: As lipofuscinoses ceroides neuronais (neuronal ceroid lipofuscinoses, NCLs, em inglês) são um grupo de doenças autossômicas recessivas, hereditárias, lisossomais e neurodegenerativas que causam demência progressiva, crises epiléticas, distúrbios de movimento, atraso/regressão da linguagem, deficiência visual progressiva e morte precoce. A lipofuscinose ceroide neuronal tipo 2 (neuronal ceroid lipofuscinosis type 2, CLN2, em inglês), causada por variantes patogênicas bialélicas do gene TPP1, é a única com terapia-alvo aprovada. O diagnóstico laboratorial é realizado por testes específicos, o que leva a atrasos diagnósticos e, consequentemente, prejudica a disponibilização de tratamento. A epilepsia é uma característica comum e clinicamente identificável entre as NCLs, e o início das convulsões é o principal motivo para as famílias buscarem atendimento médico. OBJETIVO: Avaliar os resultados do Programa de Epilepsia e Genética da América Latina, um painel genético, como uma ferramenta abrangente para a investigação de CLN2 entre outras causas genéticas de epilepsia. MéTODOS: Um total de 1.284 pacientes com epilepsia sem uma causa específica e que tinham pelo menos 1 sintoma associado à CLN2 foram rastreados em busca de variantes em 160 genes associados à epilepsia ou a distúrbios metabólicos que apresentam epilepsia, por meio de um painel genético. RESULTADOS: Variantes do gene TPP1 foram identificadas em 25 indivíduos (1,9%), sendo que ; 21 apresentavam duas variantes. As duas variantes mais frequentes foram p.Arg208* e p.Asp276Val, e duas variantes novas foram detectadas neste: p.Leu308Pro e c.89 + 3G > C Intron 2. CONCLUSãO: Os resultados sugerem que os painéis genéticos de epilepsia podem ser uma ferramenta útil para confirmar ou excluir o diagnóstico de CLN2 e, se confirmado, fornecer tratamento específico para os pacientes.


Subject(s)
Aminopeptidases , Epilepsy , Neuronal Ceroid-Lipofuscinoses , Serine Proteases , Tripeptidyl-Peptidase 1 , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Female , Male , Epilepsy/genetics , Aminopeptidases/genetics , Serine Proteases/genetics , Child , Adolescent , Adult , Young Adult , Child, Preschool , Telomere-Binding Proteins/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Mutation , Genetic Testing/methods , Middle Aged , Infant
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 805-818, 2024 05 25.
Article in English | MEDLINE | ID: mdl-38655619

ABSTRACT

DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Carcinogenesis , Cell Proliferation , Fatty Acid Synthase, Type I , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Fatty Acid Synthase, Type I/metabolism , Fatty Acid Synthase, Type I/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Apoptosis/genetics , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , MCF-7 Cells
3.
Pediatr Neurol ; 155: 149-155, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38653183

ABSTRACT

BACKGROUND: Neuronal ceroid lipofuscinoses (NCLs) represent a heterogeneous group of inherited metabolic lysosomal disorders characterized by neurodegeneration. This study sought to describe the clinical and molecular characteristics of NCLs in Saudi Arabia and determine the most common types in that population. METHODS: A retrospective review of electronic medical records was conducted for 63 patients with NCL (55 families) from six tertiary and referral centers in Saudi Arabia between 2008 and 2022. Clinical, radiological, and neurophysiological data as well as genetic diagnoses were reviewed. RESULTS: CLN6 was the predominant type, accounting for 45% of cases in 25 families. The most common initial symptoms were speech delay (53%), cognitive decline (50%) and/or gait abnormalities (48%), and seizure (40%). Behavioral symptomatology was observed in 20%, whereas visual impairment was less frequently (9.3%) encountered. Diffuse cerebral and cerebellar atrophy was the predominant finding on brain magnetic resonance imaging. Electroencephalography generally revealed background slowing in all patients with generalized epileptiform discharges in 60%. The most common genotype detected was the p.Ser265del variant found in 36% (20 of 55 families). The most rapidly progressive subtypes were CLN2 and CLN6. Two patients with each died at age five years. The earliest age at which a patient was nonambulatory was two years in a patient with CLN14. CONCLUSIONS: This is the largest molecularly confirmed NCL cohort study from Saudi Arabia. Characterizing the natural history of specific NLC types can increase understanding of the underlying pathophysiology and distinctive genotype-phenotype characteristics, facilitating early diagnosis and treatment initiation as well as genetic counseling for families.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Humans , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/physiopathology , Neuronal Ceroid-Lipofuscinoses/diagnosis , Saudi Arabia , Male , Female , Child , Child, Preschool , Retrospective Studies , Adolescent , Membrane Proteins/genetics , Infant , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Young Adult , Magnetic Resonance Imaging
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38531482

