Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Hum Vaccin Immunother ; 14(1): 45-58, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29172945

ABSTRACT

Despite high vaccination coverage worldwide, pertussis has re-emerged in many countries. This randomized, controlled, observer-blind phase I study and extension study in Belgium (March 2012-June 2015) assessed safety and immunogenicity of investigational acellular pertussis vaccines containing genetically detoxified pertussis toxin (PT) (NCT01529645; NCT02382913). 420 healthy adults (average age: 26.8 ± 5.5 years, 60% female) were randomized to 1 of 10 vaccine groups: 3 investigational aP vaccines (containing pertussis antigens PT, filamentous hemagglutinin [FHA] and pertactin [PRN] at different dosages), 6 investigational TdaP (additionally containing tetanus toxoid [TT] and diphtheria toxoid [DT]), and 1 TdaP comparator containing chemically inactivated PT. Antibody responses were evaluated on days 1, 8, 30, 180, 365, and approximately 3 years post-booster vaccination. Cell-mediated immune responses and PT neutralization were evaluated in a subset of participants in pre-selected groups. Local and systemic adverse events (AEs), and unsolicited AEs were collected through day 7 and 30, respectively; serious AEs and AEs leading to study withdrawal were collected through day 365 post-vaccination. Antibody responses against pertussis antigens peaked at day 30 post-vaccination and then declined but remained above baseline level at approximately 3 years post-vaccination. Responses to FHA and PRN were correlated to antigen dose. Antibody responses specific to PT, toxin neutralization activity and persistence induced by investigational formulations were similar or significantly higher than the licensed vaccine, despite lower PT doses. Of 15 serious AEs, none were considered vaccination-related; 1 led to study withdrawal (premature labor, day 364; aP4 group). This study confirmed the potential benefits of genetically detoxified PT antigen. All investigational study formulations were well tolerated.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines/administration & dosage , Immunization, Secondary/methods , Pertussis Toxin/immunology , Pertussis Vaccine/administration & dosage , Vaccination/methods , Whooping Cough/prevention & control , Adult , Antibodies, Bacterial/analysis , Belgium , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/genetics , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Female , Humans , Immunity, Cellular , Immunogenicity, Vaccine , Male , Pertussis Toxin/genetics , Pertussis Vaccine/adverse effects , Pertussis Vaccine/genetics , Pertussis Vaccine/immunology , Treatment Outcome , Whooping Cough/blood , Whooping Cough/immunology , Young Adult
2.
Rev Inst Med Trop Sao Paulo ; 51(3): 131-4, 2009.
Article in English | MEDLINE | ID: mdl-19551286

ABSTRACT

OBJECTIVE: to discuss the current PAHO recommendation that does not support the substitution of traditional cellular DTP vaccine by acellular DTP, and the role of mutations, in humans, as the main cause of rare adverse events, such as epileptic-like convulsions, triggered by pertussis vaccine. DATA REVIEW: the main components related to toxic effects of cellular pertussis vaccines are the lipopolysaccharide of bacterial cell wall and pertussis toxin. The removal of part of lipopolysaccharide layer has allowed the creation of a safer cellular pertussis vaccine, with costs comparable to the traditional cellular vaccine, and which may be a substitute for the acellular vaccine. CONCLUSION: The new methodology introduced by Instituto Butantan allows for the development of a new safer pertussis vaccine with low LPS content (Plow), and the use of the lipopolysaccharide obtained in the process in the production of monophosphoryl lipid A. This component has shown potent adjuvant effect when administered together with influenza inactivated vaccine, making possible to reduce the antigen dose, enhancing the production capacity and lowering costs.


Subject(s)
Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Lipopolysaccharides/immunology , Mutation , Cost-Benefit Analysis , Diphtheria-Tetanus-Pertussis Vaccine/genetics , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/genetics , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Humans , Lipopolysaccharides/adverse effects , World Health Organization
3.
Rev. Inst. Med. Trop. Säo Paulo ; 51(3): 131-134, May-June 2009. ilus
Article in English | LILACS, Sec. Est. Saúde SP | ID: lil-517095

ABSTRACT

Objective: to discuss the current PAHO recommendation that does not support the substitution of traditional cellular DTP vaccine by acellular DTP, and the role of mutations, in humans, as the main cause of rare adverse events, such as epileptic-like convulsions, triggered by pertussis vaccine. Data review: the main components related to toxic effects of cellular pertussis vaccines are the lipopolysaccharide of bacterial cell wall and pertussis toxin. The removal of part of lipopolysaccharide layer has allowed the creation of a safer cellular pertussis vaccine, with costs comparable to the traditional cellular vaccine, and which may be a substitute for the acellular vaccine. Conclusion: The new methodology introduced by Instituto Butantan allows for the development of a new safer pertussis vaccine with low LPS content (Plow), and the use of the lipopolysaccharide obtained in the process in the production of monophosphoryl lipid A. This component has shown potent adjuvant effect when administered together with influenza inactivated vaccine, making possible to reduce the antigen dose, enhancing the production capacity and lowering costs.


Objetivo: Discutir as recomendações da WHO-OPAS que não consideram indicada a substituição da vacina DTP celular clássica pela DTP acelular e o papel de mutações, em humanos, como principal causa dos raros eventos de convulsões epileptiformes desencadeadas pela vacina pertussis. Revisão dos dados: Os principais componentes relacionados aos efeitos tóxicos da vacina pertussis celular são o lipopolissacarídio da parede celular da bactéria e a toxina pertussis. A remoção de parte da camada lipopolissacarídica permitiu a criação de uma vacina pertussis celular, mais segura e de custo comparável ao da vacina celular tradicional, podendo substituir a vacina pertussis acelular. Conclusão: A nova vacina pertussis, com baixo teor de LPS (Plow) desenvolvida pelo Instituto Butantan, além de oferecer uma vacina mais segura, permite o aproveitamento do lipopolissacarídeo para a produção de monofosforil lipídeo A. Esse componente mostrou-se potente como adjuvante e altamente eficiente quando administrado com a vacina de influenza, levando à possibilidade de se reduzir a dose de antígeno, aumentando a capacidade de produção e redução dos custos.


Subject(s)
Humans , Diphtheria-Tetanus-Pertussis Vaccine/adverse effects , Diphtheria-Tetanus-acellular Pertussis Vaccines/adverse effects , Lipopolysaccharides/immunology , Mutation , Cost-Benefit Analysis , Diphtheria-Tetanus-Pertussis Vaccine/genetics , Diphtheria-Tetanus-Pertussis Vaccine/immunology , Diphtheria-Tetanus-acellular Pertussis Vaccines/genetics , Diphtheria-Tetanus-acellular Pertussis Vaccines/immunology , Lipopolysaccharides/adverse effects , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...