ABSTRACT

The cytosolic dipeptidyl-aminopeptidase 9 (DPP9) cleaves protein N-termini post-proline or -alanine. Our analysis of DPP9 mRNA expression from the TCGA 'breast cancer' data set revealed that low/intermediate DPP9 levels are associated with poor overall survival of breast cancer patients. To unravel the impact of DPP9 on breast cancer development and progression, the transgenic MMTV-PyMT mouse model of metastasizing breast cancer was used. In addition, tissue- and time-controlled genetic deletion of DPP9 by the Cre-loxP recombination system was done. Despite a delay of tumor onset, a higher number of lung metastases were measured in DPP9-deficient mice compared to controls. In human mammary epithelial cells with oncogenic RAS pathway activation, DPP9 deficiency delayed tumorigenic transformation and accelerated TGF-ß1 induced epithelial-to-mesenchymal transition (EMT) of spheroids. For further analysis of the mechanism, primary breast tumor cells were isolated from the MMTV-PyMT model. DPP9 deficiency in these cells caused cancer cell migration and invasion accompanied by EMT. In absence of DPP9, the EMT transcription factor ZEB1 was stabilized due to insufficient degradation by the proteasome. In summary, low expression of DPP9 appears to decelerate mammary tumorigenesis but favors EMT and metastasis, which establishes DPP9 as a novel dynamic regulator of breast cancer initiation and progression.


Subject(s)
Breast Neoplasms , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Epithelial-Mesenchymal Transition , Animals , Humans , Female , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Mice , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , Carcinogenesis/pathology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Lung Neoplasms/metabolism , Neoplasm Metastasis , Gene Expression Regulation, Neoplastic , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Cell Line, Tumor , Mice, Knockout , Mice, Transgenic
5.
Metab Brain Dis ; 39(4): 545-558, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38185715

ABSTRACT

Neuronal ceroid-lipofuscinosis (NCLs) are a group of severe neurodegenerative conditions, most likely present in infantile, late infantile, juvenile, and adult-onset forms. Their phenotypic characteristics comprise eyesight damage, reduced motor activity and cognitive function, and sometimes tend to die in the initial stage. In recent studies, NCLs have been categorized into at least 14 genetic collections (CLN1-14). CLN2 gene encodes Tripeptidyl peptidase 1 (TPP1), which affects late infantile-onset form. In this study, we retrieved a mutational dataset screening for TPP1 protein from various databases (ClinVar, UniProt, HGMD). Fifty-six missense mutants were enumerated with computational methods to perceive the significant mutants (G475R and G501C) and correlated with clinical and literature data. A structure-based screening method was initiated to understand protein-ligand interaction and dynamic simulation. The docking procedure was performed for the native (3EDY) and mutant (G473R and G501C) structures with Gemfibrozil (gem), which lowers the lipid level, decreases the triglycerides amount in the blood circulation, and controls hyperlipidemia. The Native had an interaction score of -5.57 kcal/mol, and the mutants had respective average binding scores of -6.24 (G473R) and - 5.17 (G501C) kcal/mol. Finally, molecular dynamics simulation showed that G473R and G501C mutants had better flexible and stable orientation in all trajectory analyses. Therefore, this work gives an extended understanding of both functional and structural levels of influence for the mutant form that leads to NCL disorder.


Subject(s)
Aminopeptidases , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Mutation, Missense , Neuronal Ceroid-Lipofuscinoses , Serine Proteases , Tripeptidyl-Peptidase 1 , Neuronal Ceroid-Lipofuscinoses/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Serine Proteases/genetics , Humans , Aminopeptidases/genetics , Molecular Dynamics Simulation , Molecular Docking Simulation
6.
Reprod Domest Anim ; 59(1): e14497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37917556

ABSTRACT

Milk production traits as the most important economic traits of dairy cows, they directly reflect the benefits of breeding and the economic benefits of pasture. In this study, A disintegrin and metalloproteinase-12 (ADAM12), Parkinson's disease gene 2 (PRKN) and dipeptidyl peptidase-like protein subtype 6 (DPP6) polymorphism in 384 Chinese Holstein cows were detected by time-of-flight mass spectrometry and through statistical analysis using software such as Popgene 32, SAS 9.4 and Origin 2022, the relationship between single nucleotide polymorphisms (SNPs) of three genes with four milk production traits such as daily milk yield (DMY), milk fat percentage (MFP), milk protein percentage (MPP) and somatic cell score (SCS) was verified at molecular level. The results showed that four polymorphic loci (116,467,133, 116,604,487, 116,618,268 and 116,835,111) of DPP6 gene, two polymorphic loci (97,665,052 and 97,159,837) of PRKN gene and two polymorphic loci (45,542,714 and 45,553,888) of ADAM12 gene were detected. PRKN-97665052, DPP6-116467133, ADAM12-45553888, DPP6-116604487 and DPP6-116835111 were all in Hardy-Weinberg equilibrium state (p > .05). ADAM12-45542714, PRKN-97159837 and PRKN-97665052 were moderately polymorphic (0.25 ≤ PIC <0.50) in Holstein. It is evident that the selection potential and genetic variation of these five loci are relatively large, and the genetic richness is relatively high. The correlation analysis of different genotypes between these eight loci and milk production traits of Holstein showed that ADAM12-45542714 and DPP6-116835111 (p < .01) had an extremely significant effects on the DMY of Chinese Holstein in Ningxia, while PRKN-97665052 had an extremely significant effect on MFP (p < .01). The effect of PRKN-97665052 and DPP6-116467133 on MPP of Holstein were extremely significant (p < .01). DPP6-116618268 had an extremely significant effect on the SCS of Holstein in Ningxia (p < .01), and AA genotype individuals showed a higher SCS than GG genotype individuals; the other two loci (ADAM12-45553888 and DPP6-116604487) had no significant effects on milk production traits of Holstein (p > .05). In addition, through the joint analysis of DPP6, PRKN and ADAM12 gene loci, it was found that the interaction effect between the three gene loci could significantly affect the DMY, SCS (p < .01) and MPP (p < .05). In conclusion, several different loci of DPP6, PRKN and ADAM12 genes can affect the milk production traits of Holstein to different degrees. PRKN, DPP6 and ADAM12 genes can be used as potential candidate genes for milk production traits of Holstein for marker-assisted selection, providing theoretical basis for breeding of Holstein.


Subject(s)
Lactation , Milk , Polymorphism, Single Nucleotide , Animals , Cattle/genetics , Female , Humans , ADAM12 Protein/genetics , ADAM12 Protein/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/analysis , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Genotype , Lactation/genetics , Milk/chemistry , Milk Proteins , Nerve Tissue Proteins/analysis , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Phenotype , Potassium Channels/analysis , Potassium Channels/genetics , Potassium Channels/metabolism , Proteins/metabolism , Ubiquitin-Protein Ligases/genetics
7.
Mol Genet Metab ; 140(4): 107713, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922835

ABSTRACT

Neuronal ceroid lipofuscinosis type 2 (CLN2) is an autosomal recessive neurodegenerative disorder with enzyme replacement therapy available. We present two siblings with a clinical diagnosis of CLN2 disease, but no identifiable TPP1 variants after standard clinical testing. Long-read sequencing identified a homozygous deep intronic variant predicted to affect splicing, confirmed by clinical DNA and RNA sequencing. This case demonstrates how traditional laboratory assays can complement emerging molecular technologies to provide a precise molecular diagnosis.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Humans , Serine Proteases/genetics , Aminopeptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neuronal Ceroid-Lipofuscinoses/genetics
8.
Cancer Res ; 83(23): 3940-3955, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37713596

ABSTRACT

The KEAP1-NRF2 axis is the principal regulator of cellular responses to oxidative and electrophilic stressors. NRF2 hyperactivation is frequently observed in many types of cancer and promotes cancer initiation, progression, metastasis, and resistance to various therapies. Here, we determined that dipeptidyl peptidase 9 (DPP9) is a regulator of the KEAP1-NRF2 pathway in clear cell renal cell carcinoma (ccRCC). DPP9 was markedly overexpressed at the mRNA and protein levels in ccRCC, and high DPP9 expression levels correlated with advanced tumor stage and poor prognosis in patients with ccRCC. Protein affinity purification to identify functional partners of DPP9 revealed that it bound to KEAP1 via a conserved ESGE motif. DPP9 disrupted KEAP1-NRF2 binding by competing with NRF2 for binding to KEAP1 in an enzyme-independent manner. Upregulation of DPP9 led to stabilization of NRF2, driving NRF2-dependent transcription and thereby decreasing cellular reactive oxygen species levels. Moreover, DPP9 overexpression suppressed ferroptosis and induced resistance to sorafenib in ccRCC cells, which was largely dependent on the NRF2 transcriptional target SLC7A11. Collectively, these findings indicate that the accumulation of DPP9 results in hyperactivation of the NRF2 pathway to promote tumorigenesis and intrinsic drug resistance in ccRCC. SIGNIFICANCE: DPP9 overcomes oxidative stress and suppresses ferroptosis in ccRCC by binding to KEAP1 and promoting NRF2 stability, which drives tumor development and sorafenib resistance.


Subject(s)
Carcinoma, Renal Cell , Ferroptosis , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Signal Transduction/genetics , Sorafenib/pharmacology
9.
J Allergy Clin Immunol ; 152(5): 1336-1344.e5, 2023 11.
Article in English | MEDLINE | ID: mdl-37544411

ABSTRACT

BACKGROUND: Genetic defects in components of inflammasomes can cause autoinflammation. Biallelic loss-of-function mutations in dipeptidyl peptidase 9 (DPP9), a negative regulator of the NLRP1 and CARD8 inflammasomes, have recently been shown to cause an inborn error of immunity characterized by pancytopenia, skin manifestations, and increased susceptibility to infections. OBJECTIVE: We sought to study the molecular basis of autoinflammation in a patient with severe infancy-onset hyperinflammation associated with signs of fulminant hemophagocytic lymphohistiocytosis. METHODS: Using heterologous cell models as well as patient cells, we performed genetic, immunologic, and molecular investigations to identify the genetic cause and to assess the impact of the identified mutation on inflammasome activation. RESULTS: The patient exhibited pancytopenia with decreased neutrophils and T, B, and natural killer cells, and markedly elevated levels of lactate dehydrogenase, ferritin, soluble IL-2 receptor, and triglycerides. In addition, serum levels of IL-1ß and IL-18 were massively increased, consistent with inflammasome activation. Genetic analysis revealed a previously undescribed de novo mutation in DPP9 (c.755G>C, p.Arg252Pro) affecting a highly conserved amino acid residue. The mutation led to destabilization of the DPP9 protein as shown in transiently transfected HEK293T cells and in patient-derived induced pluripotent stem cells. Using functional inflammasome assays in HEK293T cells, we demonstrated that mutant DPP9 failed to restrain the NLRP1 and CARD8 inflammasomes, resulting in constitutive inflammasome activation. These findings suggest that the Arg252Pro DPP9 mutation acts in a dominant-negative manner. CONCLUSIONS: A de novo mutation in DPP9 leads to severe infancy-onset autoinflammation because of unleashed inflammasome activation.


Subject(s)
Lymphohistiocytosis, Hemophagocytic , Pancytopenia , Humans , CARD Signaling Adaptor Proteins/genetics , Inflammasomes/genetics , Inflammasomes/metabolism , Lymphohistiocytosis, Hemophagocytic/genetics , HEK293 Cells , Apoptosis Regulatory Proteins/genetics , Mutation , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Neoplasm Proteins/genetics
10.
Biosci Rep ; 43(9)2023 09 27.
Article in English | MEDLINE | ID: mdl-37531267

ABSTRACT

Resistance to therapy in esophageal squamous cell carcinoma (ESCC) is a critical clinical problem and identification of novel therapeutic targets is highly warranted. Dipeptidyl peptidase III (DPP3) is a zinc-dependent aminopeptidase and functions in the terminal stages of the protein turnover. Several studies have reported overexpression and oncogenic functions of DPP3 in numerous malignancies. The present study aimed to determine the expression pattern and functional role of DPP3 in ESCC. DPP3 expression was assessed in normal and tumor tissues using quantitative real-time (qRT)-PCR and corroborated with ESCC gene expression datasets from Gene Expression Omnibus (GEO) and The cancer genome atlas (TCGA). DPP3 stable knockdown was performed in ESCC cells by shRNA and its effect on cell proliferation, migration, cell cycle, apoptosis, and activation of nuclear factor erythroid 2-related factor 2 (NRF2) pathway was assessed. The results suggested that DPP3 is overexpressed in ESCC and its knockdown leads to reduced proliferation, increased apoptosis, and inhibited migration of ESCC cells. Additionally, DPP3 knockdown leads to down-regulation of the NRF2 pathway proteins, such as NRF2, G6PD, and NQO1 along with increased sensitivity toward oxidative stress-induced cell death and chemotherapy. Conclusively, these results demonstrate critical role of DPP3 in ESCC and DPP3/NRF2 axis may serve as an attractive therapeutic target against chemoresistance in this malignancy.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Neoplasms/pathology , NF-E2-Related Factor 2/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Oxidative Stress , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
11.
Nutrients ; 15(10)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242299

ABSTRACT

Associations of omega-3 fatty acids (n-3) with allergic diseases are inconsistent, perhaps in part due to genetic variation. We sought to identify and validate genetic variants that modify associations of n-3 with childhood asthma or atopy in participants in the Vitamin D Antenatal Asthma Reduction Trial (VDAART) and the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC). Dietary n-3 was derived from food frequency questionnaires and plasma n-3 was measured via untargeted mass spectrometry in early childhood and children aged 6 years old. Interactions of genotype with n-3 in association with asthma or atopy at age 6 years were sought for six candidate genes/gene regions and genome-wide. Two SNPs in the region of DPP10 (rs958457 and rs1516311) interacted with plasma n-3 at age 3 years in VDAART (p = 0.007 and 0.003, respectively) and with plasma n-3 at age 18 months in COPSAC (p = 0.01 and 0.02, respectively) in associationwith atopy. Another DPP10 region SNP, rs1367180, interacted with dietary n-3 at age 6 years in VDAART (p = 0.009) and with plasma n-3 at age 6 years in COPSAC (p = 0.004) in association with atopy. No replicated interactions were identified for asthma. The effect of n-3 on reducing childhood allergic disease may differ by individual factors, including genetic variation in the DPP10 region.


Subject(s)
Asthma , Fatty Acids, Omega-3 , Hypersensitivity, Immediate , Hypersensitivity , Child , Humans , Child, Preschool , Female , Pregnancy , Infant , Prospective Studies , Hypersensitivity, Immediate/genetics , Asthma/genetics , Genotype , Vitamin D , Vitamins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics
12.
Exp Neurol ; 363: 114381, 2023 05.
Article in English | MEDLINE | ID: mdl-36918063

ABSTRACT

Neuronal ceroid lipofuscinoses (NCLs) are autosomal-recessive fatal neurodegenerative diseases that occur in children and young adults, with symptoms including ataxia, seizures and visual impairment. We report the discovery of cynomolgus macaques carrying the CLN2/TPP1 variant and our analysis of whether the macaques could be a new non-human primate model for NCL type 2 (CLN2) disease. Three cynomolgus macaques presented progressive neuronal clinical symptoms such as limb tremors and gait disturbance after about 2 years of age. Morphological analyses using brain MRI at the endpoint of approximately 3 years of age revealed marked cerebellar and cerebral atrophy of the gray matter, with sulcus dilation, gyrus thinning, and ventricular enlargement. Histopathological analyses of three affected macaques revealed severe neuronal loss and degeneration in the cerebellar and cerebral cortices, accompanied by glial activation and/or changes in axonal morphology. Neurons observed throughout the central nervous system contained autofluorescent cytoplasmic pigments, which were identified as ceroid-lipofuscin based on staining properties, and the cerebral cortex examined by transmission electron microscopy had curvilinear profiles, the typical ultrastructural pattern of CLN2. These findings are commonly observed in all forms of NCL. DNA sequencing analysis identified a homozygous single-base deletion (c.42delC) of the CLN2/TPP1 gene, resulting in a frameshifted premature stop codon. Immunohistochemical analysis showed that tissue from the affected macaques lacked a detectable signal against TPP1, the product of the CLN2/TPP1 gene. Analysis for transmission of the CLN2/TPP1 mutated gene revealed that 47 (49.5%) and 48 (50.5%) of the 95 individuals genotyped in the CLN2-affected macaque family were heterozygous carriers and homozygous wild-type individuals, respectively. Thus, we identified cynomolgus macaques as a non-human primate model of CLN2 disease. The CLN2 macaques reported here could become a useful resource for research and the development of drugs and methods for treating CLN2 disease, which involves severe symptoms in humans.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Tripeptidyl-Peptidase 1 , Animals , Humans , Serine Proteases/genetics , Serine Proteases/chemistry , Serine Proteases/therapeutic use , Aminopeptidases/genetics , Aminopeptidases/chemistry , Aminopeptidases/therapeutic use , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Neuronal Ceroid-Lipofuscinoses/diagnostic imaging , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Macaca
13.
Oncol Rep ; 49(1)2023 01.
Article in English | MEDLINE | ID: mdl-36382663

ABSTRACT

Dipeptidyl peptidase III (DPP3), a zinc­dependent metallopeptidase, is upregulated in a variety of malignancies. However, little is known about its roles in the pathogenesis of these malignancies. The present study was designed to investigate the roles of DPP3 in the pathogenesis and progression of oesophageal cancer (EC). The expression level of DPP3 in EC tissues and adjacent normal tissues was detected in 93 cases of tissue biopsies collected from patients diagnosed with oesophageal carcinoma by immunohistochemistry. The effect of DPP3 expression on cell proliferation, migration or apoptosis was determined in DPP3­depleted EC cells created by infection with lentivirus containing short hairpin RNA specific to the human DPP3 mRNA sequence, followed by detection at the cellular level using a Celigo cell count assay, flow cytometry, wound­healing assay and Transwell assay as well as chip screening with a Human Apoptosis Antibody Array kit, which enables the quantitative detection of 43 apoptosis­related genes. A xenograft model was applied to detect the tumour growth and invasion of DPP3­depleted cancer cells in nude mice. The results revealed that DPP3 expression was elevated in EC tissues compared with adjacent non­tumour tissues, and high DPP3 expression was significantly associated with poor prognosis. DPP3 depletion resulted in reduced cell proliferation and migration and enhanced cell cycle arrest and apoptosis of EC cells and led to the inhibition of tumour growth and invasion in a xenograft model. In addition, DPP3 depletion was associated with the upregulation of the proapoptotic proteins SMAC and p53 and the downregulation of the antiapoptotic proteins clAP­2, IGFBP­2 and TRAILR­4. Finally, DPP3 may promote cell proliferation, migration and survival of EC cells in vitro and tumour growth and invasion of oesophageal carcinoma in vivo, and thus may serve as a molecular target for tumour therapy.


Subject(s)
Carcinoma, Squamous Cell , Esophageal Neoplasms , Animals , Humans , Mice , Apoptosis/genetics , Carcinoma, Squamous Cell/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Esophageal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Mice, Nude , Prognosis
14.
FEBS J ; 290(9): 2246-2262, 2023 05.
Article in English | MEDLINE | ID: mdl-35278345

ABSTRACT

Dipeptidyl peptidase 3 (DPP3), a zinc-dependent aminopeptidase, is a highly conserved enzyme among higher animals. The enzyme cleaves dipeptides from the N-terminus of tetra- to decapeptides, thereby taking part in activation as well as degradation of signalling peptides critical in physiological and pathological processes such as blood pressure regulation, nociception, inflammation and cancer. Besides its catalytic activity, DPP3 moonlights as a regulator of the cellular oxidative stress response pathway, e.g., the Keap1-Nrf2 mediated antioxidative response. The enzyme is also recognized as a key modulator of the renin-angiotensin system. Recently, DPP3 has been attracting growing attention within the scientific community, which has significantly augmented our knowledge of its physiological relevance. Herein, we review recent advances in our understanding of the structure and catalytic activity of DPP3, with a focus on attributing its molecular architecture and catalytic mechanism to its wide-ranging biological functions. We further highlight recent intriguing reports that implicate a broader role for DPP3 as a valuable biomarker in cardiovascular and renal pathologies and furthermore discuss its potential as a promising drug target.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Animals , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney/metabolism , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction
15.
Sci Immunol ; 7(75): eabi4611, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36112693

ABSTRACT

Dipeptidyl peptidase 9 (DPP9) is a direct inhibitor of NLRP1, but how it affects inflammasome regulation in vivo is not yet established. Here, we report three families with immune-associated defects, poor growth, pancytopenia, and skin pigmentation abnormalities that segregate with biallelic DPP9 rare variants. Using patient-derived primary cells and biochemical assays, these variants were shown to behave as hypomorphic or knockout alleles that failed to repress NLRP1. The removal of a single copy of Nlrp1a/b/c, Asc, Gsdmd, or Il-1r, but not Il-18, was sufficient to rescue the lethality of Dpp9 mutant neonates in mice. Similarly, dpp9 deficiency was partially rescued by the inactivation of asc, an obligate downstream adapter of the NLRP1 inflammasome, in zebrafish. These experiments suggest that the deleterious consequences of DPP9 deficiency were mostly driven by the aberrant activation of the canonical NLRP1 inflammasome and IL-1ß signaling. Collectively, our results delineate a Mendelian disorder of DPP9 deficiency driven by increased NLRP1 activity as demonstrated in patient cells and in two animal models of the disease.


Subject(s)
Apoptosis Regulatory Proteins , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Inflammasomes , Animals , Mice , Adaptor Proteins, Signal Transducing/metabolism , Apoptosis Regulatory Proteins/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Inflammasomes/metabolism , Interleukin-1/metabolism , NLR Proteins/genetics , Zebrafish
16.
Neurotherapeutics ; 19(6): 1905-1919, 2022 10.
Article in English | MEDLINE | ID: mdl-36100791

ABSTRACT

CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.


Subject(s)
Neuronal Ceroid-Lipofuscinoses , Mice , Animals , Swine , Neuronal Ceroid-Lipofuscinoses/genetics , Neuronal Ceroid-Lipofuscinoses/pathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/therapeutic use , Aminopeptidases/genetics , Aminopeptidases/therapeutic use , Serine Proteases/genetics , Serine Proteases/therapeutic use , Phenotype , Seizures/drug therapy
17.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36012450

ABSTRACT

The concerted action of voltage-gated ion channels in the brain is fundamental in controlling neuronal physiology and circuit function. Ion channels often associate in multi-protein complexes together with auxiliary subunits, which can strongly influence channel expression and function and, therefore, neuronal computation. One such auxiliary subunit that displays prominent expression in multiple brain regions is the Dipeptidyl aminopeptidase-like protein 6 (DPP6). This protein associates with A-type K+ channels to control their cellular distribution and gating properties. Intriguingly, DPP6 has been found to be multifunctional with an additional, independent role in synapse formation and maintenance. Here, we feature the role of DPP6 in regulating neuronal function in the context of its modulation of A-type K+ channels as well as its independent involvement in synaptic development. The prevalence of DPP6 in these processes underscores its importance in brain function, and recent work has identified that its dysfunction is associated with host of neurological disorders. We provide a brief overview of these and discuss research directions currently underway to advance our understanding of the contribution of DPP6 to their etiology.


Subject(s)
Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Shal Potassium Channels , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Kv Channel-Interacting Proteins/metabolism , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Shal Potassium Channels/metabolism
18.
EMBO Rep ; 23(10): e54136, 2022 10 06.
Article in English | MEDLINE | ID: mdl-35912982

ABSTRACT

N-terminal sequences are important sites for post-translational modifications that alter protein localization, activity, and stability. Dipeptidyl peptidase 9 (DPP9) is a serine aminopeptidase with the rare ability to cleave off N-terminal dipeptides with imino acid proline in the second position. Here, we identify the tumor-suppressor BRCA2 as a DPP9 substrate and show this interaction to be induced by DNA damage. We present crystallographic structures documenting intracrystalline enzymatic activity of DPP9, with the N-terminal Met1-Pro2 of a BRCA21-40 peptide captured in its active site. Intriguingly, DPP9-depleted cells are hypersensitive to genotoxic agents and are impaired in the repair of DNA double-strand breaks by homologous recombination. Mechanistically, DPP9 targets BRCA2 for degradation and promotes the formation of RAD51 foci, the downstream function of BRCA2. N-terminal truncation mutants of BRCA2 that mimic a DPP9 product phenocopy reduced BRCA2 stability and rescue RAD51 foci formation in DPP9-deficient cells. Taken together, we present DPP9 as a regulator of BRCA2 stability and propose that by fine-tuning the cellular concentrations of BRCA2, DPP9 alters the BRCA2 interactome, providing a possible explanation for DPP9's role in cancer.


Subject(s)
DNA Repair , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Aminopeptidases , DNA , DNA Damage , Dipeptides , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Proline , Rad51 Recombinase/genetics , Serine
19.
Neurobiol Aging ; 118: 106-107, 2022 10.
Article in English | MEDLINE | ID: mdl-35914472

ABSTRACT

One potential therapeutic strategy for Alzheimer disease (AD) is to promote degradation of amyloid beta (Aß) and we previously demonstrated that the lysosomal protease tripeptidyl peptidase 1 (TPP1) can degrade Aß fibrils in vitro. In this study, we tested the hypothesis that increasing levels of TPP1 might promote degradation of Aß under physiological conditions, slowing or preventing its accumulation in the brain with subsequent therapeutic benefits. We used 2 approaches to increase TPP1 activity in the brain of J20 mice, an AD model that accumulates Aß and exhibits cognitive defects: transgenic overexpression of TPP1 in the brain and a pharmacological approach employing administration of recombinant TPP1. While we clearly observed the expected AD phenotype of the J20 mice based on pathology and measurement of behavioral and cognitive defects, we found that elevation of TPP1 activity by either experimental approach failed to have any measurable beneficial effect on disease phenotype.


Subject(s)
Alzheimer Disease , Tripeptidyl-Peptidase 1 , Alzheimer Disease/pathology , Aminopeptidases/genetics , Aminopeptidases/metabolism , Aminopeptidases/pharmacology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Disease Models, Animal , Mice , Mice, Transgenic , Serine Proteases/genetics , Serine Proteases/metabolism , Serine Proteases/pharmacology
20.
J Cell Sci ; 135(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35466366

ABSTRACT

Tripeptidyl peptidase II (TPPII or TPP2) degrades N-terminal tripeptides from proteins and peptides. Studies in both humans and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that although the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of the levels of the serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation in the amount of lysosomal contents as in well as TPPI (TPP1) and ß-galactosidase activities, suggesting that lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together, this study discloses a critical role of the serpinB2-TPPII signaling pathway in proteostasis during senescence. Since serpinB2 levels can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Aminopeptidases , Cellular Senescence , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Intracellular Signaling Peptides and Proteins , Aminopeptidases/genetics , Aminopeptidases/metabolism , Cellular Senescence/genetics , Cellular Senescence/physiology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Fibroblasts/metabolism , Fibroblasts/physiology , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Proteostasis/genetics , Proteostasis/physiology , Serine Endopeptidases/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...